-
Notifications
You must be signed in to change notification settings - Fork 0
/
presentation.nb
6530 lines (6475 loc) · 342 KB
/
presentation.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 350314, 6521]
NotebookOptionsPosition[ 348474, 6459]
NotebookOutlinePosition[ 348825, 6475]
CellTagsIndexPosition[ 348782, 6472]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[TextData[{
StyleBox["Making Approximate Systems",
FontSize->36],
"\n"
}], "Text",
CellChangeTimes->{{3.674240890505568*^9, 3.674240900786228*^9}}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"enhancedGRN", "[",
RowBox[{"k1tx_", ",", "k1ctx_", ",",
RowBox[{"tmax_:", "100"}], ",",
RowBox[{"kc_:", "1000"}], ",",
RowBox[{"ktl_:", "1.0"}], ",",
RowBox[{"kpd_:", "1.0"}], ",",
RowBox[{"krd_:", "5.0"}]}], "]"}], ":=", "\[IndentingNewLine]",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{
"null", ",", "G1", ",", "T1", ",", "R1", ",", "G1c", ",", "T1c", ",",
"C1", ",", "sol", ",", "rsys"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"rsys", "=",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"Genelet", " ", "R1"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"rxn", "[",
RowBox[{"G1", ",",
RowBox[{"G1", "+", "T1"}], ",", "k1tx"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"rxn", "[",
RowBox[{"T1", ",",
RowBox[{"T1", "+", "R1"}], ",", "ktl"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"rxn", "[",
RowBox[{"T1", ",", "null", ",", "krd"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"rxn", "[",
RowBox[{"R1", ",", "null", ",", "kpd"}], "]"}], ",",
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"Genelet", " ", "C1"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"rxn", "[",
RowBox[{"G1c", ",",
RowBox[{"G1c", "+", "T1c"}], ",", "k1ctx"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"rxn", "[",
RowBox[{"T1c", ",",
RowBox[{"T1c", "+", "C1"}], ",", "ktl"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"rxn", "[",
RowBox[{"T1c", ",", "null", ",", "krd"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"rxn", "[",
RowBox[{"C1", ",", "null", ",", "kpd"}], "]"}], ",",
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"rxn", "[",
RowBox[{
RowBox[{"C1", "+", "R1"}], ",", "null", ",", "kc"}], "]"}], ",",
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"conc", "[",
RowBox[{"G1", ",", "1"}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"conc", "[",
RowBox[{"G1c", ",", "1"}], "]"}]}], "\[IndentingNewLine]", "}"}]}],
";", "\[IndentingNewLine]",
RowBox[{"sol", "=",
RowBox[{"SimulateRxnsys", "[",
RowBox[{"rsys", ",", "tmax"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"Return", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"C1", "[", "t", "]"}], ",",
RowBox[{"R1", "[", "t", "]"}]}], "}"}], "/.", "sol"}], "]"}]}]}],
"\[IndentingNewLine]", "\[IndentingNewLine]", "]"}]}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"enhancedGRNPlot", "[",
RowBox[{"k1tx_", ",", "k1ctx_", ",",
RowBox[{"tmax_:", "100"}], ",",
RowBox[{"kc_:", "1000"}], ",",
RowBox[{"ktl_:", "1.0"}], ",",
RowBox[{"kpd_:", "1.0"}], ",",
RowBox[{"krd_:", "5.0"}]}], "]"}], ":=",
RowBox[{"(", "\[IndentingNewLine]",
RowBox[{
RowBox[{"plotter", "=",
RowBox[{"enhancedGRN", "[",
RowBox[{"k1tx", ",", "k1ctx", ",", "tmax"}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{"plotter", ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "100"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{", "Red", "}"}], ",",
RowBox[{"{", "Green", "}"}]}], "}"}]}], ",",
RowBox[{"PlotLabel", "\[Rule]", "\"\<R1\>\""}]}], " ", "]"}]}],
")"}]}], "\[IndentingNewLine]",
RowBox[{"plot1", "=",
RowBox[{"Manipulate", "[",
RowBox[{
RowBox[{"enhancedGRNPlot", "[",
RowBox[{"a", ",", "b"}], "]"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"a", ",", "1", ",", "\"\<k1tx\>\""}], "}"}], ",", "1", ",",
"500"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"b", ",", "250", ",", "\"\<k1ctx\>\""}], "}"}], ",", "1", ",",
"500"}], "}"}]}], "]"}]}]}], "Input",
CellChangeTimes->{{3.674239167383082*^9, 3.674239167817944*^9}}],
Cell[BoxData[
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`a$$ = 500., $CellContext`b$$ = 250,
Typeset`show$$ = True, Typeset`bookmarkList$$ = {},
Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ =
1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{{
Hold[$CellContext`a$$], 1, "k1tx"}, 1, 500}, {{
Hold[$CellContext`b$$], 250, "k1ctx"}, 1, 500}}, Typeset`size$$ = {
360., {116., 121.}}, Typeset`update$$ = 0, Typeset`initDone$$,
Typeset`skipInitDone$$ = True, $CellContext`a$645$$ =
0, $CellContext`b$646$$ = 0},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm,
"Variables" :> {$CellContext`a$$ = 1, $CellContext`b$$ = 250},
"ControllerVariables" :> {
Hold[$CellContext`a$$, $CellContext`a$645$$, 0],
Hold[$CellContext`b$$, $CellContext`b$646$$, 0]},
"OtherVariables" :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
Typeset`skipInitDone$$},
"Body" :> $CellContext`enhancedGRNPlot[$CellContext`a$$, \
$CellContext`b$$],
"Specifications" :> {{{$CellContext`a$$, 1, "k1tx"}, 1,
500}, {{$CellContext`b$$, 250, "k1ctx"}, 1, 500}}, "Options" :> {},
"DefaultOptions" :> {}],
ImageSizeCache->{405., {174., 179.}},
SingleEvaluation->True],
Deinitialization:>None,
DynamicModuleValues:>{},
SynchronousInitialization->True,
UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$},
UnsavedVariables:>{Typeset`initDone$$},
UntrackedVariables:>{Typeset`size$$}], "Manipulate",
Deployed->True,
StripOnInput->False],
Manipulate`InterpretManipulate[1]]], "Output",
CellChangeTimes->{3.674239168683655*^9, 3.6742415757339573`*^9}]
}, Open ]],
Cell["\<\
Most of these appear to go to s.s. way before 100 s. I' ll just take the lazy \
approach and take concentrations to be final at 50 s.
\
\>", "Text",
CellChangeTimes->{{3.674238949683182*^9, 3.67423895971342*^9}}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"tmax", "=", "50"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"k1ctx", "=", "250"}], ";"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"y", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"enhancedGRN", "[",
RowBox[{"i", ",", "k1ctx", ",", "tmax"}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}], "[",
RowBox[{"[", "0", "]"}], "]"}], "[", "tmax", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"k1ctx", "-", "100"}], ",",
RowBox[{"k1ctx", "+", "100"}]}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"ListPlot", "[", "y", "]"}]}], "Input"],
Cell[BoxData[
GraphicsBox[{{}, {{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.009166666666666668],
AbsoluteThickness[1.6], PointBox[CompressedData["
1:eJwtzwtUjfkexvFdnIptiIlQagvpiJEuqtHoyUhqGZJqKM3Z2rt9v7z7RkqK
yv1Sxmi60HaJ6CAl4kQbNaNUQsWEsWtiokHU0DHF6cz+vWu9612f9X/X+v6f
ybHKsDhzFotVM/j+//v3Y4iFfcTZkFiWJ/62MRYx3e+vutV7mMziYc8ES79P
2WQOD29qXl6rF5DBw+EjrOV5HmQuDy827H0uYZFTeFhx9I+dvvXuJut5ENfz
faxyyAYe1jrNed0iIBt5SLe8VVzgQWbx8dFre5KWRebwIcppi/i6fg71+WCt
fus7JofM5eMho5rRJiCn8KEQpUwv9iDr+bCK+X1OMots4KP16cvgpfVu1Oej
dD6bmZRDZsUhI/DBsT8EZE4cavubO//jQUYcMrsO++1kkblxqFpTHlCWM5v6
ccgJbXIN9yTr41CyXuXbU/8F9eOQkF4l3SckG+PQeMC9eo4ZmSVA/LQtC+/k
zKK+ACFlo18xnmQIsCi14bp1w0zqC5DtvrmqWEhOEcAls6M31IysFyDa4uvI
Nzmu1BegPDL2RaYn2Th4Hthb6t4wg/pC1NqfLrsnJHOEmMVt6daakSHE9mSZ
eFzuP6kvxE4bllO5JzlFCLZENSmqwYX6QkxznfuvfiHZIMRI+Y0Xh8zIRiE+
1PbdCMidTn0Rqrece9XhSeaIMCSyWrGtwZn6IlwZ8VXITBGZO3jefyCt0Yyc
IoJhrO0UXe406ouQ7t01c6IX2SDCrqcFxysbplJfhN/W5GXFicgsMdb2nLYY
YU7miOHwoPCvktwp1BfDe96zjVFeZK4Y/729Ntv8thP1xQhZHx9RJCLrxTgv
vFoRbk42iHHBZdijj7mTqS/GJ9XhypNeZJYE0vlqXcRtDvUlODR82mfmYjIk
GHkuMuusOZkrgXWD4psKH0fqS+AVVZxvJ3OgvgRvta1hSfmTqC9BZVZtdttd
e+pLsNU9+N+LLcgsKcRz79eU+NpRXwrb6Dwfjnwi9aWoSHwZlKmfQH0pSgqC
l1s0jae+FIXnui4lW5L1UkTUs/8c+NKW+lJ0uVzeskkxjvpScC7eGMI+Mpb6
MgQc/8o+t9mG+jJ868/90X0YGTLUtcfw7vp9Tn0ZXDqL9yYyY6gvw/Mwduzs
Y6OpL8NdaUf06/vW1JdBXHEw5AqbbJSh8qPmwtzkkdSXw1EbLh7/+wjqyzH/
Zo2n8zI29eXw++lnH9HFYdSXo/3LrpJORyvqyxHWnl1+fpsF9eXIUIwLevxm
KPXleD7BqTE+egj15RB3FB8oqDajvgJqgypmtxuL+go83xF1psVnwN/UV8Db
xXHezM8/mMwdPL+vXeX05p3JKQp8x7NbEtXUY7JegfwDqU92V3abbFDA2jnw
15nKLpONCuzYk9QXu/OpySwlhIlXy1e9fWIyRwmu1eLISVYt1FciUyV0ubmn
jvpK/FjXV2qWdp36SthV3ll0bs8l6ivh/bj24bB3JdRX4v3KiL68W6epr8R3
3IT6WHEh9RkUNOssy/KPmWzNoMRCV7Cq6TDdh0GF0yg2Z02+yW4M0jzHT21j
5dH9GDiEOSzcvCjb5FAGhUufCtstsui+DHLmbz6fOvUHkxkGCy6n3ziw43u6
P4P384L+YTFjn8kZDK7uX/2T/n0G7WFQKrtm87h5r8nFDJKDZ9je+bCb9jF4
aGvJPFuxy+RGBv3dqc1mv+ygvYP7sKYuP3W7yd0MvJZINLql22i/Cncz1eUz
vLbSfhVcg0dInD230H4V0t2CLIWL02m/CrA5eY+vTKP9Koz3/fbCh+OptF+F
3tErXMNfbqb9KgSGn7d8AjKjQuK1QGfoN9F+FbITLi4LGU7OUCErYfizd0kp
tF+FgfL6usreZNqvQqh5j/nagY20X4Uq7zDnIhtyowoFrwe2Ovkm0X4Vcu6+
Wn9dvIH2q+CRxcndW5BI+9Vg7fJuK+xKoP1qcGvvzFs4j8xR42jMkUtF36+n
/WronAtt5/XG0341LD++OhGzmhyqRkNqQNquW+tovxquguGflgSQGTXWWIuC
Z19ZS/vV2HZv+cL6+eQMNdIUBQk11Trar4YFuwMNy8nFapw4eq91V7uW9g/+
XxP2qGIduVGNudHmyXajyUY1QtoeOErPaGi/GqXHN11RLyOzNPDpK9k90KOm
/Rqoyo05rblkjgaHalJljxaR3TRYYn7w8oNeFe3XoHyqxKmwgByqQcsKYfe0
VWSuBmxz/pPZo8iMBifij3UW/MzQfg3eR90ZK9lMztAg6fqZSK4/Wa/B5Oh9
Fx71K2m/Bp+NbW1/t5Fs0ECe5XbLOJTcqIHfrfI6xR4F7dfgrMXKpnV25G4N
hjpucGsuktN+LboSbvBi/cnWWiSWPvvY3yyj/VpUuXcmpinJblpwJ+bZt7LJ
0KJIX1xjPCWl/VrUppr3b1hC5mrhsnJM3v5uCe3XIvCm/NXILHKKFifPjEts
8idnaBG8s/BDwwsx7deipMVhwfMscrEWX6zqmzMqiGzQ4lrRxYJZfSLar0UW
t5LvXkQ2aiGPL7MZwSV3a/HwhyDXU+PILB02Cu7/1t8gpP06dO2/6v7nNjJH
hwWJey+nLSS76RASlVh90IwMHZJlEXM9DALar4Ong3+6TwqZq4Nox4aywwFk
RofbTenf8IaSU3RgfxoWpr4ZR/t1cD31l1/VbrJeh+k+2/uWhpOLdUjqYX6x
sicbdKh0EGR3dvBpvw7+tVPCnp4hG3X49ZFz/Lv1fP//AYAttKU=
"]]}, {}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{146.875, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{},
PlotRange->{{150., 350.}, {0, 20.001499812894608`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.674238997551959*^9, 3.6742391732304583`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"enhancedGRN3", "[",
RowBox[{"k1tx_", ",", "k1ctx_", ",",
RowBox[{"kf_:", "400"}], ",",
RowBox[{"kr_:", "125"}], ",",
RowBox[{"tmax_:", "100"}], ",",
RowBox[{"kc_:", "1000"}], ",",
RowBox[{"ktl_:", "1.0"}], ",",
RowBox[{"kpd_:", "1.0"}], ",",
RowBox[{"krd_:", "5.0"}]}], "]"}], ":=", "\[IndentingNewLine]",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{
"null", ",", "G1", ",", "T1", ",", "R1", ",", "G1c", ",", "T1c", ",",
"C1", ",", "sol", ",", "rsys", ",", "G1f", ",", "R1G1f"}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"rsys", "=",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"Genelet", " ", "R1"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"rxn", "[",
RowBox[{"G1", ",",
RowBox[{"G1", "+", "T1"}], ",", "k1tx"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"rxn", "[",
RowBox[{"T1", ",",
RowBox[{"T1", "+", "R1"}], ",", "ktl"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"rxn", "[",
RowBox[{"T1", ",", "null", ",", "krd"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"rxn", "[",
RowBox[{"R1", ",", "null", ",", "kpd"}], "]"}], ",",
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"Genelet", " ", "C1"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"rxn", "[",
RowBox[{"G1c", ",",
RowBox[{"G1c", "+", "T1c"}], ",", "k1ctx"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"rxn", "[",
RowBox[{"T1c", ",",
RowBox[{"T1c", "+", "C1"}], ",", "ktl"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"rxn", "[",
RowBox[{"T1c", ",", "null", ",", "krd"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"rxn", "[",
RowBox[{"C1", ",", "null", ",", "kpd"}], "]"}], ",",
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ", "Titration", " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"rxn", "[",
RowBox[{
RowBox[{"C1", "+", "R1"}], ",", "null", ",", "kc"}], "]"}], ",",
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"\"\<Reporter\>\"", " ", "Gene"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{"revrxn", "[",
RowBox[{
RowBox[{"R1", "+", "G1f"}], ",", "R1G1f", ",", "kf", ",", "kr"}],
"]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"conc", "[",
RowBox[{"G1", ",", "1"}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"conc", "[",
RowBox[{"G1c", ",", "1"}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"conc", "[",
RowBox[{"G1f", ",", "10"}], "]"}]}], "\[IndentingNewLine]", "}"}]}],
";", "\[IndentingNewLine]",
RowBox[{"sol", "=",
RowBox[{"SimulateRxnsys", "[",
RowBox[{"rsys", ",", "tmax"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"Return", "[",
RowBox[{
RowBox[{"{",
RowBox[{"G1f", "[", "t", "]"}], "}"}], "/.", "sol"}], "]"}]}]}],
"\[IndentingNewLine]", "]"}]}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"plotter", "=",
RowBox[{"enhancedGRN2", "[",
RowBox[{"250", ",", "250"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{"plotter", ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "100"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{", "\"\<G1f\>\"", "}"}]}]}], "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"plotter", "[",
RowBox[{"[", "1", "]"}], "]"}], "[",
RowBox[{"[", "0", "]"}], "]"}], "[", "100", "]"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"tmax", "=", "60"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"k1ctx", "=", "5"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"y", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"enhancedGRN3", "[",
RowBox[{"i", ",", "k1ctx", ",", "1.5", ",", "0.05", ",", "tmax"}],
"]"}], "[",
RowBox[{"[", "1", "]"}], "]"}], "[",
RowBox[{"[", "0", "]"}], "]"}], "[", "tmax", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"k1ctx", "-", "5"}], ",",
RowBox[{"k1ctx", "+", "5"}], ",", "0.1"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"ListPlot", "[", "y", "]"}]}], "Input",
CellChangeTimes->{{3.6742392377861834`*^9, 3.674239238179929*^9}, {
3.674239269188052*^9, 3.6742392711788816`*^9}, {3.674239425062364*^9,
3.674239433672091*^9}, {3.6742394645714893`*^9, 3.674239487153717*^9}}],
Cell[BoxData[
TemplateBox[{GraphicsBox[{{{}, {}, {
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwt1nc8V98fB3B77529955JOm9NI9kyMxoUCikjUdKQkRaSFUVGRpIZWUnJ
VqG+8vnYOzuF370fv/vPfTwf57zPeJ3zuI8r5n7B8jQFGRlZJDkZGf4Wv7eZ
lSZcv4/67zb2zKMjfjn0Pp7pSOfX7LvT1HPIYljxnqxnESLPNK4xvD6Ntqka
jzLHlaPo+Lu3LQ2nkO2TeQsazzpE5n3zt/LtSfSVJy5/O6MR3et9Q1axNoEo
3CSV/8W2IEEx+x/zNyeQUn5V8XrIZ2TW7VmSLDuB7FbMNVY8OtAH+j2CRwbG
UUP60kBQXhdaOmP58VTiOPrWtE9wLaMHqW2UQZDzOJqZjHK+lNiH3ogfzi+V
H0cUrH1pS7HfUP+H3/U1m2OIT1P0l19kP9pzqi0mqm8MKdt7iS2EDCKTxYB1
o5IxdDDsrft5v5+oeYypzi5+DNlnkT+f8RhCxs8raNT8x5DOqWx/raJf6Iaf
7PQZ2zHUsGryMCBvGEWkPOPK3DuGvgsk9i5mEFH9S2tDdpYxdLJw74paygji
dG29+XV9FM0BgdsvcRSpkXnp1o2MIsozSsfnY8fR69Bjlf51oyhuvTtQOWoC
LV1UP0ZTOIr4ooOSfCInUeYijbpp6ihSLm7snw6ZRvqsM+GFV0eRw4a904TH
PArkG0qwPDiK/D+E1z5UW0B1hz8wbWqPoop73cc0ihbQxTluHTL5UbRfPOiC
f95vRH+998BftlFkd6SxeCFjCY21bDuaE0ZQGhuPQbzwMiJ4JSYd/jaCiP2e
XSopy0igI1AsqG0EnfdmWTyfuIJSxignIstHUOR9e43Z2DUkK7o7lTt+BH1y
KGiMYVxHW6INhDe3RhCr5LaVYtQ6Sn1lOR1xdQQlv30e4BX5B5mIMcxke42g
osH5ssmQv0iQPX3/ktEIGpC6tXvMYxvdVWJzHmYeQZuSkUM8C9soo3Jd+jzN
CGLjMGiU2EsGUzkpfuLbRKTOjs5ZN5FBWAeX09YCEQWx6lWU9ZJDp9BDxfNf
iYiBtYqxnY8CWkUmb4t1EtFTFl2XMScKeLVf3n+1lYhqmXVoeEcpIPVnN1DU
EhEVk4Z10AolELtU0u7lEFEC4+uceF0qsIlHKvqZRCTDqPb35VUq+MORrU+b
SkTGDCqZ/dTUsOue+Y25B0QUT6ewsIeHBpacBsQ2wolIkFoiZlObDqg+/fh2
/wQRFVJlDnFfoYOvWTJXWhyICFGJaSjX0UGAmnwc+3EicqcUGThxhB7EvS5Y
D5sR0UtyAdn3xxngRv3TrZP7iWgPefKV708Z4GDQVpkaIqLPZLs6FoYYoDls
8jXbXiKa2+a5LObJCLY5Pqzk2kSkscXRFBHEBKFmkznP5ImoafM+79MaJnjU
c2twXoaIbDfZvErJmKHQVOTFUSksv38sHCN3mKE/V/e9qiiWzwaD66EnLCCr
l72UzENEL66Qb1E6s4Fzg3NtFTURRSy3xLSHssE5lzim35RE5OoTJ/AkhQ0W
ek28VCmw/bsI6Cr/YANF8dLM1i0CerBfK8DOkR3GJ4c13NYJyLf6L4XEFXZg
TRpWH1wlIFPNhvuzyexQmF+74rRCQHTSZkURA+xwLyjh7+VFAgqnPztVYM8B
M+tVR8hnCcgpQiU4MJgDJs7FbL+ZJqA9f1do9z/hgP7906YXpghodSZC6tt3
DqhZUJVfGycg784UV3I7TlBNrHQxJxKQfWLnVxtbLvi4FdDHMkhA2myJp0Uv
c8Gw8tVXQgMExBXlvDz1mAtiaYOPqfUTUGfIFPu1Pi5oOzF698w3Ajp8gso0
z5obnE9anqTpJSDJb58GAwK4oaKZbHV3DwGRm98/hx5xA22IbsqFbgKqMRC+
09vDDVVn2LonOglIQ2p345YlD1BnbJfTtRMQW9qWRas/D2Tt26y2/0JAczzN
vx4+4IGhcj/dwjYCyqOz3JLt5oG8P3QObp8JSHTGS9fKghfim8Ft7iMBMZem
F+WY8YF9xr+sx00EdJnnT1L3eT7YqtGS2YX5v2DLiM1YPpBbp+JNbySgYqC2
sWrjAyoHI6bXDQRk2X5uY8twF0ytiDEsvSegarUmopznLhggqBTcwSz5WOiL
9e1doDvz0lUU84pjZ3pe8y4IY+/9alNHQEmTWods9/ODeF316Ld3BERmek/5
uhs/THnQUl3FfLZ4grfgGj9o1laNS2DeE/h0irwOa7eTH7xcQ0A/qcjjX+kJ
wLsFx9uq1QQkLto2QKUlCJdj/bhmKggo+oZUk4q1IPxVKKvJxbw8FvbK4aIg
0C/VF3libn6ldq24RBCarZmcp8oJyFMvUcpJWQi29P9K/XuLnV/aAsttUyGo
jw4JbMSsS2G8XuItBGx0IcRozAyt/z7R5gtBYXDligjmV7buvqUywkAL2hes
ywiIp6ra/r/DwuAoNkAuiTlMiPsA/RlhkLUi3lx+Q0DmIy3cLs+FIY6yyiwJ
86KfUjWDmAh8Dpj2nioloJTD/yjUmEVBenpZouw1ATG5hCXzCYvCzf3fe+Iw
hwaSqZOpiMK+jnnLs5idXlK5dZiLQqzwTIEoZkEG5jqfR6JA5fzJMamEgGLE
79navBAFZzUO1iDM//awz+19KwrbOpO+dph/eHELMX0XBeavg2oCmFO+CF3J
ExCD0yvNh14WY/OPpXM8UBQD4KNgjMUcuiWWF6wvBucMzp/0x+ykIt1v6CIG
yQ/c6vdhFryvrDOeKQbd7YpDP4sIKNUaLUnIi8MxGoV9GphZfOrvMuqJgx3P
OFEEc9jNA+JLJuKQ43x8kQnzibdHLBp8xGFSyR8mCglImM+8yLVEHEZPvzyd
hTlOtfuwYYM4DOfu4n6IecvQ+j+VHnHgCH4neKMQv792zNvL4uDlY6l0CnPa
oKtX6m4JMHp3VkweM8sygeKmkQSkcUW5CmIOYzqd7O0gAbnuLFMsmE/on23V
C5WA2civfcuvsPnT/WQG6iSAeqt0rBFzmnsEkeeIJPhUCFT4YE5au/3qp60k
+A2JJp7C/DAmNvD5GUmgMNJ/7oj5ztskRvVbkqD/W+OQMWZ/hiIN02ZJ6DS9
FCWH2Tv9zSZnnyQEmL5/L4bZQ7OqZWBEEhqXTojwY3Y60ezoSSUFYuTXzRgx
H349eOPGASkQ0JE6M19AQHBk2NTYSgoCUmkaJzDr/RjjZT8pBcVyfgYEzKo0
i/lpEVJg2aKU0YeZ34Gut7JeChoLHHveYZ4j15JcQNLwMis27iHmiYQ9c2/N
pCH4qmp1HGaiAlRcdZGGNUk9sruYv9uYHGUMlwbB28ld1zA35LoFSNdKw24z
5sgLmGv2eeyb/SINvYSsM16Yy3u86d78lIbCFZoTHpgLNgNTDDal4Yv/kygX
zAkWcU1Oe2Ugvrbuoznm+LGHcRJHZSDn5d3Dppijrzyxm3KUAeYXlF+NMF97
8Xwm8IoMdNC/lz2A+dyfKq6HVTIQXq7wSBuz/rPxU627ZWHDpVVPFPNySoMF
wUgW6EyKg4Qw5yWl7vvrIAt9tSVN/Jh54q34lK5iXs66w43nEVb3Ob5eFlo5
f5czYn4eklyR2y0LwV83T9Fjdrh86UUDURYEYhqEaTG3+CiEL1PLQZmVWTkF
5gynRHU7YznQC5O5tJFPQLZ2/iJ+jnKwd/PhtXXMTNamTHe95aBHqyJhFXOQ
CeVYdZwcqBzaTVjEbLHnwhORHjnIT02cn8ZMwXeEbNxRHhK6BsqHMFdwis9u
e8sDq1uYzX+Yz7Nu9vOFyUNza/bGD8yDNKWlxhny4PeK2XEA85sVYY/CEXm4
q03l24f53O8/Vi0r8nDGY+JQL2bR2V74RaMAUTKy4j2YY0bu8nPIKUDQTZHZ
Tsyne1a/XPJRAN22+61tmAU7uqriwhTgN82b9s+Yuz8V5OTcUwD2fs3+T5j3
Nbhf7y9RgMnyb5sfMfOUtGvqryoAm4djRDPmj3HZT6nCFeEZW6p7Heam7U9l
X+4pQrWU6ptazO995zsSMhQheN9Zetzllrup5BoUgdfvbm0N5myeT96m1EqQ
FRlpUYU58/bcLR4eJdBit6qtxJy6zvFsSFoJftppK+N+NODY52eoBO+dF3kq
MN9Im9VPiFaCtLZKhreYw1g57FxSlGAgOSyuDHPINW1/2VdK0P/fLy7c/u7h
2VXtmCUPyL3B7CrNzjrErgyDaiPnX+P7LdT8JZOkDJc/sJ8swrxHxH5j4aUy
WFclMODWjr/KVVWpDC/EVkoLMSv5fzA8OqgMxD1sTLgFte1KfIVVgGX1Q2cB
Zr6c0M+6KipAnsB2Czcn3zPs71MFiEmze3EzbEzueuymAllx+4ryMf95dyWi
8rkKGBYcepGHeVk5IyWiTAXm+zTO4F5Ib3pr8kEFbnf7yuKeuM48/XNcBZ7I
fyzOxTyd2SF3nVsVsjs0O19iHjjj9uCFnSogB6ODOXiezmUVwa6qMMBkw4/b
1Zp+yNRTFT5uavzOxjxmUKKwGqgK7ZKOz3AvCpI3H05Uhd/HBhlwl3HaTPOn
q0J0NfP4C/y+M+Syz2erwn8hi424t9bMTyS+VYXgiMZw3Iw9GWvjfaoQr7d3
+znm9tZloZqfquBQmvcL94P3hgfjR1VBZf51A26+woX43SuqcJgs8g5uySiQ
j+JSA8EXHfy496JfTvJWalA+9eV4FuZtLc0bWw5qcP9DtAHuBsU7ud3uahDy
u1IBtyG/6mqIvxrknXYmx22zEn7v8301mBEJLcnE55vpKUt/ogaZbYFpuH8Q
ZH5cfKYGbfKd0bjdOztkBUvUoNn2kQfu8/kiDd6dakCbYy+BWy3z4gR8x8az
EufEvZzUwsL9Sw00PfUpcYfcuuD4bl4NMo6dHHmG+ZZb3TIzqzoMfdTNw53O
6yJTZKoO6Z3J+3G/rxdyUbRVh/zFj1q4f3n9SMg9oQ4+i/pyuMXf29M8v6AO
9s0rbLizPa1Hk+6rQ4e5DzEDcwsHpxBPsjpErGd+xz1R02X9MFMdQhfZ23HL
s5s1xZaqw13ex5W4CyuNsiL61CFHnu8h7o6TdIPbP9XBP+9vFO4F5haOq2NY
uyX7ddzq7gcjAtfUoeRR+wXcZQzIzXuXBgjI+5nhrnHUFLF11gD79+48uH9S
L9n2nNaA+IVJVtxbRSVx5uc1wDP3ET1uoFLZMg7XANsUi810/PtRIPcTPdOA
pwNWY7hHbSe43uVqgEXW8C/cNOQ5R/e81gCnxphB3IY2kjWajRrwaUGnC/fn
TeGncqPY+Oe63uGeyfnZnT2rAV2pupW4mSxTGCRXNWBZvvoN7mPZu0KEaTXh
Aw1dAe7uY1z2nHKaoF1a8RT3QDo976a3JvRTb4ThBjqGickATdAKnr+CO9uX
ofJrqCb4Sq8E4fY3YHQsjtEEg2qVi7gZiUzpJws04X7OcU9Suwmzr/kbTRBt
bDqN+3sps4F+jSYwq6OTuJ9HshB52jShIcHhBO690mwyn6Y1ocNazAZ3Zhzb
+tslTYgZmbPETbfG1pr1VxOkhz+Y4+5tYfe6yqgFr189Oorb5yxnkaqCFgyn
ZR7EnVbAo5N4Tgtoiwq0cVNx89JF+mtBUxevFu5zV3n7fUO0QMY4WgO39jG+
K8Z3teAc+11V3B3zu+o2c7Xgfud/8rhT3vO7favUgnhhVVncnvcFKEtatWD8
YJIUbjINoSOnJrVA6Vu2KO42SuFJ/T9aQD5rJYz7Sa9wNC+9NljyCQjiVr8s
2vFJVhtWW3/z4j5ZKXFczVMbJKwS2XAHbPtIVwdqgx7nMgvuW4cqVg7e1oab
CSeYced1HX1kl43V/z3OgLvdeVjdu1kbaO9E0eJenLzUFT6iDd94l6lw81xm
8H1IqQOHXR9Q4NalSGfJEdcBbR4XMtzX+D+atLvqgGna+X9p+PlkO00Nh+vA
v428Ddwt6r/vrKTpQP8xhj+4p2pvytDX6kBHR9QabhYT/g+CP3WgrVR6Fbft
yQOUBwV2Q3zoqyXcqVe8wct+N5R+jv+Nm55wtsv41244NEE+h/uSoYe7vIcu
zIemTuMeLjy1RD+nCzUHtidxm3K7R04G7IGKuHcTuNvyHrU/9dWDjTancdwm
0MJ3zHsvPM4IHMN908A8XvyqPpQ7V47irtvfT7sWuw82/tiTbJn0x6r9CQJq
LgOSF1eZOrstAcQ3bUlmpdFlqOgAmDOKI1mR+/TB1KMGkNAUTLK0w97HnL0G
cD45hmSxdM6xKMf90JBhRPKFjzSf//Tvh59N0iS/+/2n6KzdAQi9RkXyhHlS
/rnhA3CcYW4EN1exdo7XuYNw9NoWyd6VosxzCwch2pGG1L+xgeGib+Ah8JcS
JPl8MZvPzPIhiJUVIZk/jcfD0/8wuLECyVn1LYGXNg7Dn6bwnfWPBt2JiDgC
ARYZJNPNHlKKIjcElXB/kkeXObrvXTOEbmsHkueyFYZ5Nw1B7qQnyat2BxfS
g41gaD6A5B9Ax1NJZgxnQ2xIbpBt0+u+bQzDXIok/1vOXxmhNgGRJF6Steqj
i9ZumMB0CwvJRxt5rj1lOgqzDxhJPtn8zBw9Pgr5axQkZ/sFRZ8SMIW+tjVS
HlNCZh+inpkCWewiydcLDR6/FD4GPyr/kMyHNE+1PD0G8Vw79THU3UaBEmZA
J05LMnnbBRWZfDNolqEn+VT1I+sJLnMwbtrxx3g/dn1rcyBPZCN5v17ADcsH
5pCUuZN3zejlFY9OcyjnlydZSqFjsZnTAra/a5Ec5yuzIHHcAmLadUkWfRlb
vvXYAqgl1UkuHVoK6++1ALFoUZI1Xxd1/eOzhEuxO/m8jfSSFHW2hOuZO3Y3
0jJ4n2IJz4YFSGZm2XZ2/WEJTY479e05cyr1/FZAf1qM5HiD/8jF7a2gKnGn
P1yWcPmcYgWcr9lJXsjzrAn4ZQW8Mzt5f+qqJiaLWMMll539P19nYaw/YQ17
39CR7F1V/k4lyxquiO60a4W6+qaNW8Pd0h1zcap8/yJvAx9Dd7yUu4k2fWyg
L2+n/p/6gF9ugQ1oF+3kT1XzNstm2gZ6anfu87+hCVdjFVsoYtvxEqWAMLpo
CxcZd8zF7/ii+LUtRI7tWEv1qaL4oi0E0f1/fQLkZ61Vj4N11I6zaDxe3Dp/
HGYf7bg1RtyH/PVxSDTc8TzHf5qhK8fBr31nPSg658NFTTsIdN7xPUo/O6+L
duDKvWPhgYWcsko7YJDacWGx79r2th2E/r/+f0lC4W4=
"]]}}}, {
DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0.58}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]],
Method -> {
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange -> {All, All}, PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}],FormBox[
FormBox[
TemplateBox[{"\"G1f\""}, "LineLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame ->
True, FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
"RGBColor[0.368417, 0.506779, 0.709798]"], Appearance ->
None, BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
"}"}], ",",
RowBox[{"{", #, "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{
3.674239271646085*^9, 3.674239435168038*^9, {3.674239467125875*^9,
3.674239490072653*^9}}],
Cell[BoxData["0.5834497903110356`"], "Output",
CellChangeTimes->{
3.674239271646085*^9, 3.674239435168038*^9, {3.674239467125875*^9,
3.6742394900848722`*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.009166666666666668],
AbsoluteThickness[1.6], PointBox[CompressedData["
1:eJxV1XtMU2cYBvAqF4sgtFCglhbaHoKyAeOiY5ix7x0zigsjzIAIOhlMbtON
CAobVgeIONANs7CBII6EOa5eQKfc3NSByMLFgaVFBQqtQBmCSMNFmGys7/fH
nuTk5OS8z+89OTnJkUQl7IxezWKxov89Vs7/jyMUnltJPcm8q21m/c3gdRvZ
ePGtP4YXGNjktZIecjKu0PWnWXq/j7x9Q6Hxm2FA76iImQevvmmKzqvJ2dFC
P4sJBmJjVjJCVEITtfcY7WtJteve37w0DHS0r2SCtJTo6pYHqfectI2nRBc8
pvPTxL70itHLXurPkFRt+1FxN+3ryFi82ndNB903SxqKZv0rWqk3TywPFnNX
3aXeAolMG01gN1FvkeT7Xsiu+4V6S2Ry8p16kyvUe0VOljOHZsqox4INIQm8
gyV0ngV9uyMexBVQfxXUn+fH9+fS/mrIjQtcbMyi+wxg3+av6nUy6hlCo0/U
mSOJ1DOELxfdapxjqWcEF5qKPBbCqWcMGfm2W+9/QL01kPfDq5xkQj02CFyv
8wfeoB4bFB4bfbrtqWcC/Os35kVm1FsLGawyacacFD1TyKwNUNSqpOiZgWDv
RFRwqxQ9MzDfc8durlKK3jqQ9b7vZnlaip45NKR+1rIUQz0LSLl6P+ipL/U4
sG/U5/A9czrPgeljEUfClBL0ObCrRxdofE4C/9W9uPAj0ww9gRLcx4WKlKz2
0DkxepYgW6gSNeWK0bMEuWn52R6eGD1LKPwioa3N2AGfxwruHDMQhNaI0LOC
0G9i/2Q7CdHjQePV7C2O0QL0ePCJbqnZPYmPHg80N9O7n+y2Qc8aimJKtf5S
HnrWcDmlc9NrA1z0bGD0QFip8xYL9GzAqXVXXsfQWvRsIDFHFPhSYYyeLXCq
9qjeJQbo2cI4z9X6jCcLPT4kc2OfpckWid7jw60mtZVl3RzRe3z42boxs3Nc
R/TeeghSTpq3K18Qvbceck7xWz7aMU30ngDuJX1/Sc55jp4Ait/cbhTCTKIn
gMEsvs+viRPo2YG1gCf7emEcPTuwMIVkUaUWPSEoGrTpU0fH0BOCcIo1vz1+
FD0hfPzhxRLu5yPoiWCobH+056mn6ImAvcFxm0etBj174E0WFhg+U6NnDy4H
5Eu6zWr07CFmm+9Izulh9BwgyH+ZlzExhJ4DtP4eful26BB6Yqg+PscJalcR
/fclhmW3sILQHSr0xcDkRqxzPz+IfTE05FVouq4N4D4xiEJcPo1U9qMnAe+d
t5UKdj96EihevFzut/UJehKYOX7iRVv2Y/QkEJb/emSV8hF6EsgdbvzO2/0R
elIYyQt40JXbh54Uqr8NdNHMKtGTQk3FX23T+5XoSWFSG5yY3qdATwqdXVb+
TsEK9BhI5aZdkz3sxffDAO8W+5BzeC96DIQnhlYqNXL0GDih8nzP97AcPQaS
xvxcOGw5of+Nm+qATouSh+Qfj5edAg==
"]]}, {}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{},
PlotRange->{{0, 10.}, {0, 10.}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.674239271646085*^9, 3.674239435168038*^9, {3.674239467125875*^9,
3.674239491285797*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"inv", "=",
RowBox[{"Interpolation", "[", "y", "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"inv", "[",
RowBox[{"inv", "[", "x", "]"}], "]"}], ",", "x"}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "10"}], "}"}]}], "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"NAND", "[",
RowBox[{"x_", ",", "y_"}], "]"}], ":=",
RowBox[{
RowBox[{"inv", "[", "x", "]"}], "+",
RowBox[{"inv", "[", "y", "]"}]}]}], "\[IndentingNewLine]",
RowBox[{"ContourPlot", "[",
RowBox[{
RowBox[{"NAND", "[",
RowBox[{"x", ",", "y"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "0", ",", "10"}], "}"}], ",",
RowBox[{"ContourLabels", "\[Rule]", "True"}], ",",
RowBox[{"Contours", "\[Rule]", "10"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.674239299202485*^9, 3.6742393042616053`*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV13c81e8XAHAie9ztXit80pCUsivPSUpZUZHUVxmVVFZKIaEyI0kkikqo
jCiysssm6147K6Frj2Tk9/n99Xm9X+eO5znPOee5V9bG6dj5dRwcHCWcHBz/
fz73tuFRtgvR3mhLbRRNaEUvLNlaJ2UuIX/+89/34e4wCnaVkbmFAuSs+y7j
dtc7JbJeJggtCnkrVuE+VAFn/myIQbWPNt3wfdmK0vxU7k5teIssDMnMhVet
qN86nTa+IQ8JPA1ZY79pRZ6ml8/93lCN3G+Ss/lSWxH/39jqK0qdaGnnDmfl
/FbkUnbnAdt1EOlwTaSlVbUipcTHTZ/SR1Goh6XdvvZW9NPYXvKHxhRipKbO
9Y21omhxf6mX52bR/Kqjh/K/VqTpmpvBVbeAKnqTOqOobaicFWvitHkJEVN0
cu7vaEPKD/5p04+sojIJV8NB/TakN6z1Y+dJDtgHAxXlV9rQr+05B+fYnJCd
YZKm8agNea4E7S704AKhYg3JyPw21OBmG+nhywWvc6n1ZgVtSGZ877xGIBco
WGpx0gvbUEXPZE72Ey4ImXCef/6lDQkVm2llfOCCvR1akh9K2tALX9n9r4a5
YEOpfMf4tzZUypNnHHiMG47+52rb3NKGeIkjl04orIfOtO7LNpNtaCHgzMH4
nevh2w75n5pTbWj433eZMbX18LJzcIY43Ya+sfNYdw7g8QnZhvKZNuRfFXLw
/Zn1oJKpE6m00IZ4fHbIrnu4Hrj954dkVnFP3mjPmF0POvLjal6CTLS+fr2e
4Bce8EFFgWoKTCR0Nc62p5wHvqUK9RltYyKK8G6fjBoe6KyZEb+gyEQbjc7l
HW/nAcWPTShGiYl06/O3xc3ygAGfoJ3Abibyq3cibFfgBcfwNn7GXibiaOjo
MI7mhaK9TcETxky03JB2JcKFD2TjPYK/ujORdJN1rO5NPnhaz+qg32IinRZq
zYI3H+waaja76sFEwazbm08/4IOhlfQOxm0movcZDWDJfBB6PGiPrx8TqU2P
n8zu5gPHc22OwaFM5ExWOtCuxw97ht03RiQyUSR1wCXYmB8uRLUJiSQx0Wex
qIS9ZvzQl21rEZLMRP8k/q0m2PDDgbshMsHvmCh0Y0Pupdv8oGHw9u3TD0z0
TtVRaTmLH1Y/VqYsFTLRz5PpDGlpATgRLX1igMlESRarZWc2CsCfdcreLu1M
ZH/K8EqsggAo8VjT13Uy0ZjlWBFdXQB8DD8kbu5hoqn/NtmRTQSgzvL6sXuD
TLRi+yKdz08AJPqFmPemmIjsHHZg9qcA2J1ebvgoyEKtzj1sZbYADGs4N7oJ
s1CUi2KU84wALLFj76uLshD9Ws3I+D8BsOKPlywjsZD0DZ6wETFByH3qpMFm
sJCCl3d7zxFB+Prm+ZknW1hof6Dj1ao0QRgz1eg7qsdC4lk/ToZ9EgSP/vE7
7kdYaK7LROdEgSD8NpsLemnAQkk7dov1VQnCRMdF9spRFhJi/Sn5MygI05d2
GjRZsBBT3peyWVwIXm8fTppxYKHL5Y8L7vsLgZL2EwmtRyykO86dZBCKW95h
JOcxvj6xG+HESCHQ21+YoRbFQt8dLM4/fykEId+X96NYFlIjSYlmFwqBsy2B
6/obFuKwTrIZmhGC8acZc275LPTkXy7/gbPCILLx6dXFYXw9m786PjkvDB05
f8+ljbLQvaNNLb8uC0Nr7+aI82wWck0Yff7gpjAIdMSW/5hmIWMd8V3MR8Kw
9StjZXmFhXj8PS0vVQjDy4jds63kdnRTWPv9w60i4LRUdFVXtx1NquoTBnaI
AC3688Ureu3ogpX5dRU1EZBZEHN8qt+OTmQ4og4dEXj6daxwxaQdKZvGt8id
EQG7a0ylP/+1o7FIjpXsMBEo3ltGyr7Zjk5Llht2z4rABNuT43UmHr86PZO9
JAL7h4auvs/Gv794Q8xDTlF4xhs4kJfXjqJsvH7qiIpCq48debS0HTWnqHq/
VRCFplP0+UfN7UhfNSXjhrUoBNgSNEnz7UjLOJREbBSFZhczbRPUgarjC3LH
2kQhzV5si4puB7KYHrWq6BaFqi47DpkjHeh65KH37mOi4Kg9WiZ6HI+Pr8lO
riPAlfcx5iYXO1Dk7rx8M2kCqKps/mzzqAMJlWxjy5kRIFoVU/Fnd6CBGNOq
OxYE+CrSPucy04E+X3NP7D5NAD9t0+WLix3IZnP5mSgbAkxkx2le4+5En8Ms
6/mdCcB76z8jbqlOZPNfUPpUMAH+Rb7vVzfpRBrqGcFGYQSQEIoLajbvRMLE
tgvvHhHgxEyg8q3/OlFuhcwGu6cEsPM3WBlzwOOKuQ9Zbwgwvk911NYfjy8N
OxeVEGDb+U8OlcWdKKxVyEiiggABsbdElCs7kW36rq03KwlwzPZ3UUpDJxKx
8e5XbiDA3BPLn6U9eLyaeuxNFwFairkOxq3g8ae6ux8sEED3+x3fnfu60HnV
V/OnFIlwH/PRFK7tQsFhVNHbO4iwv9WqaqilC6X/CtySsIsIe4envOq7u9BC
jNPpYQ0i+FIzDzZOdKHAf3tLXQ8S4c6U3ddkcjd6V8l6EGJFhNoDIXmd57pR
g4xBUro1EXqDpJQ6HLrRzK2i4iY7IvAReGd+u3WjPYpvZsQuE+FrTdiRo0Hd
qC7c1SLRnQhXluj+5I/daOKU8MYv4UTYqPmn7JtADyJ99NnX95gIyT2K+fK0
HqQmNGfOFU2ECsvU1jjZHnSnqDPoyHMiEBN/3W7W6EEELGWy7S0RPmiUp9nb
96BdbJ2CiTIiaN2y0g+r60Hu3jePycwTIWC9PuJ+34u2sL2EAhaJwBadIB8s
6EXtp3y/jS8TYafa9eb02l6koRqsVbCOBA1qUvFr7F60+DtWzpxAgoOZe24n
Kf9AHqeKZ0K2kWCBstYbXv4DKVSWp84okaCbWvk7hfkDdapUXTi1iwQFqH50
dvQH2kNo6tykSQInftXqCL4+tPJtoKz0EAmqKA4EHuU+5K3C8/iPNQnsp+bK
Dwf0IaVXAkZW50kw5R+/FhPRh3pFRXm/2pNgv+3z40Iv+hD6LeYZ4USC7LAd
H45n9yGOV1ttt98mwVda7qfrP/uQn6jRbtunJEB2xQwvw36067bpeHUsCZh6
vn/4LfvRwJhZ8s54Evg5R/wovtiPDnyzkvj3hgReNtJByXf7EfdtZ66YjyQI
7oXqm1/60f2xxy0NDSSQNVAPLdUcQPdYP2uWm0jw+vWWjdQjuCvUy7a0kSDo
1pRWlMUA8nvR9cGviwSmE5Q32M0B5H0MC1MbIcHYf4Y2t/MG0I38rMMvOMlw
2TDNqP/gILqezA213GQIOcG/44LFIHKLNFdf5CWDD9naU/7yIHJ1XJI/JkIG
51vvDp98NIic5HS4eCTIwNN65VBi3yCyD276clWFDG3xG0RYIUPoojuW/Uyd
DBVyzKYHr4bQBbvrqZVaZAiey5d6mDeE7LQZsbL7yXAnJlfRe2QIWc+cu9lm
RIb9W2vX1PV/IkvLqV37LpIhNudN1jXpYXRKT0fBwYEMlZEyiplaw8hCJVI2
+ioZbroxEsxPDiNzEQ3C9DUykOczKnoeDaPjZXfGE33IcMHgjOxWoV/IUEE0
RegZGdQMTA7+ERtBp6qcUrY+J8O6rfI6u/aMoAsXvqccSiDD26Mdh1esRpDP
q0dvfZLIcOa4/C5IGUGfxCnv57LIwPlxz26qzigqzXV7T8whw7F+z/OKDqOo
wbztvVIenq+SnczZiFE0EhGVal9Mhi6BJfHw4VEkKchI764lA01xF2U+agxt
fXsr/W8Dvl+O4cNyX8eQml5nOq2ZDOJWprRdc2PI5G5shkk7GfIlPccGTvxG
95alMiuGyCAVvyjuLcdGj2K8M/t/kQGzd+nJtGCjF+o/Mv+NkWFwt/rA2kM2
yr2WkKUxTQbjBq7Iw+vGEfu33KfUVTIw3Tb3HF4cR3+D7n6q5qDA3hxNUonm
BOLZMvRpmIsCJY6vnDq9JpCM3ZtsGQEKaLVr3xvhm0Tb1/Hk7BOmQG/zenvx
Y5NIK+FCjiWBAn6diVKPn0+iE92bP0fSKDAvNHSbJTWFrD0CP2cyKHDbo09s
g94UcqSPfm6QpECdruBelssUCjzxLpcPo8CiR3IDR90UKqxTzPfaQYFXPB25
b59Mo2qH0PyYXRS4kdUQLlE/jZh8E/k5qhRQ0fuSNcszg6Z0Mwqm9lCAY+02
ydNvBq0OiBYKIwoEE8933K6YQQK+zoUKOhSgZly/eIJ/Fm38ovzF7jAF+lPS
0ivjZpHy6YgvvgYUuB94g4v9exZp/5358sKYAqI+z6f/aM8hC9VPRe0nKCBZ
PdX4bnoOnW+hFM+fpEDt8QG/j6bzyNXlejHpNAXiyk/qhOfMo9A0tRJDawr0
1OuSyh8uoE3ntlin2VHgoDXLolLkDyoiia8TscfXa3tIryzyD5pyXz3Q6EgB
9+yw5kefF1GQwuTQDlcKfDS5v+/Rib9Irqfvfvh1CmyMET7x/O9fdEKnotLU
iwLS0aanp88so/G5bPusOxSQt9xvdF9yBfknJ/OT71Lg7Emldt2fKyhXKMSg
NYgC+lm+1Ycj/iFJlmmjeTQFCvzzGfU78P8pQQecPz+jgFnjUcsX2ZxgvFeV
SH9BgdRbTekbYB34vKQf70ikgNJi7ndZWy4YuvyDeTqLAp9uGNLW9a2H29JN
7oXZFDjeqaDwJogHaE1ldKk8ClRa24qaqPPCYbUky95iCsRk5HyZeM4HqRxX
e8/VU8B/YOlsQIQgHPxodaf0OwWq3h0aWjAXgt7zJjJyrRQodHi1kyUlDITa
3TaDnRRICTDQpmaJgNuTpZ/nRygQqij8ROcPAfYoBI47cFFhi0oGf+kBCrR2
3wqr5aFCOvlsTEEqBa48vLxDUYAKFbr7rupQqfBizthlnEAFwkL7aMQQFdYV
U+edpKkQaHlC6twtMag5/nrFTZMK2xMOxvpcEoes+wOdsXupIF/lqTuZLw7P
PsvmlSEq/HpFSxoTkAAHiYTrhENUUHzrp+yQJAH8g3ET749RIauJNOlXIwlT
lO66ZjMqyFS9H/QVlYL2QxLv/1pQYfSp8OXhY1KQ8i7mot5ZKliujz1a1yoF
h12j+gYuUwFWO7bLfZWGnYltRfxOVCBGFRCNV6WBzqQ83+lKhfFXERqDuzfA
L83Hp7xvUqEsVaDJP24D+HOGNzPuU+EL+6SDrpIMOO5u/ACBVLh3NZryQFcG
zM+LPLwYQoXc6rN5ipYysKn6gUH2Iyr8i94tEnxXBr6GB1WYvKBCdkJ6685G
GUgtq3rl/pIKOU7XVPL7ZCByjtf3RSIVGu+K5BdNy4Cdhf8+9jsqXIxKVDYm
yQK3zN2cgM9UEB/pzf1pJAts07LI9HwqcNVnznw5LQutdzmvtX2hgr7rm0c7
L8nC6193dmAVVBDaVBE27ScLOhleKUXfqZBM5VvRzZIFhf4C/58tVHCSv2pn
+EUWSORlOyEWFUZkJQN5qmRh4MYtWcseKuRpRQvGd8uCr/aNZ/OjVOBzL45/
u04O7J2zb0qOU+Hx8XvmDwXlwOTVnPmBKSp0SUZJ7KXIgQzPNfKjBfz8UkKT
JjfKQUm90wNFLhrEbrEpHjsgByoUEIzmocF1n4iaegM5SLEkBHMK0GCbDSCv
43Lw8NeHACaBBvYv7X10bOTAinPGz0eaBoezh/je3paDZr0yzt+yNMhclfwr
dk8ODoVF+JjJ00CGt3bOKlgOtkvs9lZQpIG167Mcryg5WFFxu9WqSYPzWT3c
omly4Oypu6i9jwZMT/Jemyw5GCqluL8FGrgfag+N+iwHtcbZbt56NFA/JrEl
qVQOntkvOG0xo0ExfzKvV6scaMbdvODlTIOiHStf3szLQerA4Z/D12hg4jp0
5fJffP9bGXam7jSw0Bdek1qVA76cPOtN3jRwvYGJG3Bj0N64dOZ7CA244o8b
txAxMKTVdmk9pAESjzMVomJQcibW8k0EDSSl9ZNV6Rgkj+6x8IihAd+9LT8s
pTG4wXX7+MZkGpxtTeRY3orB2BGj5rB3NFCwizAqVcTAKlzK9G8aDQrknEo9
dmBwUKrIuOETDe7FlVRUqWBAUV87crOMBjMLp06xtDHIcvCFuh4a/HH4juZN
MFCxOVe1qZ8GZvcke7mOY5BzCpn4DtFA8MhwH78ZBnmHV8+q/aYBf86OmhUL
fL2bbt1JWKTBZmq8/t1zGOhIW/AuL9Og1Ktm0tQGg3Kq+kOzNRpEpiYcYthh
8I17/oUAjxjUT6m/jriIQf2Ac5EbWQz2hu+TVnHEwLjz6KFGmhiEss9p1Tlh
8L1JqWGruBi07sogW7lg0FrC7umVEYM1rc9hTm4YdL6wXz2sJAZeHH+tDD0w
GLE8t1fqiBj4JfCHr97DwOEYqnA3FIMF7ILKPn8M2EekDZuPisGxF29UbgZg
MKnRfTrAXAxi7uSF9gVhsECz8Jy2FQPeM3eivcIw4Go5mv/VWwxOntHkmInC
4F6Nko6MnxhwKZglTUZjwFMmXONxXww40zfnjz7FQCCztmPHAzFYzPb/r+UZ
BoSHen9jYsRAilo7ePsFBtIGSMPxkxhAvmDW7jcYTJReXg37LAYpLupFk7iL
NZ6WZeSLgfmve/+9TcLg3KZpw+kSMZBX1/WgpmDwivO1tVu9GKRmsLY0v8Ng
cy5PiMewGPyl3JobzMBgUWm3SeyoGFySLuS//QGDqjdnqYVsMbCQblCkZOL5
eJwbvzqD5/dSU/beLAxSHR0++ayJwf1NTnfcP2GwU76hx59OhzpNpmZkLgYc
cUuvkiXoEMhYcybkYdBE2mxfJU0H31o3eghuVw6fGX55OngFGDV45mOQ3aXM
G6pMh1XrPVcMCjHQiniy87E+HQq4L7UmF+P54S+b/2hEh03CnjeESzDoujOR
32pCh+hf3kwX3F5X9Q7STtIBLoj0q5ViUHT476kYWzr05os8ySrD4MDambvx
XnSgByjOunzFICFYfJTLhw4cNjb8dbhXqO3G9nfp8C6MOLnxG16/isfFlYPp
8PgpdU8L7i2WRzLLoumwwS/tuFwVBkLZqj9+ZtEhk1W8NawGA3uY1dXPocO2
UrY6C/fX2g/v0vPo8O/qkPmGWgy8B7bdcC/BP186oi0V95SonDB/Ax36NY32
fanD69NBZI/iKB3WUltnchrwfC7UJoSz6cB+cvDDDO5Q3yCe+Uk6WNn3ZW5v
xODQU+7mLwt08EBTD17izv26ZH+UmwHW7apTPt8xiJP5FeW6gQF/nm0pkWnG
z/d94gpTjgGFhXnrj+E2U7ex2bOJAetSruf54RYx7tnOvZ0Bz4RX3AZw+3i2
VDzRYsDvs2//xLZgYMcsnsk1Y0C1S/u3P614ffbXPBm0YICH+dWL0m0YFPxu
0xA5w4B5Q/tEXdwkTra3rQ0D2kTU/z7EXbyNLijixIDPtgqqckwMxH2dMdtA
Bkgr6mxSY+H9HeL5LTSEAatVOconcbtE+V/KDWNA0KflCXfcVe/jMoSfMKCd
uno3F/cNZtWe3JcMGI2//FWtHa+vbbInhAsY8ONk0/CmDrwe1BT/qBcxoFnF
vOIA7i371Z/ZlOLrfwy253B7mxv1fa5kwKkDb0ee4lb0vXXFppUB2i/3bOXt
xCCQ2XTv8zgDkk6sanTg1vb1y7aWEYcfZ3nCLbsx+LM3ztoLE4cM+94mZ9wf
FrOFozeJg30Lx7g/bsx59Hydojh8kV+XmYWb76wJTV1THO+HYS++Hgxa9kq7
Cx0TB5e11aA03PaLeRqf74qDnfu7q/29GMh+ahlq8heHTl6l6lncnU7j4ewg
cZAs9xTg+YGB0S+ZUdlwccjufIAUcO9iBsQ8iBOHj410Txfcqx/NlqyzxUGl
8fm1ZdwRTtMFQr/E4azNk5y1PgxYKI7v8pg4zMrEphH6MZAk6JlVj4uDvnVE
mCzu5A9xE/fnxMEnTEH0AO7CaT3ZNU4J2KBfS7iPe/jaC/9pSQmQKL53YP0A
3q83DUyZxySg1KKcsYh7wOfNcHyRBBRuXuTMGMLP6/tz54pSCSBdp6zk4xaQ
iVoaqZCAI7Oiv7/h3lXsL7KrVgKsiOzkXtx3Vy+qVbAkYFppW7zwTww2eij4
j0xJQOOhXY8v4b5wLUNeGZOEEw9F5cWHMfh9Ps+uLEASzrmeiT73C+/PGp2H
CiGSsK2olXIZt6JSXV5EmCQcV9cKuo77ykKviO0TSQjMXjUPxs32587jei0J
3VaFAR//7+SjwgeLJKHrUeph7hF83o7+zK6cw9/fFJocj3vqKom33loKEp1m
+opHMThrOuq4bCcF7347/qjE3aBSwtxqLwW1uVvbG3GnLl9N8neUAu3r13J/
4LYPqj4InlKgT+dVXcPdl+hz72OkFBx1f4XtG8OgsWuC81mlFFR3hPJm404/
UrtyYbs0yP7+tvzkN55/+51qXPPSsD9Bz1xqHO+n952PA+o3QKPozqzACTx/
51xf1RvIwJHM3L60SbxeVxihBnkyECE0tal8Cu+HguiYmo2yYDZ3pDlzGgNV
269HiUGyEKheFu0+g9/PcVR63bwsTNlv01WfxV9fQg02Pi0HdwzL+NtxG61n
SzUXyYH2oSX+i3N4PrqGyqsVMNCs0hecw+0UF0oOeojBkXXnCVfmMajj3Dip
/wiD2Ru7iY64FS7m1wg9xoA5hIjOuIeUf/mG4/fksCNF1A23RSVMRT/HwIa/
jNMLt87MbF3Se3yuTruVh+CmHbb0r6jE50ZBR/473NfSpqz9q/F7lqiVmIr7
Oylg32F8zpoE/3yQjjuk5+NcLT5HVf02nMnCzXFN2LYFn0tirQozebjHnpeg
gUEM8iX+rlTh1uM6KZGI19nZqT1dNbgT7ccXzuN14W/+PbcO99nd4umj+Lko
uEy6fMfdWnVNchrP4wciqZuFW1lJYDELz9PLRPanDtxhjxNa/r8v+2WJ0C78
ecSqPnhxEYOUBx57fuBOKre9kL+E3/OP3xH7cXNvXdrvtYLf4/M7fw3gtg4L
l9L+h4EBQ6RwCHfR7Ka/a2v47zA7nfBh3P8D0t2sUg==
"]]},
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJxFxW0w03EcAPBpjTAVImYPf3KlhbMTh7tmcjXyUCm3PFwME4WdcafiFC6a
p2RXTkhJrs5t3Umdh9LOdIxtV+nhUs7laWGuMfPUonrh+3vxuY9jAj+Ctw2H
w4X98/+G/ARjRlIZc+v70Ro/Dpbqv/XXsFIBhl2Bc9hROwmYED7ex4pdodXC
4sLDRVraU/gHV2I7T+uEc09fip+jyWHTtTp5mvsInNl7rVwjmIDdm0Xv2yUz
8FR4CnnMRwvXkIopD+N1sK+g4xlesQzLvtSd4h9YhxnlG0y74D8we9pvzIOD
Y22tdnt5bEljBOcahJ6vruJhE8ufqWfpBJigJLDNXxvDv1XitOrMHfAUR2JP
pZrBATcz0gfE5vCdjQ7TwDgLOIYsC/2u2wkTpYc0TpG7YZ5Xkz7K1RLOyb8c
genRN2ZFwyqVFRxK3/WEeM8arhB7S0O5e+DBM48M2b42sFTJL3fF28JtFwtY
ilE0NcTfJ6N9Lxy4GVvUmGcHJ31+s9gRaQ8zCwpfcDESXM1f6Caq0ePXH083
9jjAc7zOpN4SMqxNtzJRcimwJHjIkOxGhadTPLzxejSpdURUoqTBRfGCJmUI
Bq8Y7CtCOtEu3TW1g86OsFfi25OWQrS03sZOoUe7SG1Kw2Oc4DCChvKhB639
NimT0/fB/PoKa+EttMLI+deJ22j6ha5Bogg9yVAXVN1Fn+tnaWsa0EcXdYqW
VrRtUHRxXz86S6zlFsvR76xKjgQNoctGny8NqdC4LIvE4U/o2Qap//gEmo3n
ODRPoZtT5pd5anScJ0kyM4v+OJBFXlhAM9zNVtt06ErRg+FsPTr4vLJ0dRXd
IktM7lpHbz+4HpBnQHMrqyjMDXSPbv/a5ib6L5eKK9c=
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{0, 10}, {0., 9.999999795918367}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.674239379333664*^9, 3.6742394407885933`*^9,
3.674239476044859*^9}],
Cell[BoxData[
GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJy8vQd4VcXzN56EJCQBktyae1NviiAdKaF7FwQlVAmgIEgTpUhRQKQTRKlK
E5AmSBEECSglooIEkC69iaFXpSdASAjlvd+cfHbvzMn94u///71vnjzPeeae
LTOzszOzs7N7Yrv2S37Xx8vLKyTcy+s/T/73U5+MtD4ZV50UzpZw0vQE17+3
oO/9JfxCfoHigpY3SFj7M7P6Vgn3/Q+YZmftRUr49H9e94lh7cdKOCH/hzjW
XwKDFZ2FP7MlDHrpe38Jg15a3iAoH82svlXCoJe2Fylh0Evbj5Uw6KX9JQhP
41g4nepJ6c1m9GYzerMZvdmM3mxGbzajN5vRm83ozWb0ZjN6sxm9ejktfBwV
nfwJegGDXlrOIGHQS+tbJQx6aXuREga9tP1YCYNe2l8Cg9U8LFxO1ThyOvmT
jq+/pJfOczOrZ5UwHV9/QcfXX9Dx9Zf0Aqbj6y/p9aRnCp+HSk75OHI6+RP0
Uj1mZvWtEga9tJ1ICYNe2n6shEEv7S9BeNKjhesZNQ+5nPJx5HTyJ5VnA5Nn