From 5d3e24a1da29c20a26f37ac77be0e9333aa0b546 Mon Sep 17 00:00:00 2001 From: Yuma Mizuno Date: Mon, 26 Feb 2024 23:59:37 +0000 Subject: [PATCH] refactor(CategoryTheory/Monoidal/Rigid): use monoidalComp in the proofs (#10326) Similar to #10078 --- Mathlib/CategoryTheory/Monoidal/Functor.lean | 6 + .../CategoryTheory/Monoidal/Rigid/Basic.lean | 462 ++++++++---------- .../Monoidal/Rigid/FunctorCategory.lean | 20 +- .../Monoidal/Rigid/OfEquivalence.lean | 10 +- Mathlib/Tactic/CategoryTheory/Coherence.lean | 4 + 5 files changed, 238 insertions(+), 264 deletions(-) diff --git a/Mathlib/CategoryTheory/Monoidal/Functor.lean b/Mathlib/CategoryTheory/Monoidal/Functor.lean index 7a875c0cebc08..d6e2fb1737270 100644 --- a/Mathlib/CategoryTheory/Monoidal/Functor.lean +++ b/Mathlib/CategoryTheory/Monoidal/Functor.lean @@ -308,10 +308,16 @@ theorem map_tensor {X Y X' Y' : C} (f : X ⟶ Y) (g : X' ⟶ Y') : theorem map_whiskerLeft (X : C) {Y Z : C} (f : Y ⟶ Z) : F.map (𝟙 X ⊗ f) = inv (F.μ X Y) ≫ (𝟙 (F.obj X) ⊗ F.map f) ≫ F.μ X Z := by simp +theorem map_whiskerLeft' (X : C) {Y Z : C} (f : Y ⟶ Z) : + F.map (X ◁ f) = inv (F.μ X Y) ≫ F.obj X ◁ F.map f ≫ F.μ X Z := by simp + -- Note: `f ⊗ 𝟙 Z` will be replaced by `f ▷ Z` in #6307. theorem map_whiskerRight {X Y : C} (f : X ⟶ Y) (Z : C) : F.map (f ⊗ 𝟙 Z) = inv (F.μ X Z) ≫ (F.map f ⊗ 𝟙 (F.obj Z)) ≫ F.μ Y Z := by simp +theorem map_whiskerRight' {X Y : C} (f : X ⟶ Y) (Z : C) : + F.map (f ▷ Z) = inv (F.μ X Z) ≫ F.map f ▷ F.obj Z ≫ F.μ Y Z := by simp + theorem map_leftUnitor (X : C) : F.map (λ_ X).hom = inv (F.μ (𝟙_ C) X) ≫ (inv F.ε ⊗ 𝟙 (F.obj X)) ≫ (λ_ (F.obj X)).hom := by simp only [LaxMonoidalFunctor.left_unitality] diff --git a/Mathlib/CategoryTheory/Monoidal/Rigid/Basic.lean b/Mathlib/CategoryTheory/Monoidal/Rigid/Basic.lean index 6a19961996a97..5bf46d9555072 100644 --- a/Mathlib/CategoryTheory/Monoidal/Rigid/Basic.lean +++ b/Mathlib/CategoryTheory/Monoidal/Rigid/Basic.lean @@ -3,7 +3,8 @@ Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ -import Mathlib.CategoryTheory.Monoidal.CoherenceLemmas +import Mathlib.CategoryTheory.Monoidal.Free.Coherence +import Mathlib.Tactic.CategoryTheory.Coherence import Mathlib.CategoryTheory.Closed.Monoidal import Mathlib.Tactic.ApplyFun @@ -82,10 +83,10 @@ class ExactPairing (X Y : C) where Do not use directly. Use `ExactPairing.evaluation` instead. -/ evaluation' : Y ⊗ X ⟶ 𝟙_ C coevaluation_evaluation' : - (𝟙 Y ⊗ coevaluation') ≫ (α_ _ _ _).inv ≫ (evaluation' ⊗ 𝟙 Y) = (ρ_ Y).hom ≫ (λ_ Y).inv := by + Y ◁ coevaluation' ≫ (α_ _ _ _).inv ≫ evaluation' ▷ Y = (ρ_ Y).hom ≫ (λ_ Y).inv := by aesop_cat evaluation_coevaluation' : - (coevaluation' ⊗ 𝟙 X) ≫ (α_ _ _ _).hom ≫ (𝟙 X ⊗ evaluation') = (λ_ X).hom ≫ (ρ_ X).inv := by + coevaluation' ▷ X ≫ (α_ _ _ _).hom ≫ X ◁ evaluation' = (λ_ X).hom ≫ (ρ_ X).inv := by aesop_cat #align category_theory.exact_pairing CategoryTheory.ExactPairing @@ -109,13 +110,21 @@ def evaluation : Y ⊗ X ⟶ 𝟙_ C := @evaluation' _ _ _ X Y _ @[inherit_doc] notation "ε_" => ExactPairing.evaluation lemma coevaluation_evaluation : - (𝟙 Y ⊗ η_ _ _) ≫ (α_ _ _ _).inv ≫ (ε_ X _ ⊗ 𝟙 Y) = (ρ_ Y).hom ≫ (λ_ Y).inv := + Y ◁ η_ _ _ ≫ (α_ _ _ _).inv ≫ ε_ X _ ▷ Y = (ρ_ Y).hom ≫ (λ_ Y).inv := coevaluation_evaluation' lemma evaluation_coevaluation : - (η_ _ _ ⊗ 𝟙 X) ≫ (α_ _ _ _).hom ≫ (𝟙 X ⊗ ε_ _ Y) = (λ_ X).hom ≫ (ρ_ X).inv := + η_ _ _ ▷ X ≫ (α_ _ _ _).hom ≫ X ◁ ε_ _ Y = (λ_ X).hom ≫ (ρ_ X).inv := evaluation_coevaluation' +lemma coevaluation_evaluation'' : + Y ◁ η_ X Y ⊗≫ ε_ X Y ▷ Y = ⊗𝟙 := by + convert coevaluation_evaluation X Y <;> simp [Mathlib.Tactic.Coherence.monoidalComp] + +lemma evaluation_coevaluation'' : + η_ X Y ▷ X ⊗≫ X ◁ ε_ X Y = ⊗𝟙 := by + convert evaluation_coevaluation X Y <;> simp [Mathlib.Tactic.Coherence.monoidalComp] + end ExactPairing attribute [reassoc (attr := simp)] ExactPairing.coevaluation_evaluation @@ -124,8 +133,8 @@ attribute [reassoc (attr := simp)] ExactPairing.evaluation_coevaluation instance exactPairingUnit : ExactPairing (𝟙_ C) (𝟙_ C) where coevaluation' := (ρ_ _).inv evaluation' := (ρ_ _).hom - coevaluation_evaluation' := by coherence - evaluation_coevaluation' := by coherence + coevaluation_evaluation' := by rw [← id_tensorHom, ← tensorHom_id]; coherence + evaluation_coevaluation' := by rw [← id_tensorHom, ← tensorHom_id]; coherence #align category_theory.exact_pairing_unit CategoryTheory.exactPairingUnit /-- A class of objects which have a right dual. -/ @@ -178,12 +187,12 @@ theorem rightDual_leftDual {X : C} [HasLeftDual X] : (ᘁX)ᘁ = X := /-- The right adjoint mate `fᘁ : Xᘁ ⟶ Yᘁ` of a morphism `f : X ⟶ Y`. -/ def rightAdjointMate {X Y : C} [HasRightDual X] [HasRightDual Y] (f : X ⟶ Y) : Yᘁ ⟶ Xᘁ := - (ρ_ _).inv ≫ (𝟙 _ ⊗ η_ _ _) ≫ (𝟙 _ ⊗ f ⊗ 𝟙 _) ≫ (α_ _ _ _).inv ≫ (ε_ _ _ ⊗ 𝟙 _) ≫ (λ_ _).hom + (ρ_ _).inv ≫ _ ◁ η_ _ _ ≫ _ ◁ f ▷ _ ≫ (α_ _ _ _).inv ≫ ε_ _ _ ▷ _ ≫ (λ_ _).hom #align category_theory.right_adjoint_mate CategoryTheory.rightAdjointMate /-- The left adjoint mate `ᘁf : ᘁY ⟶ ᘁX` of a morphism `f : X ⟶ Y`. -/ def leftAdjointMate {X Y : C} [HasLeftDual X] [HasLeftDual Y] (f : X ⟶ Y) : ᘁY ⟶ ᘁX := - (λ_ _).inv ≫ (η_ (ᘁX) X ⊗ 𝟙 _) ≫ ((𝟙 _ ⊗ f) ⊗ 𝟙 _) ≫ (α_ _ _ _).hom ≫ (𝟙 _ ⊗ ε_ _ _) ≫ (ρ_ _).hom + (λ_ _).inv ≫ η_ (ᘁX) X ▷ _ ≫ (_ ◁ f) ▷ _ ≫ (α_ _ _ _).hom ≫ _ ◁ ε_ _ _ ≫ (ρ_ _).hom #align category_theory.left_adjoint_mate CategoryTheory.leftAdjointMate @[inherit_doc] notation f "ᘁ" => rightAdjointMate f @@ -191,37 +200,36 @@ def leftAdjointMate {X Y : C} [HasLeftDual X] [HasLeftDual Y] (f : X ⟶ Y) : @[simp] theorem rightAdjointMate_id {X : C} [HasRightDual X] : (𝟙 X)ᘁ = 𝟙 (Xᘁ) := by - simp only [rightAdjointMate, MonoidalCategory.tensor_id, Category.id_comp, - coevaluation_evaluation_assoc, Category.comp_id, Iso.inv_hom_id] + simp [rightAdjointMate] #align category_theory.right_adjoint_mate_id CategoryTheory.rightAdjointMate_id @[simp] theorem leftAdjointMate_id {X : C} [HasLeftDual X] : (ᘁ(𝟙 X)) = 𝟙 (ᘁX) := by - simp only [leftAdjointMate, MonoidalCategory.tensor_id, Category.id_comp, - evaluation_coevaluation_assoc, Category.comp_id, Iso.inv_hom_id] + simp [leftAdjointMate] #align category_theory.left_adjoint_mate_id CategoryTheory.leftAdjointMate_id theorem rightAdjointMate_comp {X Y Z : C} [HasRightDual X] [HasRightDual Y] {f : X ⟶ Y} {g : Xᘁ ⟶ Z} : fᘁ ≫ g = (ρ_ (Yᘁ)).inv ≫ - (𝟙 _ ⊗ η_ X (Xᘁ)) ≫ (𝟙 _ ⊗ f ⊗ g) ≫ (α_ (Yᘁ) Y Z).inv ≫ (ε_ Y (Yᘁ) ⊗ 𝟙 _) ≫ (λ_ Z).hom := by - dsimp only [rightAdjointMate] - rw [Category.assoc, Category.assoc, associator_inv_naturality_assoc, - associator_inv_naturality_assoc, ← tensor_id_comp_id_tensor g, Category.assoc, Category.assoc, - Category.assoc, Category.assoc, id_tensor_comp_tensor_id_assoc, ← leftUnitor_naturality, - tensor_id_comp_id_tensor_assoc] + _ ◁ η_ X (Xᘁ) ≫ _ ◁ (f ⊗ g) ≫ (α_ (Yᘁ) Y Z).inv ≫ ε_ Y (Yᘁ) ▷ _ ≫ (λ_ Z).hom := + calc + _ = 𝟙 _ ⊗≫ Yᘁ ◁ η_ X Xᘁ ≫ Yᘁ ◁ f ▷ Xᘁ ⊗≫ (ε_ Y Yᘁ ▷ Xᘁ ≫ 𝟙_ C ◁ g) ⊗≫ 𝟙 _ := by + dsimp only [rightAdjointMate]; coherence + _ = _ := by + rw [← whisker_exchange, tensorHom_def]; coherence #align category_theory.right_adjoint_mate_comp CategoryTheory.rightAdjointMate_comp theorem leftAdjointMate_comp {X Y Z : C} [HasLeftDual X] [HasLeftDual Y] {f : X ⟶ Y} {g : (ᘁX) ⟶ Z} : (ᘁf) ≫ g = (λ_ _).inv ≫ - (η_ (ᘁX) X ⊗ 𝟙 _) ≫ ((g ⊗ f) ⊗ 𝟙 _) ≫ (α_ _ _ _).hom ≫ (𝟙 _ ⊗ ε_ _ _) ≫ (ρ_ _).hom := by - dsimp only [leftAdjointMate] - rw [Category.assoc, Category.assoc, associator_naturality_assoc, associator_naturality_assoc, ← - id_tensor_comp_tensor_id _ g, Category.assoc, Category.assoc, Category.assoc, Category.assoc, - tensor_id_comp_id_tensor_assoc, ← rightUnitor_naturality, id_tensor_comp_tensor_id_assoc] + η_ (ᘁX) X ▷ _ ≫ (g ⊗ f) ▷ _ ≫ (α_ _ _ _).hom ≫ _ ◁ ε_ _ _ ≫ (ρ_ _).hom := + calc + _ = 𝟙 _ ⊗≫ η_ (ᘁX) X ▷ (ᘁY) ⊗≫ (ᘁX) ◁ f ▷ (ᘁY) ⊗≫ ((ᘁX) ◁ ε_ (ᘁY) Y ≫ g ▷ 𝟙_ C) ⊗≫ 𝟙 _ := by + dsimp only [leftAdjointMate]; coherence + _ = _ := by + rw [whisker_exchange, tensorHom_def']; coherence #align category_theory.left_adjoint_mate_comp CategoryTheory.leftAdjointMate_comp /-- The composition of right adjoint mates is the adjoint mate of the composition. -/ @@ -229,37 +237,21 @@ theorem leftAdjointMate_comp {X Y Z : C} [HasLeftDual X] [HasLeftDual Y] {f : X theorem comp_rightAdjointMate {X Y Z : C} [HasRightDual X] [HasRightDual Y] [HasRightDual Z] {f : X ⟶ Y} {g : Y ⟶ Z} : (f ≫ g)ᘁ = gᘁ ≫ fᘁ := by rw [rightAdjointMate_comp] - simp only [rightAdjointMate, comp_tensor_id, Iso.cancel_iso_inv_left, id_tensor_comp, - Category.assoc] + simp only [rightAdjointMate, comp_whiskerRight] + simp only [← Category.assoc]; congr 3; simp only [Category.assoc] + simp only [← MonoidalCategory.whiskerLeft_comp]; congr 2 symm - iterate 5 - trans - rw [← Category.id_comp g, tensor_comp] - rw [← Category.assoc] - symm - iterate 2 - trans - rw [← Category.assoc] - apply eq_whisker - repeat' - -- Porting note: why do we need to fill in the implicit `C` here, and below? - rw [← @id_tensor_comp C] - congr 1 - rw [← id_tensor_comp_tensor_id (λ_ (Xᘁ)).hom g, id_tensor_rightUnitor_inv, Category.assoc, - Category.assoc, rightUnitor_inv_naturality_assoc, ← associator_naturality_assoc, tensor_id, - tensor_id_comp_id_tensor_assoc, ← associator_naturality_assoc] - slice_rhs 2 3 => - rw [← tensor_comp, tensor_id, Category.comp_id, ← Category.id_comp (η_ Y (Yᘁ)), tensor_comp] - rw [← id_tensor_comp_tensor_id _ (η_ Y (Yᘁ)), ← tensor_id] - repeat' rw [@Category.assoc C] - rw [pentagon_hom_inv_assoc, ← associator_naturality_assoc, associator_inv_naturality_assoc] - slice_rhs 5 7 => rw [← comp_tensor_id, ← comp_tensor_id, evaluation_coevaluation, comp_tensor_id] - rw [associator_inv_naturality_assoc] - slice_rhs 4 5 => rw [← tensor_comp, leftUnitor_naturality, tensor_comp] - repeat' rw [@Category.assoc C] - rw [triangle_assoc_comp_right_inv_assoc, ← leftUnitor_tensor_assoc, leftUnitor_naturality_assoc, - unitors_equal, ← Category.assoc, ← Category.assoc] - simp + calc + _ = 𝟙 _ ⊗≫ (η_ Y Yᘁ ▷ 𝟙_ C ≫ (Y ⊗ Yᘁ) ◁ η_ X Xᘁ) ⊗≫ Y ◁ Yᘁ ◁ f ▷ Xᘁ ⊗≫ + Y ◁ ε_ Y Yᘁ ▷ Xᘁ ⊗≫ g ▷ Xᘁ ⊗≫ 𝟙 _ := by + rw [tensorHom_def']; coherence + _ = η_ X Xᘁ ⊗≫ (η_ Y Yᘁ ▷ (X ⊗ Xᘁ) ≫ (Y ⊗ Yᘁ) ◁ f ▷ Xᘁ) ⊗≫ + Y ◁ ε_ Y Yᘁ ▷ Xᘁ ⊗≫ g ▷ Xᘁ ⊗≫ 𝟙 _ := by + rw [← whisker_exchange]; coherence + _ = η_ X Xᘁ ⊗≫ f ▷ Xᘁ ⊗≫ (η_ Y Yᘁ ▷ Y ⊗≫ Y ◁ ε_ Y Yᘁ) ▷ Xᘁ ⊗≫ g ▷ Xᘁ ⊗≫ 𝟙 _ := by + rw [← whisker_exchange]; coherence + _ = η_ X Xᘁ ≫ f ▷ Xᘁ ≫ g ▷ Xᘁ := by + rw [evaluation_coevaluation'']; coherence #align category_theory.comp_right_adjoint_mate CategoryTheory.comp_rightAdjointMate /-- The composition of left adjoint mates is the adjoint mate of the composition. -/ @@ -267,37 +259,21 @@ theorem comp_rightAdjointMate {X Y Z : C} [HasRightDual X] [HasRightDual Y] [Has theorem comp_leftAdjointMate {X Y Z : C} [HasLeftDual X] [HasLeftDual Y] [HasLeftDual Z] {f : X ⟶ Y} {g : Y ⟶ Z} : (ᘁf ≫ g) = (ᘁg) ≫ ᘁf := by rw [leftAdjointMate_comp] - simp only [leftAdjointMate, id_tensor_comp, Iso.cancel_iso_inv_left, comp_tensor_id, - Category.assoc] + simp only [leftAdjointMate, MonoidalCategory.whiskerLeft_comp] + simp only [← Category.assoc]; congr 3; simp only [Category.assoc] + simp only [← comp_whiskerRight]; congr 2 symm - iterate 5 - trans - rw [← Category.id_comp g, tensor_comp] - rw [← Category.assoc] - symm - iterate 2 - trans - rw [← Category.assoc] - apply eq_whisker - repeat' - -- Porting note: why do we need to fill in the implicit `C` here, and below? - rw [← @comp_tensor_id C] - congr 1 - rw [← tensor_id_comp_id_tensor g (ρ_ (ᘁX)).hom, leftUnitor_inv_tensor_id, Category.assoc, - Category.assoc, leftUnitor_inv_naturality_assoc, ← associator_inv_naturality_assoc, tensor_id, - id_tensor_comp_tensor_id_assoc, ← associator_inv_naturality_assoc] - slice_rhs 2 3 => - rw [← tensor_comp, tensor_id, Category.comp_id, ← Category.id_comp (η_ (ᘁY) Y), tensor_comp] - rw [← tensor_id_comp_id_tensor (η_ (ᘁY) Y), ← tensor_id] - repeat' rw [@Category.assoc C] - rw [pentagon_inv_hom_assoc, ← associator_inv_naturality_assoc, associator_naturality_assoc] - slice_rhs 5 7 => rw [← id_tensor_comp, ← id_tensor_comp, coevaluation_evaluation, id_tensor_comp] - rw [associator_naturality_assoc] - slice_rhs 4 5 => rw [← tensor_comp, rightUnitor_naturality, tensor_comp] - repeat' rw [@Category.assoc C] - rw [triangle_assoc_comp_left_inv_assoc, ← rightUnitor_tensor_assoc, - rightUnitor_naturality_assoc, ← unitors_equal, ← Category.assoc, ← Category.assoc] - simp + calc + _ = 𝟙 _ ⊗≫ ((𝟙_ C) ◁ η_ (ᘁY) Y ≫ η_ (ᘁX) X ▷ ((ᘁY) ⊗ Y)) ⊗≫ (ᘁX) ◁ f ▷ (ᘁY) ▷ Y ⊗≫ + (ᘁX) ◁ ε_ (ᘁY) Y ▷ Y ⊗≫ (ᘁX) ◁ g := by + rw [tensorHom_def]; coherence + _ = η_ (ᘁX) X ⊗≫ (((ᘁX) ⊗ X) ◁ η_ (ᘁY) Y ≫ ((ᘁX) ◁ f) ▷ ((ᘁY) ⊗ Y)) ⊗≫ + (ᘁX) ◁ ε_ (ᘁY) Y ▷ Y ⊗≫ (ᘁX) ◁ g := by + rw [whisker_exchange]; coherence + _ = η_ (ᘁX) X ⊗≫ ((ᘁX) ◁ f) ⊗≫ (ᘁX) ◁ (Y ◁ η_ (ᘁY) Y ⊗≫ ε_ (ᘁY) Y ▷ Y) ⊗≫ (ᘁX) ◁ g := by + rw [whisker_exchange]; coherence + _ = η_ (ᘁX) X ≫ (ᘁX) ◁ f ≫ (ᘁX) ◁ g := by + rw [coevaluation_evaluation'']; coherence #align category_theory.comp_left_adjoint_mate CategoryTheory.comp_leftAdjointMate /-- Given an exact pairing on `Y Y'`, @@ -310,36 +286,24 @@ This adjunction is often referred to as "Frobenius reciprocity" in the fusion categories / planar algebras / subfactors literature. -/ def tensorLeftHomEquiv (X Y Y' Z : C) [ExactPairing Y Y'] : (Y' ⊗ X ⟶ Z) ≃ (X ⟶ Y ⊗ Z) where - toFun f := (λ_ _).inv ≫ (η_ _ _ ⊗ 𝟙 _) ≫ (α_ _ _ _).hom ≫ (𝟙 _ ⊗ f) - invFun f := (𝟙 Y' ⊗ f) ≫ (α_ _ _ _).inv ≫ (ε_ _ _ ⊗ 𝟙 _) ≫ (λ_ _).hom + toFun f := (λ_ _).inv ≫ η_ _ _ ▷ _ ≫ (α_ _ _ _).hom ≫ _ ◁ f + invFun f := Y' ◁ f ≫ (α_ _ _ _).inv ≫ ε_ _ _ ▷ _ ≫ (λ_ _).hom left_inv f := by - dsimp - simp only [id_tensor_comp] - slice_lhs 4 5 => rw [associator_inv_naturality] - slice_lhs 5 6 => rw [tensor_id, id_tensor_comp_tensor_id, ← tensor_id_comp_id_tensor] - slice_lhs 2 5 => simp only [← tensor_id, associator_inv_conjugation] - have c : - (α_ Y' (Y ⊗ Y') X).hom ≫ - (𝟙 Y' ⊗ (α_ Y Y' X).hom) ≫ (α_ Y' Y (Y' ⊗ X)).inv ≫ (α_ (Y' ⊗ Y) Y' X).inv = - (α_ _ _ _).inv ⊗ 𝟙 _ := by pure_coherence - slice_lhs 4 7 => rw [c] - slice_lhs 3 5 => rw [← comp_tensor_id, ← comp_tensor_id, coevaluation_evaluation] - simp only [leftUnitor_conjugation] - coherence + calc + _ = 𝟙 _ ⊗≫ Y' ◁ η_ Y Y' ▷ X ⊗≫ ((Y' ⊗ Y) ◁ f ≫ ε_ Y Y' ▷ Z) ⊗≫ 𝟙 _ := by + coherence + _ = 𝟙 _ ⊗≫ (Y' ◁ η_ Y Y' ⊗≫ ε_ Y Y' ▷ Y') ▷ X ⊗≫ f := by + rw [whisker_exchange]; coherence + _ = f := by + rw [coevaluation_evaluation'']; coherence right_inv f := by - dsimp - simp only [id_tensor_comp] - slice_lhs 3 4 => rw [← associator_naturality] - slice_lhs 2 3 => rw [tensor_id, tensor_id_comp_id_tensor, ← id_tensor_comp_tensor_id] - slice_lhs 3 6 => simp only [← tensor_id, associator_inv_conjugation] - have c : - (α_ (Y ⊗ Y') Y Z).hom ≫ - (α_ Y Y' (Y ⊗ Z)).hom ≫ (𝟙 Y ⊗ (α_ Y' Y Z).inv) ≫ (α_ Y (Y' ⊗ Y) Z).inv = - (α_ _ _ _).hom ⊗ 𝟙 Z := by pure_coherence - slice_lhs 5 8 => rw [c] - slice_lhs 4 6 => rw [← comp_tensor_id, ← comp_tensor_id, evaluation_coevaluation] - simp only [leftUnitor_conjugation] - coherence + calc + _ = 𝟙 _ ⊗≫ (η_ Y Y' ▷ X ≫ (Y ⊗ Y') ◁ f) ⊗≫ Y ◁ ε_ Y Y' ▷ Z ⊗≫ 𝟙 _ := by + coherence + _ = f ⊗≫ (η_ Y Y' ▷ Y ⊗≫ Y ◁ ε_ Y Y') ▷ Z ⊗≫ 𝟙 _ := by + rw [← whisker_exchange]; coherence + _ = f := by + rw [evaluation_coevaluation'']; coherence #align category_theory.tensor_left_hom_equiv CategoryTheory.tensorLeftHomEquiv /-- Given an exact pairing on `Y Y'`, @@ -347,66 +311,52 @@ we get a bijection on hom-sets `(X ⊗ Y ⟶ Z) ≃ (X ⟶ Z ⊗ Y')` by "pulling the string on the right" up or down. -/ def tensorRightHomEquiv (X Y Y' Z : C) [ExactPairing Y Y'] : (X ⊗ Y ⟶ Z) ≃ (X ⟶ Z ⊗ Y') where - toFun f := (ρ_ _).inv ≫ (𝟙 _ ⊗ η_ _ _) ≫ (α_ _ _ _).inv ≫ (f ⊗ 𝟙 _) - invFun f := (f ⊗ 𝟙 _) ≫ (α_ _ _ _).hom ≫ (𝟙 _ ⊗ ε_ _ _) ≫ (ρ_ _).hom + toFun f := (ρ_ _).inv ≫ _ ◁ η_ _ _ ≫ (α_ _ _ _).inv ≫ f ▷ _ + invFun f := f ▷ _ ≫ (α_ _ _ _).hom ≫ _ ◁ ε_ _ _ ≫ (ρ_ _).hom left_inv f := by - dsimp - simp only [comp_tensor_id] - slice_lhs 4 5 => rw [associator_naturality] - slice_lhs 5 6 => rw [tensor_id, tensor_id_comp_id_tensor, ← id_tensor_comp_tensor_id] - slice_lhs 2 5 => simp only [← tensor_id, associator_conjugation] - have c : - (α_ X (Y ⊗ Y') Y).inv ≫ - ((α_ X Y Y').inv ⊗ 𝟙 Y) ≫ (α_ (X ⊗ Y) Y' Y).hom ≫ (α_ X Y (Y' ⊗ Y)).hom = - 𝟙 _ ⊗ (α_ _ _ _).hom := by pure_coherence - slice_lhs 4 7 => rw [c] - slice_lhs 3 5 => rw [← id_tensor_comp, ← id_tensor_comp, evaluation_coevaluation] - simp only [rightUnitor_conjugation] - coherence + calc + _ = 𝟙 _ ⊗≫ X ◁ η_ Y Y' ▷ Y ⊗≫ (f ▷ (Y' ⊗ Y) ≫ Z ◁ ε_ Y Y') ⊗≫ 𝟙 _ := by + coherence + _ = 𝟙 _ ⊗≫ X ◁ (η_ Y Y' ▷ Y ⊗≫ Y ◁ ε_ Y Y') ⊗≫ f := by + rw [← whisker_exchange]; coherence + _ = f := by + rw [evaluation_coevaluation'']; coherence right_inv f := by - dsimp - simp only [comp_tensor_id] - slice_lhs 3 4 => rw [← associator_inv_naturality] - slice_lhs 2 3 => rw [tensor_id, id_tensor_comp_tensor_id, ← tensor_id_comp_id_tensor] - slice_lhs 3 6 => simp only [← tensor_id, associator_conjugation] - have c : - (α_ Z Y' (Y ⊗ Y')).inv ≫ - (α_ (Z ⊗ Y') Y Y').inv ≫ ((α_ Z Y' Y).hom ⊗ 𝟙 Y') ≫ (α_ Z (Y' ⊗ Y) Y').hom = - 𝟙 _ ⊗ (α_ _ _ _).inv := by pure_coherence - slice_lhs 5 8 => rw [c] - slice_lhs 4 6 => rw [← id_tensor_comp, ← id_tensor_comp, coevaluation_evaluation] - simp only [rightUnitor_conjugation] - coherence + calc + _ = 𝟙 _ ⊗≫ (X ◁ η_ Y Y' ≫ f ▷ (Y ⊗ Y')) ⊗≫ Z ◁ ε_ Y Y' ▷ Y' ⊗≫ 𝟙 _ := by + coherence + _ = f ⊗≫ Z ◁ (Y' ◁ η_ Y Y' ⊗≫ ε_ Y Y' ▷ Y') ⊗≫ 𝟙 _ := by + rw [whisker_exchange]; coherence + _ = f := by + rw [coevaluation_evaluation'']; coherence #align category_theory.tensor_right_hom_equiv CategoryTheory.tensorRightHomEquiv +attribute [local simp] id_tensorHom tensorHom_id + theorem tensorLeftHomEquiv_naturality {X Y Y' Z Z' : C} [ExactPairing Y Y'] (f : Y' ⊗ X ⟶ Z) (g : Z ⟶ Z') : (tensorLeftHomEquiv X Y Y' Z') (f ≫ g) = (tensorLeftHomEquiv X Y Y' Z) f ≫ (𝟙 Y ⊗ g) := by - dsimp [tensorLeftHomEquiv] - simp only [id_tensor_comp, Category.assoc] + simp [tensorLeftHomEquiv] #align category_theory.tensor_left_hom_equiv_naturality CategoryTheory.tensorLeftHomEquiv_naturality theorem tensorLeftHomEquiv_symm_naturality {X X' Y Y' Z : C} [ExactPairing Y Y'] (f : X ⟶ X') (g : X' ⟶ Y ⊗ Z) : (tensorLeftHomEquiv X Y Y' Z).symm (f ≫ g) = (𝟙 _ ⊗ f) ≫ (tensorLeftHomEquiv X' Y Y' Z).symm g := by - dsimp [tensorLeftHomEquiv] - simp only [id_tensor_comp, Category.assoc] + simp [tensorLeftHomEquiv] #align category_theory.tensor_left_hom_equiv_symm_naturality CategoryTheory.tensorLeftHomEquiv_symm_naturality theorem tensorRightHomEquiv_naturality {X Y Y' Z Z' : C} [ExactPairing Y Y'] (f : X ⊗ Y ⟶ Z) (g : Z ⟶ Z') : (tensorRightHomEquiv X Y Y' Z') (f ≫ g) = (tensorRightHomEquiv X Y Y' Z) f ≫ (g ⊗ 𝟙 Y') := by - dsimp [tensorRightHomEquiv] - simp only [comp_tensor_id, Category.assoc] + simp [tensorRightHomEquiv] #align category_theory.tensor_right_hom_equiv_naturality CategoryTheory.tensorRightHomEquiv_naturality theorem tensorRightHomEquiv_symm_naturality {X X' Y Y' Z : C} [ExactPairing Y Y'] (f : X ⟶ X') (g : X' ⟶ Z ⊗ Y') : (tensorRightHomEquiv X Y Y' Z).symm (f ≫ g) = (f ⊗ 𝟙 Y) ≫ (tensorRightHomEquiv X' Y Y' Z).symm g := by - dsimp [tensorRightHomEquiv] - simp only [comp_tensor_id, Category.assoc] + simp [tensorRightHomEquiv] #align category_theory.tensor_right_hom_equiv_symm_naturality CategoryTheory.tensorRightHomEquiv_symm_naturality /-- If `Y Y'` have an exact pairing, @@ -449,12 +399,7 @@ theorem tensorLeftHomEquiv_tensor {X X' Y Y' Z Z' : C} [ExactPairing Y Y'] (f : (g : X' ⟶ Z') : (tensorLeftHomEquiv (X ⊗ X') Y Y' (Z ⊗ Z')).symm ((f ⊗ g) ≫ (α_ _ _ _).hom) = (α_ _ _ _).inv ≫ ((tensorLeftHomEquiv X Y Y' Z).symm f ⊗ g) := by - dsimp [tensorLeftHomEquiv] - simp only [id_tensor_comp] - simp only [associator_inv_conjugation] - slice_lhs 2 2 => rw [← id_tensor_comp_tensor_id] - conv_rhs => rw [← id_tensor_comp_tensor_id, comp_tensor_id, comp_tensor_id] - simp; coherence + simp [tensorLeftHomEquiv, tensorHom_def'] #align category_theory.tensor_left_hom_equiv_tensor CategoryTheory.tensorLeftHomEquiv_tensor /-- `tensorRightHomEquiv` commutes with tensoring on the left -/ @@ -462,160 +407,175 @@ theorem tensorRightHomEquiv_tensor {X X' Y Y' Z Z' : C} [ExactPairing Y Y'] (f : (g : X' ⟶ Z') : (tensorRightHomEquiv (X' ⊗ X) Y Y' (Z' ⊗ Z)).symm ((g ⊗ f) ≫ (α_ _ _ _).inv) = (α_ _ _ _).hom ≫ (g ⊗ (tensorRightHomEquiv X Y Y' Z).symm f) := by - dsimp [tensorRightHomEquiv] - simp only [comp_tensor_id] - simp only [associator_conjugation] - slice_lhs 2 2 => rw [← tensor_id_comp_id_tensor] - conv_rhs => rw [← tensor_id_comp_id_tensor, id_tensor_comp, id_tensor_comp] - simp only [← tensor_id, associator_conjugation] - simp; coherence + simp [tensorRightHomEquiv, tensorHom_def] #align category_theory.tensor_right_hom_equiv_tensor CategoryTheory.tensorRightHomEquiv_tensor @[simp] -theorem tensorLeftHomEquiv_symm_coevaluation_comp_id_tensor {Y Y' Z : C} [ExactPairing Y Y'] - (f : Y' ⟶ Z) : (tensorLeftHomEquiv _ _ _ _).symm (η_ _ _ ≫ (𝟙 Y ⊗ f)) = (ρ_ _).hom ≫ f := by - dsimp [tensorLeftHomEquiv] - rw [id_tensor_comp] - slice_lhs 2 3 => rw [associator_inv_naturality] - slice_lhs 3 4 => rw [tensor_id, id_tensor_comp_tensor_id, ← tensor_id_comp_id_tensor] - slice_lhs 1 3 => rw [coevaluation_evaluation] - simp [id_tensorHom] -#align category_theory.tensor_left_hom_equiv_symm_coevaluation_comp_id_tensor CategoryTheory.tensorLeftHomEquiv_symm_coevaluation_comp_id_tensor +theorem tensorLeftHomEquiv_symm_coevaluation_comp_whiskerLeft {Y Y' Z : C} [ExactPairing Y Y'] + (f : Y' ⟶ Z) : (tensorLeftHomEquiv _ _ _ _).symm (η_ _ _ ≫ Y ◁ f) = (ρ_ _).hom ≫ f := by + calc + _ = Y' ◁ η_ Y Y' ⊗≫ ((Y' ⊗ Y) ◁ f ≫ ε_ Y Y' ▷ Z) ⊗≫ 𝟙 _ := by + dsimp [tensorLeftHomEquiv]; coherence + _ = (Y' ◁ η_ Y Y' ⊗≫ ε_ Y Y' ▷ Y') ⊗≫ f := by + rw [whisker_exchange]; coherence + _ = _ := by rw [coevaluation_evaluation'']; coherence +#align category_theory.tensor_left_hom_equiv_symm_coevaluation_comp_id_tensor CategoryTheory.tensorLeftHomEquiv_symm_coevaluation_comp_whiskerLeft @[simp] -theorem tensorLeftHomEquiv_symm_coevaluation_comp_tensor_id {X Y : C} [HasRightDual X] +theorem tensorLeftHomEquiv_symm_coevaluation_comp_whiskerRight {X Y : C} [HasRightDual X] [HasRightDual Y] (f : X ⟶ Y) : - (tensorLeftHomEquiv _ _ _ _).symm (η_ _ _ ≫ (f ⊗ 𝟙 (Xᘁ))) = (ρ_ _).hom ≫ fᘁ := by + (tensorLeftHomEquiv _ _ _ _).symm (η_ _ _ ≫ f ▷ (Xᘁ)) = (ρ_ _).hom ≫ fᘁ := by dsimp [tensorLeftHomEquiv, rightAdjointMate] simp -#align category_theory.tensor_left_hom_equiv_symm_coevaluation_comp_tensor_id CategoryTheory.tensorLeftHomEquiv_symm_coevaluation_comp_tensor_id +#align category_theory.tensor_left_hom_equiv_symm_coevaluation_comp_tensor_id CategoryTheory.tensorLeftHomEquiv_symm_coevaluation_comp_whiskerRight @[simp] -theorem tensorRightHomEquiv_symm_coevaluation_comp_id_tensor {X Y : C} [HasLeftDual X] +theorem tensorRightHomEquiv_symm_coevaluation_comp_whiskerLeft {X Y : C} [HasLeftDual X] [HasLeftDual Y] (f : X ⟶ Y) : - (tensorRightHomEquiv _ (ᘁY) _ _).symm (η_ (ᘁX) X ≫ (𝟙 (ᘁX) ⊗ f)) = (λ_ _).hom ≫ ᘁf := by + (tensorRightHomEquiv _ (ᘁY) _ _).symm (η_ (ᘁX) X ≫ (ᘁX) ◁ f) = (λ_ _).hom ≫ ᘁf := by dsimp [tensorRightHomEquiv, leftAdjointMate] simp -#align category_theory.tensor_right_hom_equiv_symm_coevaluation_comp_id_tensor CategoryTheory.tensorRightHomEquiv_symm_coevaluation_comp_id_tensor +#align category_theory.tensor_right_hom_equiv_symm_coevaluation_comp_id_tensor CategoryTheory.tensorRightHomEquiv_symm_coevaluation_comp_whiskerLeft @[simp] -theorem tensorRightHomEquiv_symm_coevaluation_comp_tensor_id {Y Y' Z : C} [ExactPairing Y Y'] - (f : Y ⟶ Z) : (tensorRightHomEquiv _ Y _ _).symm (η_ Y Y' ≫ (f ⊗ 𝟙 Y')) = (λ_ _).hom ≫ f := by - dsimp [tensorRightHomEquiv] - rw [comp_tensor_id] - slice_lhs 2 3 => rw [associator_naturality] - slice_lhs 3 4 => rw [tensor_id, tensor_id_comp_id_tensor, ← id_tensor_comp_tensor_id] - slice_lhs 1 3 => rw [evaluation_coevaluation] - simp [tensorHom_id] -#align category_theory.tensor_right_hom_equiv_symm_coevaluation_comp_tensor_id CategoryTheory.tensorRightHomEquiv_symm_coevaluation_comp_tensor_id +theorem tensorRightHomEquiv_symm_coevaluation_comp_whiskerRight {Y Y' Z : C} [ExactPairing Y Y'] + (f : Y ⟶ Z) : (tensorRightHomEquiv _ Y _ _).symm (η_ Y Y' ≫ f ▷ Y') = (λ_ _).hom ≫ f := + calc + _ = η_ Y Y' ▷ Y ⊗≫ (f ▷ (Y' ⊗ Y) ≫ Z ◁ ε_ Y Y') ⊗≫ 𝟙 _ := by + dsimp [tensorRightHomEquiv]; coherence + _ = (η_ Y Y' ▷ Y ⊗≫ Y ◁ ε_ Y Y') ⊗≫ f := by + rw [← whisker_exchange]; coherence + _ = _ := by + rw [evaluation_coevaluation'']; coherence +#align category_theory.tensor_right_hom_equiv_symm_coevaluation_comp_tensor_id CategoryTheory.tensorRightHomEquiv_symm_coevaluation_comp_whiskerRight @[simp] -theorem tensorLeftHomEquiv_id_tensor_comp_evaluation {Y Z : C} [HasLeftDual Z] (f : Y ⟶ ᘁZ) : - (tensorLeftHomEquiv _ _ _ _) ((𝟙 Z ⊗ f) ≫ ε_ _ _) = f ≫ (ρ_ _).inv := by - dsimp [tensorLeftHomEquiv] - rw [id_tensor_comp] - slice_lhs 3 4 => rw [← associator_naturality] - slice_lhs 2 3 => rw [tensor_id, tensor_id_comp_id_tensor, ← id_tensor_comp_tensor_id] - slice_lhs 3 5 => rw [evaluation_coevaluation] - simp [id_tensorHom] -#align category_theory.tensor_left_hom_equiv_id_tensor_comp_evaluation CategoryTheory.tensorLeftHomEquiv_id_tensor_comp_evaluation +theorem tensorLeftHomEquiv_whiskerLeft_comp_evaluation {Y Z : C} [HasLeftDual Z] (f : Y ⟶ ᘁZ) : + (tensorLeftHomEquiv _ _ _ _) (Z ◁ f ≫ ε_ _ _) = f ≫ (ρ_ _).inv := + calc + _ = 𝟙 _ ⊗≫ (η_ (ᘁZ) Z ▷ Y ≫ ((ᘁZ) ⊗ Z) ◁ f) ⊗≫ (ᘁZ) ◁ ε_ (ᘁZ) Z := by + dsimp [tensorLeftHomEquiv]; coherence + _ = f ⊗≫ (η_ (ᘁZ) Z ▷ (ᘁZ) ⊗≫ (ᘁZ) ◁ ε_ (ᘁZ) Z) := by + rw [← whisker_exchange]; coherence + _ = _ := by + rw [evaluation_coevaluation'']; coherence +#align category_theory.tensor_left_hom_equiv_id_tensor_comp_evaluation CategoryTheory.tensorLeftHomEquiv_whiskerLeft_comp_evaluation @[simp] -theorem tensorLeftHomEquiv_tensor_id_comp_evaluation {X Y : C} [HasLeftDual X] [HasLeftDual Y] - (f : X ⟶ Y) : (tensorLeftHomEquiv _ _ _ _) ((f ⊗ 𝟙 _) ≫ ε_ _ _) = (ᘁf) ≫ (ρ_ _).inv := by +theorem tensorLeftHomEquiv_whiskerRight_comp_evaluation {X Y : C} [HasLeftDual X] [HasLeftDual Y] + (f : X ⟶ Y) : (tensorLeftHomEquiv _ _ _ _) (f ▷ _ ≫ ε_ _ _) = (ᘁf) ≫ (ρ_ _).inv := by dsimp [tensorLeftHomEquiv, leftAdjointMate] simp -#align category_theory.tensor_left_hom_equiv_tensor_id_comp_evaluation CategoryTheory.tensorLeftHomEquiv_tensor_id_comp_evaluation +#align category_theory.tensor_left_hom_equiv_tensor_id_comp_evaluation CategoryTheory.tensorLeftHomEquiv_whiskerRight_comp_evaluation @[simp] -theorem tensorRightHomEquiv_id_tensor_comp_evaluation {X Y : C} [HasRightDual X] [HasRightDual Y] - (f : X ⟶ Y) : (tensorRightHomEquiv _ _ _ _) ((𝟙 (Yᘁ) ⊗ f) ≫ ε_ _ _) = fᘁ ≫ (λ_ _).inv := by +theorem tensorRightHomEquiv_whiskerLeft_comp_evaluation {X Y : C} [HasRightDual X] [HasRightDual Y] + (f : X ⟶ Y) : (tensorRightHomEquiv _ _ _ _) ((Yᘁ) ◁ f ≫ ε_ _ _) = fᘁ ≫ (λ_ _).inv := by dsimp [tensorRightHomEquiv, rightAdjointMate] simp -#align category_theory.tensor_right_hom_equiv_id_tensor_comp_evaluation CategoryTheory.tensorRightHomEquiv_id_tensor_comp_evaluation +#align category_theory.tensor_right_hom_equiv_id_tensor_comp_evaluation CategoryTheory.tensorRightHomEquiv_whiskerLeft_comp_evaluation @[simp] -theorem tensorRightHomEquiv_tensor_id_comp_evaluation {X Y : C} [HasRightDual X] (f : Y ⟶ Xᘁ) : - (tensorRightHomEquiv _ _ _ _) ((f ⊗ 𝟙 X) ≫ ε_ X (Xᘁ)) = f ≫ (λ_ _).inv := by - dsimp [tensorRightHomEquiv] - rw [comp_tensor_id] - slice_lhs 3 4 => rw [← associator_inv_naturality] - slice_lhs 2 3 => rw [tensor_id, id_tensor_comp_tensor_id, ← tensor_id_comp_id_tensor] - slice_lhs 3 5 => rw [coevaluation_evaluation] - simp [tensorHom_id] -#align category_theory.tensor_right_hom_equiv_tensor_id_comp_evaluation CategoryTheory.tensorRightHomEquiv_tensor_id_comp_evaluation +theorem tensorRightHomEquiv_whiskerRight_comp_evaluation {X Y : C} [HasRightDual X] (f : Y ⟶ Xᘁ) : + (tensorRightHomEquiv _ _ _ _) (f ▷ X ≫ ε_ X (Xᘁ)) = f ≫ (λ_ _).inv := + calc + _ = 𝟙 _ ⊗≫ (Y ◁ η_ X Xᘁ ≫ f ▷ (X ⊗ Xᘁ)) ⊗≫ ε_ X Xᘁ ▷ Xᘁ := by + dsimp [tensorRightHomEquiv]; coherence + _ = f ⊗≫ (Xᘁ ◁ η_ X Xᘁ ⊗≫ ε_ X Xᘁ ▷ Xᘁ) := by + rw [whisker_exchange]; coherence + _ = _ := by + rw [coevaluation_evaluation'']; coherence +#align category_theory.tensor_right_hom_equiv_tensor_id_comp_evaluation CategoryTheory.tensorRightHomEquiv_whiskerRight_comp_evaluation -- Next four lemmas passing `fᘁ` or `ᘁf` through (co)evaluations. +@[reassoc] theorem coevaluation_comp_rightAdjointMate {X Y : C} [HasRightDual X] [HasRightDual Y] (f : X ⟶ Y) : - η_ Y (Yᘁ) ≫ (𝟙 _ ⊗ fᘁ) = η_ _ _ ≫ (f ⊗ 𝟙 _) := by + η_ Y (Yᘁ) ≫ _ ◁ (fᘁ) = η_ _ _ ≫ f ▷ _ := by apply_fun (tensorLeftHomEquiv _ Y (Yᘁ) _).symm simp #align category_theory.coevaluation_comp_right_adjoint_mate CategoryTheory.coevaluation_comp_rightAdjointMate +@[reassoc] theorem leftAdjointMate_comp_evaluation {X Y : C} [HasLeftDual X] [HasLeftDual Y] (f : X ⟶ Y) : - (𝟙 X ⊗ ᘁf) ≫ ε_ _ _ = (f ⊗ 𝟙 _) ≫ ε_ _ _ := by + X ◁ (ᘁf) ≫ ε_ _ _ = f ▷ _ ≫ ε_ _ _ := by apply_fun tensorLeftHomEquiv _ (ᘁX) X _ simp #align category_theory.left_adjoint_mate_comp_evaluation CategoryTheory.leftAdjointMate_comp_evaluation +@[reassoc] theorem coevaluation_comp_leftAdjointMate {X Y : C} [HasLeftDual X] [HasLeftDual Y] (f : X ⟶ Y) : - η_ (ᘁY) Y ≫ ((ᘁf) ⊗ 𝟙 Y) = η_ (ᘁX) X ≫ (𝟙 (ᘁX) ⊗ f) := by + η_ (ᘁY) Y ≫ (ᘁf) ▷ Y = η_ (ᘁX) X ≫ (ᘁX) ◁ f := by apply_fun (tensorRightHomEquiv _ (ᘁY) Y _).symm simp #align category_theory.coevaluation_comp_left_adjoint_mate CategoryTheory.coevaluation_comp_leftAdjointMate +@[reassoc] theorem rightAdjointMate_comp_evaluation {X Y : C} [HasRightDual X] [HasRightDual Y] (f : X ⟶ Y) : - (fᘁ ⊗ 𝟙 X) ≫ ε_ X (Xᘁ) = (𝟙 (Yᘁ) ⊗ f) ≫ ε_ Y (Yᘁ) := by + (fᘁ ▷ X) ≫ ε_ X (Xᘁ) = ((Yᘁ) ◁ f) ≫ ε_ Y (Yᘁ) := by apply_fun tensorRightHomEquiv _ X (Xᘁ) _ simp #align category_theory.right_adjoint_mate_comp_evaluation CategoryTheory.rightAdjointMate_comp_evaluation /-- Transport an exact pairing across an isomorphism in the first argument. -/ def exactPairingCongrLeft {X X' Y : C} [ExactPairing X' Y] (i : X ≅ X') : ExactPairing X Y where - evaluation' := (𝟙 Y ⊗ i.hom) ≫ ε_ _ _ - coevaluation' := η_ _ _ ≫ (i.inv ⊗ 𝟙 Y) - evaluation_coevaluation' := by - rw [id_tensor_comp, comp_tensor_id] - slice_lhs 2 3 => rw [associator_naturality] - slice_lhs 3 4 => rw [tensor_id, tensor_id_comp_id_tensor, ← id_tensor_comp_tensor_id] - slice_lhs 4 5 => rw [tensor_id_comp_id_tensor, ← id_tensor_comp_tensor_id] - slice_lhs 2 3 => rw [← associator_naturality] - slice_lhs 1 2 => rw [tensor_id, tensor_id_comp_id_tensor, ← id_tensor_comp_tensor_id] - slice_lhs 2 4 => rw [evaluation_coevaluation] - slice_lhs 1 2 => rw [leftUnitor_naturality] - slice_lhs 3 4 => rw [← rightUnitor_inv_naturality] - simp + evaluation' := Y ◁ i.hom ≫ ε_ _ _ + coevaluation' := η_ _ _ ≫ i.inv ▷ Y + evaluation_coevaluation' := + calc + _ = η_ X' Y ▷ X ⊗≫ (i.inv ▷ (Y ⊗ X) ≫ X ◁ (Y ◁ i.hom)) ⊗≫ X ◁ ε_ X' Y := by + coherence + _ = 𝟙 _ ⊗≫ (η_ X' Y ▷ X ≫ (X' ⊗ Y) ◁ i.hom) ⊗≫ + (i.inv ▷ (Y ⊗ X') ≫ X ◁ ε_ X' Y) ⊗≫ 𝟙 _ := by + rw [← whisker_exchange]; coherence + _ = 𝟙 _ ⊗≫ i.hom ⊗≫ (η_ X' Y ▷ X' ⊗≫ X' ◁ ε_ X' Y) ⊗≫ i.inv ⊗≫ 𝟙 _ := by + rw [← whisker_exchange, ← whisker_exchange]; coherence + _ = 𝟙 _ ⊗≫ (i.hom ≫ i.inv) ⊗≫ 𝟙 _ := by + rw [evaluation_coevaluation'']; coherence + _ = (λ_ X).hom ≫ (ρ_ X).inv := by + rw [Iso.hom_inv_id] + -- coherence failed + simp [Mathlib.Tactic.Coherence.monoidalComp] coevaluation_evaluation' := by - rw [id_tensor_comp, comp_tensor_id] - simp only [Iso.inv_hom_id_assoc, associator_conjugation, Category.assoc] - slice_lhs 2 3 => - rw [← tensor_comp] - simp - simp + calc + _ = Y ◁ η_ X' Y ≫ Y ◁ (i.inv ≫ i.hom) ▷ Y ⊗≫ ε_ X' Y ▷ Y := by + coherence + _ = Y ◁ η_ X' Y ⊗≫ ε_ X' Y ▷ Y := by + rw [Iso.inv_hom_id]; coherence + _ = _ := by + rw [coevaluation_evaluation''] + -- coherence failed + simp [Mathlib.Tactic.Coherence.monoidalComp] #align category_theory.exact_pairing_congr_left CategoryTheory.exactPairingCongrLeft /-- Transport an exact pairing across an isomorphism in the second argument. -/ def exactPairingCongrRight {X Y Y' : C} [ExactPairing X Y'] (i : Y ≅ Y') : ExactPairing X Y where - evaluation' := (i.hom ⊗ 𝟙 X) ≫ ε_ _ _ - coevaluation' := η_ _ _ ≫ (𝟙 X ⊗ i.inv) + evaluation' := i.hom ▷ X ≫ ε_ _ _ + coevaluation' := η_ _ _ ≫ X ◁ i.inv evaluation_coevaluation' := by - rw [id_tensor_comp, comp_tensor_id] - simp only [Iso.inv_hom_id_assoc, associator_conjugation, Category.assoc] - slice_lhs 3 4 => - rw [← tensor_comp] - simp - simp - coevaluation_evaluation' := by - rw [id_tensor_comp, comp_tensor_id] - slice_lhs 3 4 => rw [← associator_inv_naturality] - slice_lhs 2 3 => rw [tensor_id, id_tensor_comp_tensor_id, ← tensor_id_comp_id_tensor] - slice_lhs 1 2 => rw [id_tensor_comp_tensor_id, ← tensor_id_comp_id_tensor] - slice_lhs 3 4 => rw [associator_inv_naturality] - slice_lhs 4 5 => rw [tensor_id, id_tensor_comp_tensor_id, ← tensor_id_comp_id_tensor] - slice_lhs 2 4 => rw [coevaluation_evaluation] - slice_lhs 1 2 => rw [rightUnitor_naturality] - slice_lhs 3 4 => rw [← leftUnitor_inv_naturality] - simp + calc + _ = η_ X Y' ▷ X ⊗≫ X ◁ (i.inv ≫ i.hom) ▷ X ≫ X ◁ ε_ X Y' := by + coherence + _ = η_ X Y' ▷ X ⊗≫ X ◁ ε_ X Y' := by + rw [Iso.inv_hom_id]; coherence + _ = _ := by + rw [evaluation_coevaluation''] + -- coherence failed + simp [Mathlib.Tactic.Coherence.monoidalComp] + coevaluation_evaluation' := + calc + _ = Y ◁ η_ X Y' ⊗≫ (Y ◁ (X ◁ i.inv) ≫ i.hom ▷ (X ⊗ Y)) ⊗≫ ε_ X Y' ▷ Y := by + coherence + _ = 𝟙 _ ⊗≫ (Y ◁ η_ X Y' ≫ i.hom ▷ (X ⊗ Y')) ⊗≫ + ((Y' ⊗ X) ◁ i.inv ≫ ε_ X Y' ▷ Y) ⊗≫ 𝟙 _ := by + rw [whisker_exchange]; coherence + _ = 𝟙 _ ⊗≫ i.hom ⊗≫ (Y' ◁ η_ X Y' ⊗≫ ε_ X Y' ▷ Y') ⊗≫ i.inv ⊗≫ 𝟙 _ := by + rw [whisker_exchange, whisker_exchange]; coherence + _ = 𝟙 _ ⊗≫ (i.hom ≫ i.inv) ⊗≫ 𝟙 _ := by + rw [coevaluation_evaluation'']; coherence + _ = (ρ_ Y).hom ≫ (λ_ Y).inv := by + rw [Iso.hom_inv_id] + -- coherence failed + simp [Mathlib.Tactic.Coherence.monoidalComp] #align category_theory.exact_pairing_congr_right CategoryTheory.exactPairingCongrRight /-- Transport an exact pairing across isomorphisms. -/ diff --git a/Mathlib/CategoryTheory/Monoidal/Rigid/FunctorCategory.lean b/Mathlib/CategoryTheory/Monoidal/Rigid/FunctorCategory.lean index d48f153552e9f..549052c181d8b 100644 --- a/Mathlib/CategoryTheory/Monoidal/Rigid/FunctorCategory.lean +++ b/Mathlib/CategoryTheory/Monoidal/Rigid/FunctorCategory.lean @@ -36,15 +36,17 @@ instance functorHasRightDual [RightRigidCategory D] (F : C ⥤ D) : HasRightDual naturality := fun X Y f => by dsimp rw [Category.comp_id, Functor.map_inv, ← id_tensor_comp_tensor_id, Category.assoc, - rightAdjointMate_comp_evaluation, ← Category.assoc, ← id_tensor_comp, - IsIso.hom_inv_id, tensor_id, Category.id_comp] } + id_tensorHom, tensorHom_id, + rightAdjointMate_comp_evaluation, ← MonoidalCategory.whiskerLeft_comp_assoc, + IsIso.hom_inv_id, MonoidalCategory.whiskerLeft_id, Category.id_comp] } coevaluation' := { app := fun X => η_ _ _ naturality := fun X Y f => by dsimp - rw [Functor.map_inv, Category.id_comp, ← id_tensor_comp_tensor_id, ← Category.assoc, - coevaluation_comp_rightAdjointMate, Category.assoc, ← comp_tensor_id, - IsIso.inv_hom_id, tensor_id, Category.comp_id] } } + rw [Functor.map_inv, Category.id_comp, ← id_tensor_comp_tensor_id, + id_tensorHom, tensorHom_id, ← Category.assoc, + coevaluation_comp_rightAdjointMate, Category.assoc, ← comp_whiskerRight, + IsIso.inv_hom_id, id_whiskerRight, Category.comp_id] } } #align category_theory.monoidal.functor_has_right_dual CategoryTheory.Monoidal.functorHasRightDual instance rightRigidFunctorCategory [RightRigidCategory D] : RightRigidCategory (C ⥤ D) where @@ -60,16 +62,12 @@ instance functorHasLeftDual [LeftRigidCategory D] (F : C ⥤ D) : HasLeftDual F { app := fun X => ε_ _ _ naturality := fun X Y f => by dsimp - rw [Category.comp_id, Functor.map_inv, ← tensor_id_comp_id_tensor, Category.assoc, - leftAdjointMate_comp_evaluation, ← Category.assoc, ← comp_tensor_id, - IsIso.hom_inv_id, tensor_id, Category.id_comp] } + simp [tensorHom_def, leftAdjointMate_comp_evaluation] } coevaluation' := { app := fun X => η_ _ _ naturality := fun X Y f => by dsimp - rw [Functor.map_inv, Category.id_comp, ← tensor_id_comp_id_tensor, ← Category.assoc, - coevaluation_comp_leftAdjointMate, Category.assoc, ← id_tensor_comp, - IsIso.inv_hom_id, tensor_id, Category.comp_id] } } + simp [tensorHom_def, coevaluation_comp_leftAdjointMate_assoc] } } #align category_theory.monoidal.functor_has_left_dual CategoryTheory.Monoidal.functorHasLeftDual instance leftRigidFunctorCategory [LeftRigidCategory D] : LeftRigidCategory (C ⥤ D) where diff --git a/Mathlib/CategoryTheory/Monoidal/Rigid/OfEquivalence.lean b/Mathlib/CategoryTheory/Monoidal/Rigid/OfEquivalence.lean index a51ee2c02b885..b718cce09d78c 100644 --- a/Mathlib/CategoryTheory/Monoidal/Rigid/OfEquivalence.lean +++ b/Mathlib/CategoryTheory/Monoidal/Rigid/OfEquivalence.lean @@ -22,6 +22,8 @@ variable {C D : Type*} [Category C] [Category D] [MonoidalCategory C] [MonoidalC variable (F : MonoidalFunctor C D) +attribute [local simp] id_tensorHom tensorHom_id + /-- Given candidate data for an exact pairing, which is sent by a faithful monoidal functor to an exact pairing, the equations holds automatically. -/ @@ -32,9 +34,13 @@ def exactPairingOfFaithful [Faithful F.toFunctor] {X Y : C} (eval : Y ⊗ X ⟶ evaluation' := eval coevaluation' := coeval evaluation_coevaluation' := - F.toFunctor.map_injective (by simp [map_eval, map_coeval, MonoidalFunctor.map_tensor]) + F.toFunctor.map_injective <| by + simp [map_eval, map_coeval, + MonoidalFunctor.map_whiskerLeft', MonoidalFunctor.map_whiskerRight'] coevaluation_evaluation' := - F.toFunctor.map_injective (by simp [map_eval, map_coeval, MonoidalFunctor.map_tensor]) + F.toFunctor.map_injective <| by + simp [map_eval, map_coeval, + MonoidalFunctor.map_whiskerLeft', MonoidalFunctor.map_whiskerRight'] #align category_theory.exact_pairing_of_faithful CategoryTheory.exactPairingOfFaithful /-- Given a pair of objects which are sent by a fully faithful functor to a pair of objects diff --git a/Mathlib/Tactic/CategoryTheory/Coherence.lean b/Mathlib/Tactic/CategoryTheory/Coherence.lean index f912e50c1cb10..d1bc1be97ef1c 100644 --- a/Mathlib/Tactic/CategoryTheory/Coherence.lean +++ b/Mathlib/Tactic/CategoryTheory/Coherence.lean @@ -180,6 +180,10 @@ example (X1 X2 X3 X4 X5 X6 X7 X8 X9 : C) : (X1 ⊗ (X2 ⊗ X3) ⊗ X4 ⊗ (X5 ⊗ (𝟙_ C ⊗ X6) ⊗ X7) ⊗ X8 ⊗ X9) := monoidalIso _ _ +/-- Notation for identities up to unitors and associators. -/ +scoped[CategoryTheory.MonoidalCategory] notation " ⊗𝟙 " => + Mathlib.Tactic.Coherence.MonoidalCoherence.hom -- type as \ot 𝟙 + /-- Compose two morphisms in a monoidal category, inserting unitors and associators between as necessary. -/ def monoidalComp {W X Y Z : C} [LiftObj X] [LiftObj Y]