diff --git a/Mathlib/Analysis/BoxIntegral/Partition/Basic.lean b/Mathlib/Analysis/BoxIntegral/Partition/Basic.lean index d1e41003a7577..da2e61956cb17 100644 --- a/Mathlib/Analysis/BoxIntegral/Partition/Basic.lean +++ b/Mathlib/Analysis/BoxIntegral/Partition/Basic.lean @@ -622,7 +622,7 @@ theorem filter_true : (π.filter fun _ => True) = π := theorem iUnion_filter_not (π : Prepartition I) (p : Box ι → Prop) : (π.filter fun J => ¬p J).iUnion = π.iUnion \ (π.filter p).iUnion := by simp only [Prepartition.iUnion] - convert (@Set.biUnion_diff_biUnion_eq _ (Box ι) π.boxes (π.filter p).boxes (↑) _).symm + convert (@Set.biUnion_diff_biUnion_eq _ (Box ι) π.boxes (π.filter p).boxes Box.toSet _).symm · simp (config := { contextual := true }) · rw [Set.PairwiseDisjoint] convert π.pairwiseDisjoint diff --git a/Mathlib/Analysis/Convex/Segment.lean b/Mathlib/Analysis/Convex/Segment.lean index d3b4e756dfd9d..ba856596ca1e2 100644 --- a/Mathlib/Analysis/Convex/Segment.lean +++ b/Mathlib/Analysis/Convex/Segment.lean @@ -337,12 +337,12 @@ theorem midpoint_mem_segment [Invertible (2 : 𝕜)] (x y : E) : midpoint 𝕜 x #align midpoint_mem_segment midpoint_mem_segment theorem mem_segment_sub_add [Invertible (2 : 𝕜)] (x y : E) : x ∈ [x - y -[𝕜] x + y] := by - convert @midpoint_mem_segment 𝕜 _ _ _ _ _ _ _ + convert @midpoint_mem_segment 𝕜 E _ _ _ _ _ _ rw [midpoint_sub_add] #align mem_segment_sub_add mem_segment_sub_add theorem mem_segment_add_sub [Invertible (2 : 𝕜)] (x y : E) : x ∈ [x + y -[𝕜] x - y] := by - convert @midpoint_mem_segment 𝕜 _ _ _ _ _ _ _ + convert @midpoint_mem_segment 𝕜 E _ _ _ _ _ _ rw [midpoint_add_sub] #align mem_segment_add_sub mem_segment_add_sub diff --git a/Mathlib/CategoryTheory/Category/PartialFun.lean b/Mathlib/CategoryTheory/Category/PartialFun.lean index 3ad583e91c562..6d90ae19a9fd3 100644 --- a/Mathlib/CategoryTheory/Category/PartialFun.lean +++ b/Mathlib/CategoryTheory/Category/PartialFun.lean @@ -184,6 +184,9 @@ noncomputable def typeToPartialFunIsoPartialFunToPointed : fun f => Pointed.Hom.ext _ _ <| funext fun a => Option.recOn a rfl fun a => by - classical - convert Part.some_toOption _ + simp + rw [← Part.get_eq_iff_mem] + · rfl + · trivial + #align Type_to_PartialFun_iso_PartialFun_to_Pointed typeToPartialFunIsoPartialFunToPointed diff --git a/Mathlib/NumberTheory/Padics/PadicVal.lean b/Mathlib/NumberTheory/Padics/PadicVal.lean index 4681b52cbac37..a165d53495caf 100644 --- a/Mathlib/NumberTheory/Padics/PadicVal.lean +++ b/Mathlib/NumberTheory/Padics/PadicVal.lean @@ -768,7 +768,7 @@ digits of `k` plus the sum of the digits of `n - k` minus the sum of digits of ` theorem sub_one_mul_padicValNat_choose_eq_sub_sum_digits {k n : ℕ} [hp : Fact p.Prime] (h : k ≤ n) : (p - 1) * padicValNat p (choose n k) = (p.digits k).sum + (p.digits (n - k)).sum - (p.digits n).sum := by - convert @sub_one_mul_padicValNat_choose_eq_sub_sum_digits' _ _ _ _ + convert @sub_one_mul_padicValNat_choose_eq_sub_sum_digits' p _ _ _ all_goals exact Nat.eq_add_of_sub_eq h rfl end padicValNat