-
Notifications
You must be signed in to change notification settings - Fork 0
/
Examples.nb
7630 lines (7529 loc) · 427 KB
/
Examples.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 8.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 437458, 7621]
NotebookOptionsPosition[ 433063, 7490]
NotebookOutlinePosition[ 434154, 7522]
CellTagsIndexPosition[ 433924, 7515]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell["Note: requires CRNSimulator.m to be loaded.", "Text",
CellChangeTimes->{{3.521032815786957*^9, 3.521032822918911*^9}}],
Cell["See basic documentation for the key functions:", "Text",
CellChangeTimes->{{3.656291888224341*^9, 3.656291897098534*^9}, {
3.665621499107088*^9, 3.665621507327568*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"?", "SimulateRxnsys"}]], "Input",
CellChangeTimes->{{3.665621087307007*^9, 3.665621094031432*^9}}],
Cell[BoxData[
StyleBox["\<\"SimulateRxnsys[rxnsys,endtime] simulates the reaction system \
rxnsys for time 0 to endtime. In rxnsys, initial concentrations are specified \
by conc statements. If no initial condition is set for a species, its initial \
concentration is set to 0. Rxnsys can include term[] statements (eg. term[x, \
-2 x[t]]) which are additively combined together with term[]s derived from \
rxn[] statements. Rxnsys can also include ODEs directly for some species (Eg \
x'[t]==...) that are passed on to NDSolve without modification.\\nAny options \
specified (eg WorkingPrecision->30) are passed to NDSolve.\"\>",
"MSG"]], "Print", "PrintUsage",
CellChangeTimes->{3.665623548791313*^9},
CellTags->"Info-c53a0585-9331-41fd-a5bf-e9baef649dbe"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"?", "RxnsysToOdesys"}]], "Input",
CellChangeTimes->{{3.665621532095591*^9, 3.66562153489965*^9}}],
Cell[BoxData[
StyleBox["\<\"RxnsysToOdesys[rxnsys,t] returns the ODEs corresponding to \
reaction system rxnsys, with initial conditions. If no initial condition is \
set for a species, its initial concentration is set to 0. The time variable \
is given as the second argument; if omitted it is set to Global`t.\"\>",
"MSG"]], "Print", "PrintUsage",
CellChangeTimes->{3.6656235490728283`*^9},
CellTags->"Info-48f1dae4-c3c0-4ae4-969b-bad5886db60f"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"?", "SpeciesInRxnsys"}]], "Input"],
Cell[BoxData[
StyleBox["\<\"SpeciesInRxnsys[rxnsys] returns the species in reaction system \
rxnsys. SpeciesInRxnsys[rxnsys,pttrn] returns the species in reaction system \
rxnsys matching Mathematica pattern pttrn (eg x[1,_]).\"\>", "MSG"]], "Print",\
"PrintUsage",
CellChangeTimes->{3.665623549181398*^9},
CellTags->"Info-884ad53b-0653-463f-b05a-cbeb768e1d34"]
}, Open ]],
Cell[CellGroupData[{
Cell["Predator-Prey", "Subsection",
CellChangeTimes->{{3.506895078210659*^9, 3.506895081203388*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"rsys", "=",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"rxn", "[",
RowBox[{
RowBox[{"x1", "+", "x2"}], ",",
RowBox[{"2", "x2"}], ",", "1.5"}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"rxn", "[",
RowBox[{"x1", ",",
RowBox[{"2", "x1"}], ",", "1"}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"rxn", "[",
RowBox[{"x2", ",", "1", ",", "1"}], "]"}], ",", "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"conc", "[",
RowBox[{"x1", ",", "2"}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"conc", "[",
RowBox[{"x2", ",", "1"}], "]"}]}], "\[IndentingNewLine]", "}"}]}],
";"}]], "Input",
CellChangeTimes->{{3.4687025505360613`*^9, 3.468702614243576*^9}, {
3.468702684046033*^9, 3.468702797275187*^9}, {3.4687029541813297`*^9,
3.46870296099183*^9}, {3.469219349717853*^9, 3.4692193497885027`*^9}, {
3.46921938334344*^9, 3.469219394567686*^9}, {3.469227269508279*^9,
3.469227271243472*^9}, {3.471011641403061*^9, 3.47101164496911*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"tmax", "=", "45"}], ";"}]], "Input",
CellChangeTimes->{{3.468702590790525*^9, 3.46870259330956*^9}, {
3.469219715993766*^9, 3.4692197162713614`*^9}, {3.469223306116238*^9,
3.469223306180459*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"sol", "=",
RowBox[{"SimulateRxnsys", "[",
RowBox[{"rsys", ",", "tmax"}], "]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.468702595192546*^9, 3.468702633689616*^9},
3.470085615769067*^9}],
Cell[BoxData[
RowBox[{
RowBox[{"plotter", "=",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"x1", "[", "t", "]"}], ",",
RowBox[{"x2", "[", "t", "]"}]}], "}"}], "/.", "sol"}]}], ";"}]], "Input",\
CellChangeTimes->{{3.46826276617019*^9, 3.468262777359262*^9}, {
3.468262836992633*^9, 3.468262958884576*^9}, {3.468263018256619*^9,
3.468263075130353*^9}, {3.468263285918445*^9, 3.468263381543727*^9}, {
3.468263413380739*^9, 3.468263429243466*^9}, {3.468365679383275*^9,
3.468365778320983*^9}, {3.4683668032722387`*^9, 3.468366847508575*^9}, {
3.46836804449853*^9, 3.468368052412436*^9}, {3.4683705728813553`*^9,
3.46837057352957*^9}, {3.468435768604846*^9, 3.468435774568234*^9}, {
3.468702655162812*^9, 3.468702655310307*^9}, {3.506895021805895*^9,
3.506895031204191*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{"plotter", ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "tmax"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "All"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{", "Red", "}"}], ",",
RowBox[{"{", "Green", "}"}], ",",
RowBox[{"{", "Blue", "}"}]}], "}"}]}]}], "]"}]], "Input",
CellChangeTimes->{
3.4682630393343*^9, {3.46826314956773*^9, 3.4682632247667227`*^9},
3.4682633965844316`*^9, 3.468365788765299*^9, 3.468368200449752*^9, {
3.4683705819263353`*^9, 3.4683705828664303`*^9}, {3.468370815007806*^9,
3.4683708177190523`*^9}, {3.468702659743595*^9, 3.4687026735143642`*^9}, {
3.468703124142672*^9, 3.468703126418498*^9}, {3.50689505627216*^9,
3.506895056701329*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[1, 0, 0], AbsoluteThickness[1.6], Opacity[1.],
LineBox[CompressedData["
1:eJwUWHc81e8Xv4SUXcjee6/LNc8hJMooIUollSZKKiOjIspqCEmpr5IGIeRe
e8ves2RmZJfN7/7++rzer/M855znnPM5z3k/oi7uh87QEggEYCAQ/v/1bFCS
zm36bPDqv1s7tra2YHFkv5iL8UNgPTcTe6hiC2Kf9QZKGCdC+s9ArlMhW3DO
QyKD3vgjXLK7861tbROcfm1lBaR9gWlQaDuSsQnB4X+i1tW+wtSjtZaak5vQ
1Fe9799eCsQ6O72Z+LoBS/dyxK/VFYHzePy3JscNiNrTsnUjrQTovzPsFFhf
h5ziot5FtQrQisjf76uxDnS7nz+e3lsHw8t3zbSDViFuLIZGkbEBntJplTCx
roI85b77xbpGWLRuP1UUtwLv1ciSXmnNQH+D7n1G6jI09abSzKm1w9nTqEL6
9g+ElO5+m9jbBzkX0/J+Nc6DW1zA7A6pfvCIEXduOTIPmbS+0rKMPyCiN5mL
tX8OTDo9n56r+wmxItb/tmZmQbM4nXQ17RdwjCmoZtlNg9N1xbYg/kEI+zjw
LuT2HwiU++Ae83AQ3qGxGCVtCmqfvH2bcWUIXg6KHalin4Tj519wzqiNgHKi
/5XHXL8hWIg/Y/PNCBQe8mHpdBmDt61xFqxco3Cn+VLDQvYozOo/CVZcGoXy
50KEt+dGgGuBQ0jfbQwu3/WRl68eBp3UqG8HusfgxoIxy3nFYbi768HsRfJv
YJ4WnW+mH4L3VYwPfRXGQepnZGf3zUFo8AuRfvBiHLiEn9Dazv4CnrEg57SA
CaCd8PMxmxqAD+Sbdb/3ToHdOeGb0vI/4Lbt8XWfwin4uVlec9awH6z/GCqw
aP+BuPqwH/tO9sE/IaaHqkrToCLoWforpweqc2fIZanTcMVSXZJzuhueW7dN
HhGfgZiap4Q+hW4QKWmQ1GeeBejXJkgVd0I4S4l+yP5Z+BK186k0ZycsHM06
0hgyCwfk7nIXXumAyvln907RzIHD9yyGHM12uChxauTevzmw/vkg6g5TK7R5
HN5oUJ+HcWlW3eaIFjAoMOHi8ZyHqke3k/5xtgC7nZxJ2uQ8DNzNrt+u2gw+
rwWOL8gsQFqooUpcRRMMTbNe1zu7ALvT4j+ZOTdBTujCfw0DC9D+M6qhSrMR
hNtGKHuEFuGpSYoWIaAB7ot0tZ10WgSylqCPXkM9OH2j0C20L4LVs9La1MA6
IEzec93z/S/kbYR0ySjVwnmtm34nGf+BkWOQh+W7Gmi5c+HJe5N/sJDd7R8q
WQMpAlblusX/gMVk7exFlWpgPW/Yd3fjHxR9HVbMoVTBza/qi/U6S3Dx7guV
IwerwNySR+Lk1yUoLqSEjvpUQnbCTr3380ugFacqcX9PJQiOrR+eV14G6aYB
r/7cCpgN+HXnbtoyUE6KsO7eVgFPv6QNpb5cgbLuiO2CxWWwuZG4Nte3Aq+j
+Hoo3mXgZh61W5dvFaLNHkXwqJSBztC1vfVPVuHRDan2pLRS+E/5rBN3yypw
vrJ3TLhYCix+DtdOsK0Bv4qk/4JSKQxw6r+ZC1uD/EPmlW6UEth/SpmsU7UG
poGLs8dDSiDzk2jrHbp14CgR9Th1qATumTJs4w5Yh/2+n8ItZotB7maji47X
BojTFNvOGBaDSJ5G7bVPG1DC/A0FBYuBazle9dPoBkyEHnjgsFAEhJuuBJGj
m+Aa2D5y/3IR/M2tOXf00SaUGG5uXFcqgoklpcZH3zdhkaf3bddcIbTfWHlB
b7AFFeTTaXkBhVCb60wPN7ZAlGP8NLd5IRQvlV26mbEFl/g/P0vlpq7XrXpx
nYOA4zg6pJRTQO0nt2x2KREw7+gCL2NYAdT6KtCnmxOQw6U94MfxAigmx1z6
fYeA9qFHdKxZCiDfyVjk3isCbmjb5bSNUeDr2r9W0QICNg2PXJYup0Ca7jFd
p38EfLE4G84cTIGUXtaZpV00iAUnwx+cpsAr35LXT5RpcEfP8ekMUwo8JUvt
bHCjQUn266drOSgQ7dRdcOEeDcpmvqP9vEKG8LUHnttf0+DBvFpT7iEy3Htu
IPlfIQ2+CrtgtlZPhkDduS7spUG6R287juSTwaf3zcP+JRrcdG3WEU4lw3Vf
O/ThpMVXqeeLrZ+RwYN/xyK3Ki2Gp7EUDIWS4QKZ/C7rIC3yjqULtNwiwxmn
K07WF2iRSztCn/syGU6uibD9CaHFkbqPgWmnyOD4vLU07A0tHm2ZPBhmT4Yj
uiHeUsW0+Ox55f1PlmSw7iXJlfXRYjuXS8CufWQw953sP7FCi0WRh+5kIRlM
+JNi1rm2oURf9sQDXTIg2dokXm0bHt+l7vlMiww6TttWiFbb8GJyL7FFgwzE
ta8fWy5uQ/lv7U4kdTKoPHc76X5/G97j0d5RqUYGOV1+TuaUbWj6yDv3BlUu
2VtflVqyDRs1HuqZE8kg4hvoa/JjG97crX9Nh0QGPn515cHVbdiZJEUy0SMD
F3lk8PYeOhw+YPjxnCEZ2J3iYvk16JD5XqbpS6r/O9fMzfOs6bDw+u6749Tz
0T/f2LC9TIeBFo6/9lLPT9DN+DIXRofdPd4sH0+SYbXH5UzkWzpM8GziFLlI
hr8+XLzyZXR40z6LJcmbDBP5PoGu63Roqj5LzIgmw4ijogYNLz3KBXWs4Esy
DKz+HHtBpMfimN007Z/J0K5jYtV5hR4TvKJu0DSToalnidbrAT1uPki2fEat
h1qftBz2VHpci02JlF8iQ3E+m5D5L3r8dWRu0kKUAqQnpuL2G/T4mN64yEWL
AhmX/WVceRnQesyJ9aIlBV6KTKrdtmFA7RHic8sACnCvipIeXGZA3vxTgrLx
FIhsddCPC2PALsdjbxayKHA7pHJfZgkDFhcZHnKYosC/ExsHivoZ8MeHx3fn
dxTAFW2NQ3UrDPhfOmuKn0wBOE8lHxtV3Y60lA6JU24FoH/I35Pv9Xb02n5z
xWuhALLls72lC7djlVtTRSxPISjQT/pq9GxH3cK8qg8GhSCQ5xBiuYsR7/KT
9TMjCmFdUON5cDAjsv140G6mVQReSxdeRSUxomnnidf8rkUw1ZSckpjPiG8Z
J+nHY4qg9w5bRs48IyaQjbduzhZB/vhE+YTLDuRq1GarPVYMamWitUu3d6D3
vige1RvFkJbo0Ej3fAfefZprwP+oGOKtKruFWncgs03OJb+aYmr/Tp4+tHcn
nlDTOfzAoARmI7sWTpzYiSb8+5IkjpeAmxvbyiXfnXiDbzHNzK8EHPj9t4Vm
7cTp0MdORGr/1Apy4CGLM+EdNlatYqNS+OwYJVgNTLhv2n6z4UwpSGlUirU7
MWEm641Zz7BS4B5TV5x5zIShzZqXbrWUwr8DbEbidMwYux73LvtiGWTzVF58
MMyM7cmH/KQp5bDnAzf3Ci0LGgY1HV6fKgcf/XPFZ0VZ0EpUcFeiUAUYujBy
GTmz4K6gvHMmdyug4YN54XInC7I89yAEH60EVYPnbmf/sWDwoYj2mehKeNI0
uauNkxU9P5XV6NZUgtPfh+fSbVjxxrTTm5t6VfDboJH97HdWPJ05f7hJsRos
moXJreOsmLN8t//WpWr4fNrjjCEjG175RBe852M1XL/PkS9gwoY6h0OXdZRq
gLbl8OnWQjZ8uCd48bpBLUSqTTmKHGXHC3UKfQ9j6qDYl1PF3o0d7dntqmYH
6mCuXI8+8gY71jFunPZXrQdb+4j0tafseCrbkCLcUQ/8fkp0nS3s6N687/i8
YiOkVnh8ijjAgUeub068Z2mGHtb44HInDhz2c1uIgGZgciixX7vAgX0fuRWl
rzbDlQkO2vNhHFhe4xUW3N0MRLYsO+NKDszNHNsr9KUFSh3+bq3CLiQ0J7dy
hLRBh/Pqb0XLXUjkGxLUK26DSdet5pPHduFwUIKw9FobcHru+K/y5i4ckSCG
mF1rh3NhgmaPvuzC8vzEsJVLHcCcbxItK74b/fXpfyjc7wKRYvNbx1R345pW
aU1AYxcQK61comA3tt/+4JG/pxucW45q/HXajQxPJ0bm0rrhy8TlruInu9E2
e/xsTl8P2PHHijgwcOL3gd/ftnv0wwXR5zsecHIi03WRq5JV/RAg/Wq+QIwT
reKsAh2Ef0Cqelq5OHDih2206Ttbf8CaRaHbzA1OdN+aKFwTH4BXfqMZIeOc
qGb3+tXxr78gO3gy/tsSJ141bYi0nfgFNfdng6fouZBPO6l1RngQ5p+s2h4S
o2L5NHa+iEEw+cS6IujEhRyeJwiX3Ydgol/T8GsdF4ZpG9x4cGQEvIqr/Xj6
uDAkKk1uJWEEtl475vlOcuEfmz0KZr9GgNPttrLRTm5UTVr69shjFPTnKwQb
93FjfhRIcSeMQTTDkdXfpdy4ZdxX9YFvAvjGR4kHWrgxW8FvSM59Av77ftMz
/Rc3WhDWpz+UT8C36MTf1wl70MtzU5x8dRIG+YY7aA32oECPk5Vu7xQQla9l
CXzbgz8MLmas/ZiBYg76mYDqPcjM6aYsKTYL5ouxckOde1B7a0TH/sgsOH/L
T37/bw9GJ1keP1YwC/f30kZravBglW37v/HHc9BjH3PJOp0HDUbdKwodFyAw
MF3ybgovjvRb/3fUZAlqAraFv8zmxbCzJhfFQpZgV4D9dH4ZL3bvDu9UrVqC
//y3cuZ+8eILQpIwk/kyVPtYmZ0Q4sPUt7nhUzYrwHZ95oLOMz6853XwyJLL
Gjh47W088pYPT0aa5V34bw1eXXum7vmVD4OfFlhGjKyB2lVYf9fKhw98M31S
zq6DnXtUBBc7PzIpTpw45rIBL68MzakI8+OvhGDasJcb8Puylt0BJX40aRoX
6O3dAJ9LP4XuHOBHmoR/zQk2m5B0Xjlj9j4/mgetf96mvAVjbnc4meP4caJC
+na/yxaouHXelH7Hj2UM9hb8T7eg9GyAoXMFP34JV2ywXtwCprOtKbfa+PFM
cfWLEHYC2p6R3vl0iB93y0297JUk4MjpxpbvNAL4Y0JVR+4gAZVOi2uNsQug
UZvarm0nCOjtcuM5rYgAar50NIxxJ2DRqe9bgsoC6FXG8rbsNgEZTwm7ahsI
YPZA99T9hwS0OXmt2vagALoPXXraGEfAhBNVCh7HBHDgth99yBsCDjnzxzy4
KIAuXM6xCR8JqODs/vetjwD29Nenr2UR8PrxsqOlYQLIZfWy9tk3AhYe21PY
HyeA4g0lKcepc+D2YxfFVt4JUO9bJnW9IgJaOxWFcOYKIKb8+S1GxfGOuyeV
KwXwt/exZzTU9YNHz1lZtAvgH/m6vuo8AsofJWedHRbAInexvvOZBPRyYOMJ
XhDAsfiRjo73BCywP+33glYQx7Ldy2hfEpDBPncgj4OKna7sHIwhoJUdk0mb
iCAedB/bOB9MwLgjJ97PKAvidcWOnBgPAv6yzWJhAkH8jZZXbI4RUM52+1Up
S0F8sTRw/Y0JAa8eduowPC6I7o691+8oEJB8KF3n+CVBdDvXeXOGmp9R1oFM
Lx9BbFQ0md8c34Jd39nlH94XxJ/fxxr6Pm3Bhb1X+cn/CWKSpN/FaZktiN16
/bglUxAFvofEaQ9sQim5lWmiWBBbAutnPB5vAp8GcZ2nXxD3TvaOr/7ZANPZ
M14qk4JoX23dEvR0A65+jJ3atyKIfxsf/z6mvQG1Est93lxC+HnZTvWV9zr4
cJEL2g4K4bvg1+f/fl+Ft82TxCknIbQW4f+d7LgKLRECn7ddEMJkVfefLGMr
IMdwO0ktRIjqf+xlutVl6P6HAdGFQuh507qkgXUJSF2VeEBZGD1EckmVUgvg
+mQp77S+MLant43jx3mItpZR9bUQxvXnslZjavPwuzpMNO2cMLKtavI7GM9B
3LcDtIyvhFHHfXsu29I0lF/39xH+LIwCl4uuuAlMw6zq53lNijDSd8QX0Zr+
AbM0tqEzXcI4fGrnVPDbSfA7OP7rFKMIClel6+9/+RsefaBJuswmgiaUL0sX
x8cgdQef4y1uEVTVF4FTpDFoqzBviZYQwa/rqnH5wyMwIX46MlFeBPV2n9ra
ZTQChGBf81Q16nortTKp/4ZBweBjaRGK4JGTcvfMvYfAKLH89vd9IjifoBer
MzoIDqt9Op2WImiUW2Xz1nEQ7uawZE0fE0GdXa93J1n/gl4l9zeCt0TQJXKh
dE//D1BYq79fEiiCVzfWGDz/9INflcKVM/dFMPQK/asYhn4QOjlB+vRMBEVz
mTiEDvWCu8J+IZuXIrh4h4tId7cHipffbfv7VgRlm2b43hV0g0vMmQa9HBFU
V10wEdjXBVnHy7MGCkRQssTty+XYTqCTE4+/WyGCMlrj/bemOiCldOB0XZsI
pukvMTZ8aIffC04rTgsiePSxRxzBsxW0i/N/bK2KoEc7hztlpgXCH/KWv6EV
RbpK/gn3ay2gINkZOckhitWdkpKr95vBf47oFcUriq/lOhKv8TVDQ8GTo+qi
ovjk08IR2YwmcLc7JOGrIopWNQylRo2NUCz2ZYcwSRRV5LiPSe5qBPYZtplS
EMX2D4ciDY41QGZo/bedVqKoKP/2zSxdPfzLM7NKuCyKZlEHlRiSa2HfvXca
BtdF0S6P8Y86dy3E2TDwDfqJor5ZgGlCdA1oT5QNyz4URfHJjSR8Ug3hOWK1
9Y9F0d23ao8QdXLsCQ5K93wuioYvz6m5p1WBHz/4fEsTxRfSZ35TmiuhfuzF
ieOZoqil4LDz3MVKEMpeN6bJF8WzGecLfzBWQvGBfLb9NaKoV+LglmJZAdtu
E1O6xqj7iXElv2jKwdb8SbjfjCjOEXnUjHLK4D/uBXeRJVEUO02n7Xm5DEzT
M3TcGMQw89qhpdahUnjmyybCzCqGHqNVJp2vS+H3viv0GVxiaL1W5LfPtRTC
B+SbliTE8OeB4nze6RLo/Rj+9bmCGN6oD/I7lFMCCrfGE0BDDF88lV5/G1gC
9RzvzoTuFcM/XyL4HPlLgH2v2Bq3ixiy30q35DtXDC2X3SdI58VQ8omgBq1h
MTyJo3Q7eogh6UTm7sMCxcA7bZeXdFsMxYgHudk+F0Efz3/viu+JIbOzb/nn
S0WQtHcudvChGJ5CF4NmxSIQi39wXeq5GI79NWJyzC2E4bIuV7PXYviJ5Hzo
ZUAhvJuWtL3wXgwZPF+FSphT+YpxsdrnXDEMWI/nzhopgOkrLGJNhWJo5laX
/yqnADLiHTnmK8TQ52vL3adhBUCcWZwhtonh77qAZyeJBbDMa/TTvlcMVc+8
8xZmLYB846iGW4NiqLhrVerrbwoYJMh+KpgVw+ilF0B6QwFChXfizyUxdDfL
ecNxhwJlM2UPaLbEUMkmPS/OlQJmJs4XTFjEMX3H5ESYAgV2enw4eo5THIuc
5GoGd1GgLmHZLIxfHDNse90qV8kQWWFC+iAmjsSSgkKFYTLYzD6SrpcVx9FL
5r9ZGsnAyT/APaMijsoZWr9dyGToMFFk4CCJo0ESM7vkezLEefj8VQNxFCyx
/XIw7v/vA1XDtqZU/QHPxDvuk0GgkrPN+6A43rny34E8HzL8nD1VFmcrjlpi
KsnTl8nwmj89M99JHFUf0CRecyGDq+l6cp+LOHX+6Mk1dCCDlOf+mM3z4ng9
IyvxsBUZfj+PDRTxFMfxzonU/6j8PK1yyN3opjhyOYWfU6Hy98tzKidcA8Sx
/k7i6XldMqgI3LYMCRHHghfyMqNaZJg3/a6fGiGOO16WemwnkiHbk0ex9ok4
xn9lTjqkTgbvxDMCU8/FkZe1R61cjQykqkwm1jfiqNG++sWBKl+b21pVThPH
WC1IYqbuLxQ4OGHzRRxrN/IS+6j6A/cldF/Lo5439frPCqp9o6tj1U+LxNEO
NsgVSAa6Fxp5uZXi2L3aFtptSobKqqB33fXi+Hp3cNzmQTKEzTfErrWJo65d
pZOaHRkOCAqECPaJ43bhl7lXT5CB1ez8dRgSxxMNSTkF58nQdDXH9dSEOIou
2p7muE6GRy+22d6ZE0dZEZvqi0FksK223puyLI6kYkOa75Fk2LPwQq1qSxw3
uV2jFV+QIdGMxMHEKoFvf2lbL1HI4HztHkGRSwKthm40OTWQQSSpZcZSQAL9
47dsCgfIkLJwqeGRnARGPxb6dIuRApUK/C3RqhK4MRZFf1qQAr/P1LRHkiRw
+8BX1FengEKXZH+4qQQevyn9teQUBSw52gbuH5TARvpLMhd9KOBuHjwcYiuB
/JKen7c9oUAm5cdksIsEKihupxBqKdD29+FM4HmqfzqeA66jFPirpLtw20MC
yYMet3O3FQAp+dmqz20JjDl/IkrGsACK7lnvuJZA9adTyACqCmCgcJPZM1kC
ZZrsOgQmC4B2+SO7e6oE9l3Ld5hkKwTTCzt4LuZIIOldhdvxY4VQZ1kqdbpF
Am3Wh6Y+EYpgOtRD7lQ39Twpb/xkFIqArURI6cSABBact3mb4FAEh9R9iU7T
ElhTeKblQnYRdO/RMD68UxIrWQwZZ3WLYdV6cJ8NhyRmVRwWSDpSDALh0RZW
PJKovvfx+Xr3Yji5PnXIQkoSA2L9NLJSimF0IOXUXiNJrH3dYZi9pwQY+WzP
GO6XxKQ6nv67xBKQPUx7HqwlUVHZZLP/cAlcqnD20HWWxHC2IAWlRyWw8H5P
gLqPJGpEJme7cpUC51BFsGqQJHU+XJSK0yoFTQGvEOX7kqjwjUn9uGMp+EQ2
RcjHSuKcUYRRcnIpEK6FJYpnUvVzigcTtcqARW/t2+4JSTR4tf9sXUA5XBia
GX0/J4mRcRsBd9LLoTJ8eDeuSGLiwW3faQbK4XZ3/eVLjFLo3vD6/bG9FTDr
/Uq0QkoKL6WF0NTuroQDQk8tnZSksGHlXeDK/kp4XxHmO0eUQoeH38togyrB
hfNau6AJFU/2nPk4VwltX0zCvE9LYWDLy/n/+qtA5ahODvNFKUwfiC2Z4KuG
CILy0OurUljMURssfLQaTK149BuDpPB37ejYya5qyJuamJV+JYXe2Qf+PRus
gUTpaIfuPinkkeeffiRTB8sNd++5D0uh1cHpdS3vOjjifSuTfkoKDyjyH9wq
rwPWChdmtTUpKh9UK6c9Ww+BLsTicF5pZCJz5uzNaQDXFz3SenbSGJ9VsBxT
0wTFxo22LcelMVNy7sSx1SYQnCoLcjsjjXx72GY75ZuhQ+dT7xMvaZTZuuI3
Gd0MZl0BUX8eSWPwZJdC2WnqPLJbcimpURp7fFwtDym1wSoPo1JWhzT2k8tp
lc+1QbXQpGtVvzTa9aROVr1qA1e5Ly0zk9J48/zIKS3udkg01P+MjDJIM/KQ
/cDODmD2OHJmEGXwq5ThfjveLui5Tkr8t08GMwc+RDKf6IJUX/7WnVYyuPuG
vVhKShcYh/5C9eMyeJSd+2oosRv8ki4L3L0lg8aznAXHTvbAVN29VslMGVzH
Y0MZw32Q3+K2U+ebDLIRNeNatPvhfpeFoWWxDBZrsO7bFt0PEsMc6d4NMpgz
9+bSC/gBx9ZehFdNyKC5h8dTxo8/oU42x/C8uCya7HpxSc/5FyQox9/0l5NF
d5t3uRsxv8CN6JceoyqLk8xvkk9U/gI6QyPBfJDFYVexDSbVQdBzaFjeeUwW
5SNk/ImsQ/AhZDT94xNZfLbJ9sZ4fBiyV9nYjybK4qP9F3aIK44A5Yq2B/1/
shgUMbb7h+cINNg9VHHOksX8L+618xsjMC+l9oWtRRaPuUeltIiMUfu/f+ZV
Njk8Kq9Vs/fxOBjqvtslvEcOC2TfaEyMjIN5etPV70JyqD1XahipPQHHnomr
SyjJ4cNLN+w6hiYg4FxNVvsBOVzPeHrvmfEUVG7n+koKl8M197ItBdIMNPoa
cI3EyOF/ESvDbs9noGvm3PWYeDlcXNBRytuagYnOfOJEqhwGnHzsUXNmFlhS
T+Y8r5LDMYu/rkKkObA1+5i7SSePTvdlH4X8m4df9/fmlwfIo4Qw6atRyz8w
Z2pQOhgqj+W1rmC7awkyIxzetEfKo9Dato7sQ0sQ/Ojyw9EX8tjw7KaoZdsS
iCU+c2akyGPHtQ+PoGcZTqdP0h5Ylsd7j/xXr02sQp2q9422LXns21l8SU5h
DTSyCVPHtitgEpEs/P7yGtB942q/zK2AyhEpx2pn1uC/UngXpaGApw79fEKY
WQdmk1p+Hj0F/PKQLsZFcQO8qmyjX+1VQMEa91i2ixtgXHf+1pdDCsiwkKW2
MbQBI+2PLVo9FFBKSam5vWYTLB2Eip1uKqBYYkW4CWELcnpSNYYDFKjzq9SP
g8QtCPlZIPg3UgErrRKFChO2YPqU2SP/WAWceTD6eLp2C+yGWxgYkhTQZ5dG
ntnKFkiNj81wf6LaE5OYIcgQMPLiVdeX2QooU3HzIIceAf/9We+SpiggfaH5
yWVLAjp7hB7MKFNA5/JXGSknCVg5z1FK+q6AIueF7zF6ElDpeqJmSYsCXlYa
6mELJGDsktSH/T0K2O74xy8tgoCbt74It/xSQL/1+yxV8QQ8t677xHFcAR/s
oOO0/Y+ATbcrGYdmFZAlQJYdPxGQRGPjf3FZAQe+BkTcyibgqzu9cwtbCviH
RU5p5hsBGRnOnvXbrogrlPiuqAICetyf7aFjU8RbkSrvzYsI2LXT1yqCWxGj
LJiQjYoxgr6cS0gRFy56xdVTCJjKFk1KklTEIrZIP+88ArI/4vskpaiIOcYl
pLUvBLzJmSKarqFIvV989CzfE3AgVjlWS08RhV4MvXZJIqAZb/7O4r2K+CLY
l04xhoAZz40DzCwU0dA8rOl1EAF5hBoXmg4pYuRNIRuyOwEDXx11O+qoiLUK
3C1XnAg4Ljbc9+uUItYM23fkGhOwdNtxp99uivgjhfaOvSIBE4fbu6fdFXGI
L4S+azcBvSssHf56K+LVPQ7RnrNbYP22qmPNXxEfp+n/+pe9BXKheIT2niLu
NXW6YHJ9C7a5fWtlfKiICvutFs6qUutF9kMTVwL1/KJONkdfbEL0TgkrgWRF
zPL/W2R5cBPOTybWi6UqYnXWqYwTKxsg8CmyVjlHEQOcFIRNTDfgjsrV8v0t
iuhp9NJiJmcNjnFMGll3U/0Z0fe7ZbEGmvOnS+wGFDH3YMs72/5VmMg6Unh6
WhEZRM56NaysgLWWdp7/TiWUj776pI9/GQQNCB+/GCmh3NTCXk6tRfgndEsu
b78SNm5vSFnMX4CmrbnUQmsldJ01ykyEBbhbMpTy3VkJ04aePF21mIcJ46qX
Iz5KKDnsEWlzfRbKJVFoKkgJBcatS0a3zcILhm+J8/eVMFpS+ECTzAxYV6fF
b8UqYSiHQSTPjT+QaxH5mDdLCc8sXt0MM5uAaIXtu0TylXCq5b6oz/1xuMAS
GC1VooQcRcsn5ep/g1CjZ4R6oxLu6+F9NuQ6BsvpE0w6HUr4mf8G/2zuKDRH
nw7HfiVMmqpoLWMbhbuHjoQenFRCkaNZZm/qh8FZvYHedl4JD1w4nR2vPgxa
nPvuOq4ooWYyoUchaQgm2klB57Yr46r3+LXRwEGwOSrgGySujH6+Yde8fQbg
bGqvmIi8MpaZ6g48mf8JPksJtYVqysjD8XtX8MoPeP2Ul2/dUBkTHyfpyIr1
Q85wV0nCfmWM77gTeGJvH3xXjzuvbaOMEU70D9su9cJiM/c375PKyCn6Tvtq
Zzcwinac5HJTxrFum/t7eLpBkHpNZbsrYwKj1I2/1PvSlJXTYe62Mq7weqUf
p+uEOHOOpYsvlHHH9F4mYnwbfIxvStqZoowh/3nwTDO3QcnvKNP3H5VR8V2K
+faQVpgIYY0dJSujmclfxbDQFthsr9e/V0aVJ/qfiWRrgd2SESPi35Ux+c2O
aPnEZtArYyKe6lFGDgO1fbdKm8B61/e+rV9U/TJaWS1OTXDmVPjdpHFlDDry
JUpxvhEitxjbepeV0cDq42KwfwPMCt7R/sCkgjrz3J/sR76DT4VLhA+bCmbT
xlanW34HustGv/bvVkELCSea7IJa4KXQhP3mU0GGcrrjPz/UwH+nf/XlCqkg
etOUJMjVgBJTiUqomAq2XV78J/+5GowcA7sk5VQwM7QsnK2sCupoTir8VVTB
K4ELk9ttq8DuPQSWq6rgsX97/UXGK+Hi8qb0aW0VlDtynrhbuBKexPrfeGWm
gopuRWVLX8tByOD4d/cDKhhbrrv463Q5pI7oCYO1Cn67uL+ljbMcCjTWK/vt
VTBS0rX+TEAZmPX18n1yUkFf5pKZelIZtNwhX/E7oYK1gwFxbYulMNriw81/
TgVfkOWOOnuVgoeP44WJCyoo0RJfmk2dh1dFdQq/XVHB3nxbMeuNEmDzXDnj
4K2C1zyOZNJHlQCJ7ebXp/dU8PYNb8mrtcWwNmLJKhGmgtFGVlXtr4qhkCJ5
LvMhNV5VM/yUm8VgfKGVp/GxCkoZissOKRTDdsM0z+PPVLDGQmqJZUcx1O4J
qp1MUMEfQs9eitQXgXWFkh/jaxUcDxRZ+m1eBLsT6dtjU6j4n1RNCEsRdFzt
U5R8r4K/bhRUhrUUwjGR8J+GGSr4vmhfqf/pQhBeOklqylJB2R2sbpbKhTBY
rxXjnKuCN9JKD5tsFICb74iRbyHV3mchNfeXBSB/iPJ8Ryk1/9WhTSHXCmBa
5vHiswoVdGzMJ0XtLwCvDnybXaeCIwOeQcZrFND6tGfLqIka70sRPj0dFFi9
M23f3KqCG3dch9WzKRComrhjukcFH3yd0t3pRYG9jNdc/H6ooKSFA6OXHQUY
fu4n7xxUQTP+iDkfHQrUfBXhjB9Rwc+lwQHcIhR4+HDpkvS4CqZX3ckz2E4B
q9MNFV+nqOfr//RmcoYMu3RShIxnVXBJ7I45Vw8Z4sYONZ1cUkGh448rSzLJ
4FQoKzuzqoKN0/KWWslkEHpKCPbfVEHQS1ZjjSHDr4udPUy0qviborUJwWT4
z+izegK9KrbquG5VepHhHO+9hzI7VPFmWVrBCzcyyM06jeQwq+I/6fDiwuNk
+FOpZmDCrop++7Y/lrAlQ8aLHc9ad6siN3OZZq0FGa55Dcyc2qOKUo8Pan8w
JoOmRa7ZLJ8qflolqJQZkGFFNDL5tpAqpp3UymDRIQNl2XWVWUwVX9o+Pxyi
SYaARt3DzyVVsf6TlZSsBhmM3u76KCurijK67z/Nq5GB3n+cLk9BFbeMHnv9
pOLqw8XHTVVU8QXTCv2UOhkeyD3LaVNXRbr/xqY5qfosaa6wndZSRQU37t32
2mTg6DJ2m9NRxQy9ucp0fTK0feYvCTBQRQk57bMCe8nw7N48L6uRKgprpx9I
2E8Gx2M1VxNNVHHb5vZOKRsyCKq/+i63XxXd2zXeFB0lw8COGxLfDqjiLt99
uS6nyfBm4KD/PmtV1D/vIcZ6hQxncyU62g+roiHfwELRLTLIRq4pudpT/Tsq
pusdQoYp15bQeUdVLGryISk/IUO67vuBQGdVnOScfzD+mgxXdwVqs7moYopL
+MAban6XihQn5c+rYl0waO9uJ0NX/TsHhsuq6C8vI3pqnAx5vaKVAx6qGJPZ
T9exSYabS1zJT2+qYtbTg19UFCngQB/N6uGniiK7Aq5zmlKoSnb6mQeq4v2l
H9f4T1LrWWnTbiuUmm//W54xzyjQo3ezvPuBKp6/HfJyi1rfZPN51ewoVXz0
qeVSVCsF/M6OMp9/poq9/Tr/dnMWwOaLhtKWt6r49lqc89fXBfDjg5nKpzRV
9Il8OKdRUwBF30pfhH5Wxear60ldswUQ2J5zUy+HWm8CTJORewuBhuWl0tsK
VazQ+hXe9o/6//LxJgbWqCIsV1yMkiqCUpnHO5zqVTHBS37C274Igo1Dh9na
VVHWXtG5hVIEdH7uCbeGVXHfFUr6P/NiGA4b3277WxW1n3oIvTxXDBXPTl9X
mlJF79pgw5G7xRCSZW89tKCK5cZMJ6xKioFxEhgOblPD9RF+NYphCfxe/nZN
ersatliwD147XQI1DBq/aJjU0NKddLb1XgmEi8lQcnapoZuSalFUXQkwObJf
FRFTQwHjtOvSLqUwdS7856qkGuawZu8wCyuFuut0B9tl1VA9XkhE8EspPIxZ
lg5XVcO8TzcLJ2nLgLVmoH8B1VCjtdrKMr0MdpG+7K86QV3/j99yWqECxOqd
SqJOq+GakDiT9YkKUHNh0HY4p4bPf3ImBjyqgEMPnWTGr6hhlNafTJu1Cng0
QL+d6bYa2lG4Guk7K+H19YzbrUFUf2Ewj5e9CjJ3Ov17fk8NVfdeFmQzr4IW
jYwRhQg1XBg9SHxfXAW7wxzLLRPVcEdUQc5oXjVICNHr7XmlhjUZCx2HVqpB
Iys96+cbNQx59bo5R6cGbPvp3nh8oNqTdEy4WlwDT1TTgx7lq+HZn722bF21
wNmzDTq61PB3esjhLJ16kHD/nJPUR9X/Nl5a8GE9aNAdVTo3oIZyzD5zWT/q
wVbps+DymBr2fdnFfTO0AZ4EO6zzLqkh40NL8ZqxRuCS//TtOJc60n9x0Xpw
rRmkiu1VpXjVMdMraDn+bTNoHqF9Py2gjseI1uEne5rBLsA+LkBCHdfTOHiE
jFsgtpXmRrK6OipZ131PEmkFbj87jREbdZQxuJM6stUGJ3A549IRdTSZis03
122HVLoExUUHddS0aN957UY7aEf0S207qY5qVaJHuefb4ViSK6/oFXXUuxPk
MTbbAW+Kr24eC1dH0+0mme3c3TB1l9N3OEIdJ2iv6zw40Q0a+3OWLsaoYyLh
m7r8+26obF6Z9YlTx4V1fksi9MDEYOBQ3Ft1NG5+O1/g3Qsq9FHVbaXqeBb7
jHdx/4BbNSomxyrVcYYgPUC+8gNKI1pKhmrUUSRB29y/+gcc5uYmzzdR5XqK
3w4H/ARv6Ref2H+qI+8sf8Bh/wEo2P/h0YE1dZT0H7A7wjUIDKwH2do21XEt
xvSipMUgWLZMP3Ci1UDTIKt/CUGDMOCodu/CDg0sanVg9p8dBLpL327c36OB
5B0NjRYdQ2AeWXWsXF0Dd3T97YwoG4GMMObpZ1oaODHmLbG1YxS479kEXNTV
wLPHnLMP2YzCkG9v8q69GlgZJsn9fnAU/M7PjJ48pIGLFRrMluy/4bPxHs8N
Dw2s3dd7yiB+AjjxGG2zlwbeDnkWXTM9AT66yY//u6mBUypd9+1MJmGfmnyO
RaAGVuhMVvn9nYQBYViLj9LApYmAKxIuf2DX2tl7mp81UNn3NWxozsLNfx+4
d2ZqoL49qUL0wiz8mJt91/9VA812fMpufDELH3771N4t0MD1pRXOaoY5MO6I
ZGut00BYoXsp83MOvL/kxLtPamDOlxxdtfcL0H2O4XOqDBGfPGSo5H22BDcf
GRnrKhDxQ0rHWGbbEnAX3O6pVyaiQsnA8N1dy/9/g2BY0CRiepgbb0HkMjRR
xk7omxDx32bor+b7K1DNUcPRcoqILt/f0c76rcE5PfpU1zNEbL+7pFGUvwYM
5wwNltyIaOL6OcZweQ2MKd8uCHgQMTDTS0jp6joUn00rO3ubiLmvnP3ETm7A
iZjRoytBRLy5YSTDkrABm2Sx2Qf3iDjIk9pLbN0APY7nAl8eErHmVY32qtEm
5JEfXF9LIGK39z4WNe4tsB+tYopMImLV2cylv/u24B873WuR10QMdSwUtbu5
BRpn/RpM3hOR+Vy/y8O2LWiNznPt+kjEs8mOz3kIBLxKXly9kEHECg2Vxe1c
VH7Mflk6OpeIrW7q/ox6BLTSfV8gRiaiqV+p9+ZBAk6fGTn8tZCI5T9oF3qc
CRgRLTqxr5SIgo4XM6OuEFCBfDywp4KIkbbXiKz+BPw+Es99uYaIvLqvOvaF
E/ACe8fHrTqqv7b91YqxBNyhu2vvoyYiRp+9J/vlFZXvn7HslmgjYtLbp4xl
VD6/LzrcPbeTul/zk58tle+P5lfSm/cSsYE5IMUul4D3RmgT+34Q0eeQW1M+
mYAS7KDmPkhE0l2La1cLCVim41tNM0pEPq+6w+5FBHQ5k+v8ZJyIHbU6EW+o
cprohUWpP0TkPL7vPQ2FgK/ylR98myXi5tZwhR9VP4xcFD2wSMTjicJ3Gan2
f7Cl5v5YouajwP18fCoB/XWGD3quEfHxsYgHEkkEFDgjMrxti4hk31GDVzEE
JEcd84ml1cREtf3Xt90hoGN+HLssgybeWuTJNb1KwJXhtrfkHZr4sM7X6PQJ
Asaxcehbsmii3d5IVVtzAp4t8e9vYNdEF33p8ih1AhKvTfhbcWpiTNXPJ+l8
BKSTtBdq2qOJuoe2/XdmawtaOsoKrfk18XZ6yapGxRYk31c50SykiYFnOhVb
QrbAQ+fFlo0Y1R/pGm8T4y1gSfLGw7Ka2DHY7P8rcxP6rIYGWhU08QY/710F
101Io7EOslXRRE2pP19iODbB7Ixs6REtTTws5Hh2z6kNCFbo2+tgoonHy54s
UTrWwPqH2XCXmSa+UB+S9bi0BsLRX+8ePaCJk8sjfue3VoGyEFnheFgT7S+1
RawIrsJSvuG+46c0MeOZaUbw3mW4tP+duYu/Jh78LjZx2mURdNZ2Tw4GamKR
vHfA2dEF2PEp8MHpu5rYlKjMKXxxAd6yO9a5PtBEw9jwIxduzMOvTmbLc/Ga
WOCswvrz5Sy1392aHkvUxPvRI8d4lGbhtu5opNsravwi330/7TcDAi+LGs+/
08TByr6Oquo/YHf2qs2lr5rIvVX88PHTCZDk+Tk3laeJj/I6D2u2jcNijcWj
yxRNFLpd9DJizzjEKEq2XinTRI2nOZw+H8fg5M+YazOVmmht/DCda3MUlGI2
d3vUamKD7PX2q7ajULfYaevZrIleCU5vHdlGIOGt8d+5Nk00rg7Xbbk2DOcd
vjy92qWJQdcay0f6hoCBEt5x7Sc1fvGZxNeUQTC8o+/g/UcTfx0msNllDIDS
pYMse+eo8Q/O2IhVHAC+I8dL2f5qovNSyjHaEz9hXspf4f26Jso27bN8E9QP
P9gifl0naCHzDYmmPy/7oHY5MdaITgv9gm/4h1b2wutaCqGPSQtv0Z91SJbv
gcisuq+pbFo4XhgynXS+G3wS+y5c362FDyZnUkY/d8GhK+ttrPxamNSR3Wtv
2Qm0u/TeG8ppYdP+P8KcPW0wvWrhzKqkhTo2v4K/WLRBz5DT7l5VLby2dT6w
qLQVMr/6+ntpa2G0j7b8seIWSEp6oGaor4XcBis3Q0xbIDz0+RiLoRamiC7L
OzQ3g8tRss07My3UlNxuqrvYBJZG3xm8DmhhmOCFwsUHTaAj30tGay20JOsV
vpVugl0bq5I99lrowFi/9L6tAcpe6awyn9PC71a2TdmqddT6ME/vvqCFj1e8
hB/HfYfEq46ub69oobA5rZ06/XfwMvZpAG8tvFs7090yXQMnFcPvMPtoofLF
jSdnLtbAAe4EUre/Fg59dFEZmKLOY7+/vb56TwtfN3Zkfd+oAvbmGnsI00KV
OjfCr4dVsP6tm5k5QguLF22CpESqoO3BinfKEy3caRrN+upQJdxV1rboekPF
9Tt9tIbKwYNnPyHlnRbyxYkNfIoqh2M0R796ftBCtZI3xSQoB43Wm8JMWVro
nKytwPeuDEQo99s6c7RwirXUR+dEGTCnxIX9l6+FnkSJDlq+Mhj2zlvQL6Xm
a19UssKzUmg6UZ26s1ILQ6SypE8eLQWKWdfxzhottDVVVP4lWApP+JarPJq1
kKC8xOTzqQRMCrUS3wxoIVfHcQLdSDFc6DCwUx7WwtR9PrPR+cUQOW3CTh7T
Qq+N6ICUmGLoErK92zKthWXp49NaxsXUO97JwHleCxkfX7F/KVwMYlYuy+N/
tXAyvXK1fLkILgV4XKLZ0MLVIYJz2rUiiHl2QyqCQEIdilTnoEYR5KTfHuCh
I+GaaKhv6HIhbP18aKvCREJjE6mDbSGF8Ajf653gJeHsC77kioICyHXI+Dch
QEKbjjPwMboA+jxyM7xFSNil8PPn/TMFIJlcIREpTcKfBAuTv1S+ZP6t7gev
PAm/0NIduTJDgSvNrXEpSiRsh+HQ9O8UyKMZZC4gknDBJNP3VBgF+nnHK820
SRjCkqtTdIECtGqzgW16JPQbzlYsPEgBafMlnZNIwgzfF7JH1ChwwGVzcXIv
Ce/xmLL78VDA04c+/cY+Epq6O6zKESgQ+4j5/DYLEupr3CY4Uvnjz1K+fr5D
JHwrG1/CW0wGul7RZ2+PkLAuv70l8RMZZBZkbNSOktB+IOXPnUQyHGRSYSo8
RkJXn7Wg6odUviquVbH/JAmHZk7Zu96m8mldg4D20yQMEFObtPGk8v3DJtqn
zpHwgOli04Mz/3+POLAwdYGETlEqicxOZGC4e/jTzSsklLNOnWmg8m35RMdz
dFdJyHaSj6WBysets0+JRl8nIbdv1CN6Kl/3qnPr5b9Fwty/PMKeVD4fP+z+
9J0fCc9JVNswU/l+4bq3lXogCR8ctuxuIZJhkPP2jqI7JIS3Y0vF6mTYrniv
zDyUhIJh7tCqRgYFk4f+HeEkJMxdNGKgym2OP9ZyiSRhWYvLYzsNMnhfT5j7
E0ONN9/n+mJNMiREJH+49ZSEBeHlBCMdMhSlpJ6hjyfhetCXh50GZBguSBeO
SSThUwJ9621jMjB25HQLvCLhIIMVkWhBBsXpgsepb0iYvG2Ad/kQGQ4xVBzU
eEdCZ5Z7hhXUeNwQqttenEaNFzdTQQI1XomarSUWn0nYe3/0pbcHGUose3w7
v5DQv/HBhp0fGUbP/iKe/krCq9A4qR1GBqaA3zPTeSRczt9bKfiMDCrPZt77
UEi48r1Gk+YtGW5VbQg+KiPhRb6qmJJKan64U6fOV5HQ55uZhVQPGTbPHCIb
fifhTo9l4pdpMgTTvXOYayGhSeSdUCI/BcoP20jXdJCQSc9sUkGdAgxv1v6+
6iHhDrHX/qYHKPDA0Pqx9SAJNQxrZ/uDKNAQvXpKZpSEAta3aZySKMA+8J8K
YYKEScmxl5bJFHhye6U+fY6EXH1SHo9XKfCC/JqRjUYbGYbE/A/eK4CBnQc7
R+m0cdLNx6UhrQDEHJdSChm1MbiD286zuQDeLlvsvcKujXsgeFJYrBDSiX/9
64W1MTt+6iupuRDm7748kCKujV5+/MyDW4Wg0baf319aG5UnJs9+VS6CvKtJ
eQrK2lR+FfL656MiKEnft/DAQBvzKVbR39SLgW5rruS0kTbWHnm0p96qGEwt
E6N1TbXxyfBWqN+lYqidmlWcPKiNN++NVWa9K4ZW2QQ38+PaKB7R8Pg/yRLg
vmWsJXZKG//I8BjnmZaAQ/U0/aqrNjrMjaV6upVA39m9b95f0sY0vn0OvdT+
N/Jmqp/RTxsbcr24s7CU+v/FfhwIoOqL1f8seK4ULhgZ+ubd0Uat3waHdSJL
YXrgKY/bA23kqVdPjv5RCkuCcLgqQRvjiS3tg6FlsCMupvreN22slxb16tws
B58rl5ItCrTx3A5Js6MqFTBlvM+Ho0Qbp86xNaS4VEDT3Lr8i2ptHHg7WPmu
pgLiLNyisju1kTAee+ZRciXsFNvr5tOrjeqXtyl/6K4Ev2VBQ/ypjbmJs5nJ
u6rgZErr/PdRbcwYiYlWC60CmS0Du6G/2njhuzKfsm81JLTzKr9f0cbNwZ1D
gfnVwPxxcbv7hjbKnbHRrFythlmHtG+rdDoYuJz0Vut2DeRmcgnu4tRB53sZ
nTtjasH07NQQqumgXG4Vk+Z4HeTpVVEYNHXw0b2RVW3tepDb/fppnbYOMpTk
PjoTXg+sxfb7HAx1cHMq7KyRSgO085aluVvr4IUjybMB4Y3gWh/vmXRFB8XV
+X0NDZqh442XuetVHUw3iZ+55NEMZj5W4nLeOniVsPTjwJtmUJCmb//qr4M8
2c5rakwtsBDoQap/qIP3U9pYuodaIFhj39Zamg5ebhZRy8pvAwUd3v7Azzp4
m523ivFvG3TCZD59pg7yhpl0CKq0g4JFlDfbNx38y/7WKCq1HTpPdf4Rq9LB
k4cKP9e/7gCFqHN9+4d00Eane6KusAs6nmjnN4zq4EeLV00qDN0QlMAUd3hC
B/v+FPv6WHZDR0r64eNzVH9an/+o+UWVU5ZqPbZ08PrnR5tvdvdCx3jot2f8
unime3Hp/dt+CJw5+kxAWBffrB3lzdzoB/m/8teTxXRxzigkve7IDwgkNKl8
kNVFYU/xCeMdP0F+D09qoZYulrgQ33w3GIBA49TYkcO6aKI5eh0af4G8uY/X
BXtdNH7yaYuNbhA6rA4cmnHURbN00R/B2oMg7zTLsnJKF+eb3KXs3lLlnqR7
zB66aH90on0gdAjkX1ZfU3+oi2FjFPn1iyOw2Kt/li6a6s+I0GXxLyNA4cly
aH+si18vHNktuzQCBx690L/xXBcNTn5a7Lw3CpfuXd1OTtPFE/fMuzc/jcHH
iwLPjWp08cWTZAUd+QnwSo2J2F2vixJuf8f0AyZAb4QhcLhJF99PCZVD2wTU
Oc+5hnTp4vmUrx3GQZPwx6ZSqXZMF69mvtwMGpsCJZJHqQ2DHtZnZwgujszA
P6+RbLGdemgr/2bRSHIWCr84vltg0cMQjThPTodZsJQ3efiUSw/N3pt62RTN
whUhPrtuCT28zs14W+PJHKTTlY+f3KuHlf6rLhb2C6DSvIfDI1APf/dut+XR
XgJV/buMhLt6qHE7+JaE9xKovZ/digrVwzHmJGaPrCVQD6qZTo/UwxGDiONZ
SsugqepbN5Ooh73P37y0lF4B/Zgfoe7f9DBVcb90A98aGGyYB2xR9FC5r7Oo
yYGKz+d6RxXrYTNLa2587BqgYfSZ9Co9HHxQmG7FsQ7Gc4Z7Z9r1UCFuTec3
zQaYHP+sE9Cth+q3Dp4n622AaQ2fGlu/Hg6U7n7+23sD9iUviCgP6+Hp1Ngo
1vENMLdJ2bwyr4csrm4OMaWbYFHA8W/zL9X+dsM4w3+bcED29p/IFT28M9X3
MltmCyxp7Ps+E/Qxyyp8MyxsC6wul7Ua0OljkC+poyB3C6y7lb83bNfHD3Nb
ofbDW2DzhTF/mlUf514u0SoIEPCQ4PUvt3fp4xiD4+UKZSoO+5XKyq2P8c3s
3ceNCHj478FXSbz6mCr5L2rsMAFtT+U/UxLUxzSV2ihbVwIeqZeKKhTRR7q5
suTYawS0034cYimhjwn3OR1fBhHQPmXL/4e0Pvb5vxI7GUlAB45L16/I62ON
4GOz2ngCHvXvurSppI+5Yl20jW+ofHzc2DVSTR9lNIKDT3yk4iNfnIQ09XHa
+wXt5SwCOpUIHv6srY+uKxm1v/MIeEwx3NxAXx/LThY6lVOoOP6fYQPq45FP
jPZzhQQ8Tn9a29lYHwuKW6pOFf2vgisPp+rrwpeIJk2mJCmNkqEoyr1r3XPu
vcZKKXNRoZQkhEo006QIFUKmpCj8DLlmQqaIyBgZQuaijPc735/rWWvt9e71
7r3PeZ9nP5uGxy58Vh7SomOxhPhfIcpv2bp3i6ceHYeNXpTWZ9LQSidurcgB
OlqB9938VBoeTxWVCDtExza1UO2sRBqeWHddRNGIjp2R3jncGBqefDgomGNK
x+mbe6+mBtMoXKaz+47SUTV3u3jEQ8q2Kf7TakXHd6bBM06eNLSp2TFwzpqO
r0tPC28+R8Ogos+Dv07RcUfYJ901ZjQsTrcftjtL2c1uITwWDSfiF4z+dKDm
b77gVtl2Gm4Kix2zcaJjRFJJkIco1W8/8k/nRTpqP93vJD/GA+9b7ePHL9Fx
jd3aiW0U/71npCaPXqPihZ3GMlR5IHksfar5Jh0Td2RvMhucA52Dh2dMvekY
Ldp9feLlHMTv9uUd8aVjVXKMgRNvFprkt/HV+dHx/t5L5jfjZmGRTCn/oUBq
fTF4K8b2zYK9AP/8/aF0dFRMcHPynYHQv2FCFeF0dLffcbh66wxU9u9doBtF
x2PmGTs2FEyDYs3FxZx4OkZmNoqf6p+CkRd9KxgZdNTTHxf9ITMJLrtr1irW
0dGvJtjVSnscouUd1r1toNbP8AsYK/8DX9cskpNvpvB+pLu1HvgDuwTYmzb9
oGN54PrH3qa/4V91hoLMCB359eTjV10ahS1FRxRDf9Ox2Vzio4vAKJimjylJ
/aVja0JktJvfCGS+UNgpPkfHZQLfD385PgweZyI0RBYzcHDD3l8iywbg7VH6
3gdLGdg3UqTgw/kFrQZNmgtXMnCZ6qiz//V+YOwWxflSDBwdK1F4LtgHNAEf
ztxmBkbd/JSjxekB5b8btD22MfDfTl8HZmQ3HO/P15lSZGBZlojJT/5uKKie
1p9QY6Av90Xowi+dcPPFecMhkoGfD3/C8ZgOqC55Z5ehxUBjs6jk31IdIDM2
7HVDj4FLy9ie5QHtkMlxfCtuyECX9erh0tu/g/CF9wXtRgxMzg85cVGzDYxC
Rr7FmzEwSIC53/twK4wNOwrCCQaazTdO+PKiGVAqafUCWwbmVUUF3q1qAl/W
qEqtHQMnJjxNx+c3gfzzC8dOXWCgp6LzTN/Db3CCcEp/dI2B3JEfPx0Hv8J7
++RK01sMlH30++nvw19hLmisU86Hgd46Ju/IgjoI/uW0LOMRA9vP+CxzTKiF
XrGUTTeeMNDSbvvaTvla2IW/NfWfMpAmpCRmkPAFagKc7drDGCj48tky47wa
kMlN8YqPZGB+uN+6AIMasO/7HegSy0Dizbmi5d3VIMxwKRBOZKC8v4z0Jqlq
wJ8uq1WyGSiukmbcYlUJvstTVabzGFgfFeqanVUBLXvHtT4WMdB9pUpsmUwF
uD++6GJawUCr4cRGlz9lUJyZek+umoEN288GhJ4qA9Hu8YjBWgZKnxk/L9T+
Cd5puFZeb2bge/J7Zt33Upg5mdap952yjzhN1dmWgq7vxKRYJwO7Rm23HRor
gZ4frpvi+xnY6+vkJiZeAjIP3Ly+TDLwt13jK+MHH8E+LT0wdJaBpjevnKnc
8REy2/++seUDjJ2M8vFtKQIjNfdvU8LUZ8ZK44ubRhFEW2YMFS0GNCg0nrYe
KISxu/8EHi0DnH6wJmtLZCE8bHNXkZMEZA8eSCgTK4Qm4Q9ag6sBf4UtOuRe
S/0f75w8mr4W0NVCNf/5kwIo8r50T28zoCB553GHVAHMKF/udN4FuOhDwwUj
Mh9u3Euam9EAzCl5Hhsjlg8LunpX3aED2kJ/aEBfHog/NTZ4xgK8sjxRcG1Q
HrwY8T27ThtQeNi0JtIhDzboFt+J1wPMlNJ/FaSdByqzqtlZhwC9ZdNEo2h5
kGFk/41tBBizS0bQIDsXGO+jfleZApL1bgp9V3JB/+QK+Q4rwBN7P973pOWC
7afhIMHzgK88k4NPb8yBwfWbk32dAFVGIx8s+5MNLh7HKiVcAdepPjYrLcqG
60qV8+SvAlqEPKxXsc8G4bsCa1OuARYYKzHKiGzw/bF3j+YtwIxHk9dxdTaE
BsY77r8PqBqpGvy8JgvWD3fcb/AFHLDMe277Lgtea696ZeUP+LbZ4HuPbxak
TXu3Oj0H3Gm5ILL5UBbQj+T+mw4FdBC+7EXfTem/xImVtyOo+LWcM4prsqDm
uI3u01eAPoesl4UNcsGEG2oj+wbwmtWijUu+caFNtO7a60TAH5eZ/gOFXLBx
WBS6IxlwZrKrQi2JCwMlRDo3FbBuuPfQj3AuOK27/IX1AfCcA0b+esSFyctJ
g5VZgOEpv87qXefCtbpeYeM8wKcDl9fPOHNhvqLshvZCwJW/XWz+neLCQ29j
sCsB/BNuWbfnKBdEO3zNxsoAW3/eW5ljSOn3PcUXr1QBetLFWVcpPb4uYPax
wBfATtEhYRdKr8cNqr59+BUQ/tQsDKP0vKKWfYl4I2DJ8etjExpcSI2I+hHe
Arik9Na5y7u4oDnVNLulnYrf3xS6QZULBYYrViV3AuoHZYj9//6CToKO6t6f
gPy+Gk7/v79QPf/6gaJ+QAU5N/2+nVwwsso4s28IUNLtMi6mxmv9MHy7fhTw
cZ4Eg03Vs165+aXlOKDXEtEYPzoX+u2PZfX+A/wa8alliODCheLAhgszgHey
/fXNdLjwb23l2BQPEH1OW9QYcCFXk1+ogA/xkH/Gu4OmlJ7vexFwZx6i4fwn
ho0nuMAJ0livJ4ioopdgaXuOCwvIr++WCiEWl2T9mnDnQsWwI71OGPFyVeDS
u7e5YKgTZ3J0MaLuG9Fbb15yIdYvcERLBHFQbqPRk2SqfuMNnx3LEFNeWc2L
KuJC6JmjGUKiiCdPD1/fOcCFoWRdgzExxMZW/eYkPorY6d29LRKIC05uHDok
mQVd91dIJq9GXOporzWpnQW76njvQtcgmr8h+2dOZIGP9KCW91rE5tiaPbKe
WaCQUOJmIYd4buF+naL0LHCp8miYvw3Ruld0mYd6NhSLnzk/qoAYI1Ir7Gae
DZKWxkItioieWZt3+3llQ9awyu6kHYiW4Z2PN5Zng8Dyn0HmexD1dk8/bj+f
A0amdYocTUQcOqDbG5IDcS/zi5UZiOn3bbvEPuWA/o7QCUECcZ7H5zM/N+VC
gOFBo/c6iFfHXL/fHcmFnhDGULAe4s9KMcffK/JAvWvbndv7ED/mvZzeo5gH
LS7z08wOIkZsXVL+zJY6X4K4YoKmiHtqY5IT2vLAtS0uYdgM8ejWhAjmXB6U
bgpiN1kgavxZdsxNJh/s0x0vvrOi+nn3/c1Kq3xI/bbxq+lpxFUS7nf1B/NB
eN3Kc6wziFsU236KrSgAMzuaoJI9Yndh/6MHuwtgbrJJVcARsT5v6q7PrQLg
rH4ckOiGqPP1WF3/pkKoPzplOM8b8XDfpssTvkVQRD/pUOmDGPY+qkAlqwhS
1lT4PL2HaNY61irTXwSPW19kb/NF/Bcp1yqm/RF0jzI3Hw5EtDqpfevN4mLI
tvCZio5CnL4bcwYyS+Ct5qjo+RjEfCGJmtu/SyBY2kxJ4xWi/9lZs/DtpeDa
ss26Mp6a39XnC45El4KyxefK8STKNo0oWRr6CaLNxV9y8ij8fT2pC9LLwX+v
F3dZAWLT2w+M5LlyuL6692tTIeJ/w8YGJloVcKz5w8LzJYjnvzPa45orQML8
qMvTKkTbupD+xGVVcM8sWqu3BZFRN6D92Lga3PcsOZHchqjc51Oy+FY1nJJy
9fBoR3R+rbtqfVI1sJq0kpZ1IR5PMvogs6QG5kx/SWn8QjTwUbseUFEDF0x3
DN2dRIy29Lwgd7YW/nmkLNGbpvBOK2vwImrBM0J1++JZaj1mNJ9/0FAL937u
svelMTHTw0GlkFMHURf39vsLMXHzh6ngtu1f4asfqydEjImfG/VjuLINYJH6
UfCoBBPrVNLsUk40wI9vnI0yq5g4ec380bWYBhhaq2MdIc1E+VM9/0Vv/wZC
ift+RMsxUdP2ZZmJdiNolBm1JagwUXzHrYnU182QN9gw67CTiY+iT91XnWoG
znLTNcpqTPwzvEA/Wa8FDpmYWySrMzHpgX9L2mgLnO2xbEoDJoaq94qo6bbB
C367+tx9TGwyay4vf9oOGzb1j187wMSqDme3/0rbIV7nrBhxkIkv3R6Gq061
Q9rjc4eLDjPx2WuRUD7LDvgs4/Sl1JyJyboHLKaVfgDf3itVNXZMPCDQvrVp
pBPEp/b9yzhL4eX7bD5fpQvkP8iujzjHxJjkguB5Tl1weHfxRYcLTLy98GPG
pYkuiNu5fM2iS0xc0Shc8WhBDxgovDrL8mGiY5l0hbpZL9j8uhS47R4Tz/ZP
JFyI64XL8fq5Kx4w8ZDY4jehf3shesvYio5HTFR9OL+8+lkf/NtAz7z6lIka
v+t+dPf0Q8SaWuH0WMo/+cNAM2UQUltidoTFMdFS6ovW6eVDUBbibnE7nolp
qo7vwh2H4M8qmfeGiUxUnLE1UN0xDNridsYjqUxMVaf/Fjw+AsMivJitH5kY
dVrlqdHCMWDQtpGhnRQf55sufsgZh2GjS8MnupnY84cR9npyHCISSkK2/mTi
m/0TW0ZVJ2CeufWftH4mvi+MSLn8dgJKU1/E1IwyETcN7hAJ/wuGZ5cJC9EI
HPDJ3yDiOwkCBcf+q+Qj8JaQaNypiklIk0ywCphHYKB6tVXRwimQLNb5sE6I
QJERjUYb7ylok715RlOEQI2hLwfZXtNwun684oI0gScv6j+Js5wFqe2sS+oy
BEa9rzbE57NQftN/I28tgX/mjz6S/DILiipKng/kqHrJTpEs5hz8vn9a6ZU8
gS9G4hnuK3kQ/SOt+ZwCgeejZZ7OZ/PASEPQR1WRQKkGj5e7LvIgo+dle74K
gQknTDJlanhwhj7ywGcngVnLElxjZ3iwOoChcUCNwAr9e0m7V9LQk9ns16JO
YKxKn4PiHhoqPdvKiNpD4S1JFdikT8P2Ibd+O00Cq3xHqoSP0tCfXRykzCCQ
WHXsS6k9DclQUfIvEBgWKFlnfIWGf8ZODGczCTTJcHV55UPDWJ2kkFskgeVv
2ra+DqChcQRPS49NIC1m8sj+cBoK/933Z7kWgXKd93R94miYuS804ps2gbdr
C49qv6fh2eh+/XBdAh32pQ95pdFQelp90kafwHcN867LcmlYddA7RmE/gQLL
3ItXU/reK+7rwd8HCOyJP5l4ktL/yjy5uQ8HCVwfOXK3n/L/OOIUf82QwF/5
kTORWTR88jbPSOsIgSylgQPXMmhYF2a1RNWYwBtMONqWRENRP1qRrCmB/gsK
b41S+A7fjLi8xJzAXc5rl759QcOAi6gyZUHgpqeOjXyPqfxT7T97jhFYs78o
56cXlW92LazWippP0o0Hhyn9f1hf9kjeCQI/dtjooAmVz8hblGBNYIlviHYM
UvnKVgXPban+XUw/6LWJypejXbpzmkC/nMhPFQuofLEIJeczBB5M3Xpj9Vce
BAhhj6U9gVcONx2458eDusnvofoOBE71aj4Z1uaB6ICXoYYjgQa3b0ybTc9B
QHVu3goXAl1uVis/PzgHdQWWbryLBHJWr5+JGp8F0VTe9gE3AkdfmNRuCJyF
gOcQ8vEKhadHcFypZAYCTuRedL9JYN6ev41LZ6eg7rClgs1tym8+xGbfmAJR
Ld6Pg94ELiEmilIEpiBgGxhsu09g/cRdgWP8kxDwJ0e+zZ/A4LCGkN19E1DX
c6yjLIDAx2vntZ61mgDRxrmn6UEELqfXEeoN4xCQzRD0CyZw4uGoQV7RHwi4
k/OdjKT6O3JyUvzVGNS5HwtSjqb8ScrZYevHQPTsnP6aWAJbnfxDCsNHIeAA
I3PiNcVvxiZuZPgIBErmBLxOIvD79a8Si10GoX7hMb2gFAL7Fn6yKHg4AOKz
s3w3Uyk+U9UONrz9BUEd9PMWHwhs8rfrfDrdB/W1rRt1uNT8ou75OG7rA/Hi
qy1q2QRaSy3V5T/eC0Hx2TpL8wmM23gjxra1B+pDj9JmCghsD4xz2r2hB8Qf
zab1FhH4LXqvVo5jNwQ50zcUlBLo+MHF94NUFwRpZs+5VBPILxy4Bd93gIPT
xUyTLxS/1ZpDzI0dwInb7qpZR50/bt8DJMPbYWJl2OC8bwQaOvJXP2d+hyod
o9c/G6l4pvu6RoM2iPUSsSlvps6DKEPp8tOtcOSXZ4v/dwJD0PnAx6RmUFi3
+5lrB4Ftt7uX6P9oAgHjYUOzTgIlJRcwbko1wX8FluXrfhJYu+mF9byX30A0
GDPfDxEY8ddVxYv3FQY+/7sYMELgytkEgUzbr1AkmKTiPkZgqV7117zaOnC5
sO41TBC4853dFeOcWtB/1Wgt949A3t7kAM+9tbCh1U9WaIrAAtbGReHZX6BW
m/9Z1SyBxWFnTiyuroF4z0zDZB6B94Xh3oxlDdz4z2lpEB+JVcURd7b/qYYd
sp13jgqSuOf2M8fXW6rB/2/hxYHFJF5s2zLue6USzmz3UKkWIbG40PB9W30F
ECdVB1OWkfh+3zcTC/UKGKuKtr4iSqKj4orsgcXlUCZwVNZSnMS0+9oO97zK
IHKPWAshSeJVtyTlc38/wcHY24YLpUkssGq6oTxRClta6EuH1lDx8K8/0aMU
aCsmymrWkthBtuu/FSqF91dtiedyJM5pi+u7ypfAsiNaKlu2kai87vq7trCP
0HuPN7BoO4maRe67OlkfIS8vPW5YkcQymUsDqkNF4KiwRTZ9B4lqJ89dYOsW
gfaJ9uZgVRIV3VrnSmcKQfbZs6eeu0jkSynmbUguhM/zFizl7CHxsfCLhbMb
CiFWI79sqyaFZ8UXbe0fBeB5/tKdJQwSR1fabFsQWQCKzX2zdUwSE8OO3Q/Y
UgC+yWUDJ3VIfPTGyzLqQD7wX5uT36xH4oPumZDodfngum+HXb8+iassLj3l
jOeBZe/zbkcDEt15m7fveZkHdamVcqqHSLS/4N7rfCkPtG/ynfhrSGJzh/cr
GcM8UJaxa7tqTOJNk51+IQvzIPpXqDTTlMQ675qSlOpckPxQbSZgTqKs/D23
fN9c4Dus3nDvGIl5GaOfWSty4ctdoeqnNhR+6artq9VygGO8V8T8FIkiMd37
mfNyIHPDeX0ZOxI3ZEicc6/Nhqjc+tJoexLbDEpZXZcoffNwodBpBxKXdD7R
5x3IhgdmDPY2RxKvBBstmdycDS7jMflJziTKo4eERWsW9BY08lwukvj7rqbp
u8wssHi8hKHuRiIyH3mlPc8C9raLmTmXSXQpGtzBtciCzH9x/657kHg09/ym
WMwCxeKWXWxPEucbKD2R3ZQF4sdZKeXXSZTq8EqJHufCPUX3Ud+bJD4hpNrC
vnNhbvqN0qHbJN6TDU9eUE7p/U/fz4l5k3hgDX9AWzoXfgatfPvNh+J3YbSI
RCwXLKy1+kPukbg0szvxbSCln1WubLF8QNnbREWe3+ECi5dou96XxPC7Eqfr
Kb2aUfEjuvsRiX4CzraW9lxQCBbvjPMjUWfXs/8Uj3Mh4pTuOvsnJOod+D3L
MOaCqJqnpVIgtd/oLZvv7+fCXf7kF2NBJAaJKH4U0aLwfu5uTn1GIl1Q2+f/
7xc4vVgldSmYRHObu3Jv9nKh58w+E81QEp/tP6LD3c0FM/XrQbwXJEZ7e7WP
qnKhSjC1riCcxHehDef0KL1P1PauuPOSxJ3raE/+/75CWoT0QZ0oEuPjQkZN
Kf82B4NHi2Oo9Vmsv01YjcK791bl51gSf30R4KugxhddkLHoSRyJJgPZ3Eiq
vk/9Lx2jeBJr2p6W3qXwzUSt9Vn1lsJzOzHAk8MFxwuGxS0JJI5x1zz03MeF
Loa3QMQ7Ep8vWqbifYQLJou5xMkkEvftkbsQdIwLlY1D1zalkGj4VcMu/jSF
99X63L7/SIxoI9XynSm8Lkazb9NI3GKiMvrNiwthS3Mu7cwkMaZJXUEghAsv
3ckC6SwSfVc1XbV5w4XojtKF83NIbM12LxnM4kJ8Sm3It3wSlTzc0+07uZAg
bdqVX0jt/5jeKKt/XHh/u03hzUcSC9dZbHUVyYI0477sq59IXN8SsICfkQUf
8hzmnyqn9t+B5keuxlmQtfXPfoNKEmcLv55a4JQFBdNz39fXkPjB9pyLT3wW
VIaL8pd+o/j9aGTXtSUbqoWDdZOaSGxY7+rC0suGLxfWPgluIXGvT+68Aods
+EbKbzjXTiI/2+uVxIds6PoJnBW9VP0rZTkM8xz4afDRd7qPGm95nnnonRzo
/6Db0PWLxOsm1RlrUnJg5P6R0+nDJL4KjjB9vDQXZpTO3rP4S6IGXX+PaX0u
8J6NfGFPUvvteGS1h2Ae8PO7rlaaJtHG/1qltWweCNdde8vHo/hzdojlGeeB
qHtQVex8FvYvs0u6WpUHEh2rJR4Ls1BJ8ax23GAeSOm+tLy0kIXxiw7ucl6S
D7LSb0f0RFh45ETO9ND+fFDIy18xKsZCree7nGMa80Fpq5Z5kwQL1z0+dOnf
bD7s8K+IKlzFwvPWpX8n1heAunWDatAaFgpNSAvNOhQAS3jQaO9GFm7SyE22
WFoI5gaSIbdVWbh8ftjInFMRTBmsst2/i4XzGtWK48OLIPiglIqEOgvZTiPs
+ZVF8O2QdEncXhbW8Lpu1m79CEZHZH+XEyw8+XnSburXRzAw26K34iALVdcO
Oe0JKIERs63izYdYWB/E71ZWUQKPzOU7og6zUO1yapv8/FKoslBwUzOh8td3
/7W5Ugp6lspRJpYsdIjhbxdy/AQca/XpsHNU/r2+PPVb5dBjrVF86jwLRY6q
f/9XVg63bfb4KV9gYV9m7HjyigoostXcXODCwjVT7ELZmApg2qFh9xUWZsjd
FVarrwRNB+032+6x0JXRmEfbVQ3NDjquf+6zcPjWX5u+49Vw+bwuM/shCz0W
Zj0+7VsNHxz1G/b7sfC70bY+lb5q2OVsMM/pGQv3nJEu3RBbAyruJuYZsSxM
FpknoAa1cDrrwjb3OBYu7V9XaexSCxG0+9O741l4ZfqZ+db4WhC5mx2SnsBC
yxy+qHaJOuh/vr4l7T8W/nzSc7Bpug6iuQMWqQUs5Ocj4378rIdmnuD2i0Us
7Nj912B0SwOsYK2dVS2m+K6f5tWcaYBrFQdf/PeJha/WVS9fOdoAR1vTWlOq
WXhuLsSzQagRxHnXjiW3sdBQPD050qoZ9pHBik7tLJxQbw2dfdcMt7xT5lR+
UPh90/wMaS0wtrQnLKmbhaNb+BbPRLXAZ1m97+8HWCh+KOTEo7+t4EOIWb2b
YuGj2t42Obt2yL2jqHx+hoW3fPkuGj+n/u/KtGhKcywsv9q5RbasHWwML0ck
8rExqT9+odv2DiCsv7cnCLORTzEozXa6A6Zvvz7+VpyNt+fmlqeldkKejaim
vyQbbV947xz/0wl32F7i7lJslOz/p8Ov1gUrBI+UkzJsFDqomO2b3gXyt2hq
zRvZuEVr+9M3xd1gesNYeKEaG/fYzpwvFekFmRMFP4Z3sbHj6p1jHea90MXc
nv1VnY3RL+J29r3uBUe+eU4vNdko/Sb5SKV2H/hcS2xWZ7FR7rVmtrR/P6R7
Cr47ZchGs/C+9SaHB8HjmOPdfUfYWNAttkw1aRAIRvPJncZsXFjxZcmqpUNQ
NftekmfGRp+H7Y18VUPQ42FxI+gEG236D5zcqTACYldSjny8wMZnw3xag59H
wdnt+Mz6x2xMGHQ6b3NpHOqHtEx7/di49Zv90tyUcVC3VUxLeMLGT5wKmvPQ
OMwcnj6v/pSNlmpMvTbrCbi9I7BzXxgbw0rlp04d+QtPB0vL3N+y0Uhzw98z
zEmYsn63mZHIRr3asRFvr0mwaAm8Ne89lf/uXWBS9iTIlp9g+KawkRC43rVo
zxS8jptJispkY+Twz7p+lWngnlR+XlXKxk5FdXUFsVmQaRafeFLGxkcr6coX
D8zCtUOzh0wr2Lhu7hFN7O4ssJhli7s+s5F76ECO+NQsVMpYX5usZ6Nm/pfd
ijVzoByk25rzjY07l3iupAvwwH+Jyp5bTWyksZdeWLyLB0Yzs79F2thY33pH
KyCQBxnOXQZ139kYc1c/VaaQB1K/yhKed7DRT07h1pJhHnxvfHpqQzcb5z3Z
e7VJlobEQc+ivh42KlnGrFmjSsPoUut173rZOL5vZdgxDg3no56nSz8bFTqE
nfyMaXg6XaVZY4CNR8b3l786RcMyRUl13iAbU86ej3ziSkOF2LmAomE2zlS7
F3Fu0dB3Tffo3VE2enibfkmm9PNoQPn+A7/ZGCrRdeRTCKV3Fye/ER2n1p+0
QNGVGBqm3Xwm3DTBRnuvrkfcBBpKTnvahP9j4y6DpF2X/6PhZSebAuspNjoL
PtB6/YGGLX16a+VnKHz/Bd/bk01DxvEdHsOzbJTQW9G/NpeGEd8kG//jUXjk
X+boUfY8A57aZT4Onk71e/aeil98Q3ifyzwOfrLS9M6ixhP9b7m1gyAHu7tE
TRxTaLimR+rKaSEODuWdlcyKp+EmyQ3+JxZw8H1iXeLjcBoq6W5/bbGIg4Z3
yA/tfjRU99iVZ7SEg/LFv/r+f1+CmQgNBks5qMveKVXkQEPddu0h3eUcjKjr
v8QypaHhikOC7JUcLGISH6WYNLRgmUuDGAfDhZebEptoaO1qvVNDgoO2vkXn
PwjT8FzcOd2dqzioFth8mlbDA9cm1+PbV3MwxzCwbOd9Hnguvua+eQ0H8w0u
zJNEHjx29I9dvY6D1omzWvTgOXgeGZItJsdBZdkx3SSYg8i66LqlGzkYcKT0
hmb7LKSop/MLbOXger41A/SVs1BPazk2oMxBt/9M7r/kTMP3Hd0Xe3ZwsHjZ
kbcmZVPQaz30oF2Vg5cKsiwmdKdgspTGrVPnYNSY0TUp1iRI+22UyEYOigYq
1Y/K/IWNhYqK6QQHT+6R8X3rPwGK47vZSSwOjm3LO90iOAFgqusco81BhfQb
Cm2//sCJdec/PzTgoLQP38M3OWNw1tC9x/sQBx98veZttmsMXG5fn71+mIOy
sX37U9+Nwp2+J9tcTTjob51swYgbgddJGd7HrDgowHgvFHdmEJI788NMTnCw
VHp4np3nAGSKlacesuag/al7n+qf/oKKS62dnNMc1PD0OrC3pQ++vumZwjNU
Pxv2bz8u1AdtrcPL99pzsDHjMOGv3gsjTH5UcuSggYrr+60JPTDpvMh4qxMH
vXwno+6PdAN/rKiDnAtV3/DBsxGNbli5cHOohDsH/Zwdc+60dYK0pnLK8ssc
rFrkkvhIoxM2OGiULfKg+pdoO18/+AdsjyA6BD05+MXD0CaC9gN2fdH7x/Oi
8nVulzrYd8D/ACVpd00=
"]]},
{RGBColor[0, 1, 0], AbsoluteThickness[1.6], Opacity[1.],
LineBox[CompressedData["
1:eJwUmnc81d8fx2+FiOy9996uefF+J7uloiQaNtlFElIpUaRFA/k2JZGGcK89
ErL3npFNZY/f/f11H+fxfp3X+5z3GZ/zfDyumKPvEZftBAKBREcg/P/Xv05Z
5ltDpqEEhXF6G2EO/o5aiDsa34HWgaf9dAFzkJDYHSFpnASjpYmjw6Nz4OYn
+ZHWOAPubvFHvm+ah4aeKrPFvRTInl3t9KP8ARqOZw9m9taCJfejUpm0JXg8
dm+bEn0diGyeLiiSWAYFyi3fc7X1oHf0iYxcyjK8UydLXUhvhMvhFfuvxq1A
Q3fatnn1VlDx0BGZOLYG/KavdFi52uAZwSbjU+kaOH987quy1Aa2acZqsQrr
sBSZ0OtN7oAn5iY/iv6sA87e44xN7oRPWqyvS49sQMyJ2H0ZV7rA2fxunVLm
BggrR+ZN7O0B8QSr299ObIL74ytzDNK9QNaiJSW924RP2y/LyNH3gYZxT0bg
v01Y9wo6ZT7RBwd8xBVUDbbApN3/kVttPwyn/gkgR2zB91Qt173HB6BMz4LI
WLwFUzZfth2tGoDZn7lh3GtbwMaonuyoOwh10X0jk7wE1CrO0glIHwTB7RKJ
0uoEPBmo1HJVYAj0fo6XkywIGCH/3vfenSHwPvjkrdIpAr7ul2X8b2MI1q6+
+LTlR8Dqh2/efPQZBrXztT05Vwk4ayFpVNw/DLQnJGxOxBOQc+u/3nqrEQhZ
l/KeSSKgzheRS/0lI8BgGJ0W/paADh7JnLPqo3Dw19czHB8JeE1Y4OPmy1Gg
+Sy9mJNDwDfNj/cxc/0CsW/Hzl8gE7DmFveY0M1foNhjVXW8kIBzBg+vKS39
Amf6QTXvIgJy/WETNnAfA5JIWHEJNa6Xdjdvf+cY1BjvLnGkEPC0w24be8tx
8B8tnnLIJWAk++25c+RxGM0/ua/kEwHffae/c1nxN8h9n6d99p6AdaE3ZW4n
/4aHgafDVl4Q8I8aTdlT5gm4b9HBP/mYgLxjV0+lX5mAvpzJQ+GxBDRI2lrJ
m5sAscCoWyURBHQ8HPbox9lJIA5LC5UFEPA9Obh2fO8UiDIv79Q7SsBwa4f1
kMIpeBCqk2iGBLSa3qO4W3cazjMd2yWsSMBFYcY7asoz4HR0SM2DQMCqb7Pk
srQZ4DtQmrDRuAXPrFombSRmgT75a7vBf1sgWlInZcA0BzfmxK9e1NuCmN0l
Bjct5qA0Lfvae5ot+HPis039zTmIzft23+PnJlQuJN44u20e9mg2TMzYbcI5
ybOjNxbnQf/l2KF69w1o8Tu6UaexAB/2O4kwy2+AYYEJF6//AvCsOb2/P7EO
rMfkTdInF0Bi8Vp5nsc65ET9eVU38AdcRHTWnB3XgDB5w5mn5h/UPFT+22yx
Ah7awaFn6BchT4ROh0y3Ak3XPR++M1kEJWa2WyVly/Ba8FA5qXgRRoVGffYZ
LoPlQV7JM1+X4Pz2/QrCWkvwKDt9OO35CnQpVrTna/4D+eB6R70LG7AWMjE7
dmceRHOJ1ec/bACZtlbD2m4euJafqH34tQFs1w7q6cjOAyHYmSBKPWeeL6UD
3SvmoPXiSjKt4RYot/re96Sdg2LyPa/x6wSM8bp99JX2NOSfNBa9kUrAS/Vt
BU6DU/B1bbFZrICA4uNig4x3piCdZE86uUhAStTgJNvIJDwiS++qc9+GoWuf
xhpTJsCTTH77+cB2rIz2Chw3GAeXkz4nrTy349rnCx8f/BuDM2uiLNM3tyPv
uUAKa+YY2JBuBkkXb8e9I+MvL4mNAZKtTJ6o78D7108wtLP9Ai7y6FA4Dw1e
D7suoc8zAqwnHycIEGlw16u+B1rdw7BrzdIy14oGnW1eCo49HwYC6WP2fDQN
6qrR+zkpDMNEfkiE8zoNMnrLazy2HILifBZhy0FalM03E/JNGwCdh6YSxzdo
McPR//f8xQH46B0m68xHh8rRp5wZzAfgueikevhhOszIg4iB5n4Iv1lp9qmE
Dj+siruOuveBwZEwf/4XO9EsKL1spaIbvih8CZIp3InCs6PfFYO6QZF28jKx
ayf+l0XLbSfTDYK5tjcPstPj+WT6qMd3umBdiPjs2jV6tO67uWbr2An5vyfK
JxwZsMPw9/HnOu2gXiZWvRTOgExiBed0qfduepJtPc0zBtwn5n7vVU4bPDlU
2SnczIBegmc/j2i3QfDX/2aO7N2FzIOvRqv3toL2VVtesgQjen7bCiNdaYZM
u7tCVcCIq9u2qbZbNIM0sVK89SQjRkezdYpyNQP3mIbS7ANGfGVHs/T1QxMs
7mcxkqBhQrsHQeEffzXCF97Kc7dHmFDnxp5DJkENwPOem3tl+26MVeEjE80a
IMTArdhVbDee3tux8pO3AfY40nMZndqNL5QpUpOX66HuvWXhcvtu1PU7mlAs
UgfjhvWsrjXM6MYVy9CZWgP7GkXIzb+ZkfZpTz/XsRrIdPJz2UPPgtKXy0ke
TDUQeIstX9CEBRkFInabhlbD9qajTs2FLEj3nqwe4v4D4tSn7ERPsCI/WzUT
p993KL7MqXrcnRVbMibd9TS/w3y5Pm3cRVb8W+h23XStEqyPx2atPWLFa/Wf
LtHGVIJAqDJNexMr0lw1MmzNroD9Fcc6dw+xIu3iw46BsAoIZ76SaTzPiq/U
tpgLLStgKLXe9hMLG4YUKGqO/CqHtAq/D7H72TCmUKz0uWw5dDE/uVZ+kg2n
hILWl1fLgNG25PiaJxte05S2Ya8rA58Jtu0e0WwYxncvISyoDDRZPh8zrmTD
28EtnVv1pVBq+29rFdgxWrnaUepVCbSdWh1XOsiObgLqGdPXS2DSeavxjD07
JvytDjdxLgFOf4ZXlcHsePu4Rehz6RJwixYyv5/NjmMtcdv6s4sh9K64WkUR
Oyb/M6ihTSiG+Ecy/Ms/2VG8o6b/c0gx5P+nNuUwwY7HBTS/vjApBqZ8k3g5
CQ6sP6Ro6lFWBKLFlpfs1TiwtTLp/eaDItCsPOR4Fzhw8D9augSXIjjVdIL4
7yQHBvQqWFcyFkH2hHdH8UMObCl/rsjqXAiVcwElf15wYByHfWOifiF0LV5M
l87mwF2LAyx83IVAs+Na6J2fHLh1JOcjbW0BHBNIELWl48QMAunG5b0F4Cn2
jOE2JyfWMBhVl0gUwBWZ1IUCcU40ZM2e3aApgDSN9HIJ4MTMuv15x6opUKCb
9eHYAU7k3VWXcT6TAk3wJSH6JCe2D3p8vfmAAmv7Ct1nL3Iiw+GnsvFnKMB6
pOyw+E1ObHK4LhllTgFJ2yo9m4ec+N+8im2gGgUOOjcxkT9yIn1Xa54OHQUc
Pdv/TRdyonf9WXuWBTJc9OvpE/3JibekKISBPjKkhv76ePM3JwZROK6dJ5Ph
y7XJJ3lLnBg/mBGs854MP27NXZui5cIZlf2v1p6RoS/u3zkRTi48/FaTvzCW
DAsPV62PiHNhsUWe29UIMux8tmVwQ5ULvXfw+ZhdIIPgfzQyuYZcSCfJzcru
QQbVtwysk/u5UGfNX3X4FBlMPjCvCJ3kwoyO6WyKDRnsPnMMWXlwIQvTvoup
B8jgk8dbc/0iF57luekcb0qG60VCX3JucOFtyfDiOCTD4wrx5N8PuFBeSsY9
hUSGjBqZm4IvuPB7G69xqTYZShoVfQ995MKxxQn9DSIZ2trVbK8VciH7Xk3S
EQ0yTPRq7flay4V1wXdlytXJcKG4KpS3hwt3Cn0x9qXGt17Y5V6e5EI7n5br
fppkiLkx9advlQu7MjYYf+qQgdM9XMVoFzdmSDCoxRiQIcWS9dxrPm5cEmow
/bCXDLJKL97Qy3HjwC+F/0j7yPCJhTh0Tocb4378e6BnTQaDhQqhejNuHM3s
uJ5FrUdVy/ET6se5EfR8u1M9yXDk2++Hj1y5sZbmSBVXMBl6nlxuWA7kRubs
m5e5osjgGrqbyf4GN94YZJd+m0iGuVPPzYoecuMnnfXlxndkuLxH7br4K27s
vTLmmFxAhng6m9XxUm78w0wq0p0gA//vX5r7m7hR2YLGQmgHBV7VBPtnDXJj
f2KoSKUQBZQzd31gn+dGFgW1+wZ6FMiLTxoPJPCg1xWJ+VhbChifV5bsZOHB
nfPHGcuCKVBnU3xaX4QHJ0du/xx/SoEh/pG27YY8WD02tq45SgGvjUB21wM8
6L6tJyZwdwEs9e88+MOeBxeXCCId2gXA9Fqh4u5lHizvNzfd+6AAEqIKCH9i
eFCk646VZ3kBiHoe0j/2lAd3f8y0ml8qAE2V858F83iwmz9Iwdm1EIrZaGev
VPEgB+doUtB/hWD5N0F+uJ0Hr0Zzv9ToL4RTefn/vVvkwQumQUFrjkUw/mx/
LxMdL+r9SNiu9q4Izof38fpx8WKn1TCH+0IR3Nq7PV6LyIuMD9kXhM2KgV36
Yc2TvbzoqSfKF+VXDEn00js3jvDi7haRiBfPiiH7p0V4mT8vUtbfeKstFUPX
8XteVlnUds7Efz4VJeCsJ5H2uZAXmeJnPYibJTAr+HWYu44XHdYjR7V0S4Fm
qMOud4oX5Y40sBnllEJcuWcCrvNiO9sdhYvLpcD7dr3xJSMfPoriC91jUAZK
XqIWnvJ82OH+k3mJel/nHvwU+VOXD5nfyrzkEiwHIzXjYlULPiyxMi9X9yqH
Y4tu2ktufJi74MU6wFUBERFZUpGv+bCZ607O7fuV8OPKjpjnX/gw6YVcm9pK
JbBfOT6TX8aHHiMMqaVO3+FV2FbO/CAf9t+xj91vUgXToUcFds/zYefpvR+f
UqpAK/TtFVkCPz7K7yeG6fyAqpBD5qeF+VHmlq1QqWE1sIW8zAhR4sfxv/y6
d35Ug92lJdYEfX70tfHb+nqiBqYuPu+stePHf807ru28XQssgbOeeon8SB/3
OdpZpx5sL+ytt3nDjyrB9Vcb/9ZD6vlEDf+v/Mgg58B1xL4B1ANg/W0zNb8G
0/sOBSo3+j84UzbEj+3/SNe+P2mEcr+x8r55fiyx3C7KxNQEx3zvxnKxCqBM
+3979m02wXOf4XlVEQEcY+xOfhneDOPe2sf2KwvgB5rV3N00LRDi1S98fb8A
cruwBY4It0KKh8rHuVsCaPYp81Xs03YYc7/OyfRYAK/ybd9jZ9EBqu7twTJv
BXDAU0FxZbMDSl2v7DlVIYBlf/nN31C5k9G1+fWlFgEUNrEYUN/XDdYuMrse
DQug6Ysk2TjhHhh1qm+q2SaIC3qDW596e0HZSUJ7jFUQR+y/pGz86IMgx4vP
tosKYmlW0DXeon6gPyvirGsoiEbTt9UdhgZA8ZTvvzchgriTsPs5r/gwBDqU
nSiNFsTukxoCJYXDUGjPU9j7WBDpojQ6s86MgNXJopuc3wTxtOlkScaXUbhg
y8J77Y8gGvO9y7+WMg4Fx51Ck7cL4fpmd3qt62+gO/5tIJdNCAnvb/g8Ik7A
Y5vT72ZVhHDs7wce94FJIB/J0nPwEsILVbnMO4Nm4RfzwKcLIUJoKfFvJVJh
DthrWBXu3BJCD/70yKnkOfDcGyBAfiWEbinvBNej5oGfqLnO20vNV6vKb+v9
B0K4yAUtB4Txj2nsb9ZjS/CmcVJz6qQwOiQ2DP9pXIKmWMHMHZ7CGHBK5X7j
/mWQpwtPUb8pjNd826PvGq5A5yJeiS8UxonlQ2++Mq5RudZ/6W2tMGbENFxh
u7QGqr4vfIu6hLFpWTL19fAa3BrbcWZmURjLQq/352Stw5eXxA5aWhFMN73t
0826AQOnXayEOESw/nJUTpTPBuh0VOJ+FRFM+7ndYlx4E5wfLuU6GYjgyeo7
aqf8NyHeSlbt8j4RbDTV2N9ftAkUphPv7p8QQT9ZtRrrXVswXhUtlu4mgkSh
waIMqy3gvJH/pCRQBPdpdDxvv78FuGeSrfO6CD5zXUmrbtiCx3n7t9OniuCT
wyeH/4kQsDwwLEQkUwRFfgQfjdGh8rha5oIWRQSjVCfq1g8SUHCmz/NgtQiK
/6FZPeREQPN0lmGXDhEMuNwcGxVIwAuueDLslwgS5uyn024QMFXcv/nhXxG8
1T19LP8BAV1nG6SObRNFnJy9X/acgKEHfg+epRdFFz51lp/vCHj//bYUbxZR
dCstjR3IJmAaA7/dJW6qPiX/MD2V7wvd1LlvCImi1M4bWYeo/N9SYdkULymK
504dci4tJOCEhFNckoIoXhSRWvQqIiDh2mXLNHVRzG1N3GNPjXMPPKD7oiuK
z28Pv00mE1DRMKO0CEVxnqBbZ/iNgEZJ5eE1ZqL4KuT3qwPU/LarPXrtB0Ux
lWfNooM6Ph/bf4tDNqK4s+rF6hSVIyNzdn+esRfFlwuKO58mEPApp7TvqhO1
3fuheDqGgB8DDBXozlHHE/LGezGMgJUNx8bYAkRxztHFqNSXgN3Kvi+FLoli
66Fgy9NnqONZ+3mrJEIUnQN9aD2p9Q79rujjcksUFd/SXlMnEVD4zITOh0RR
3DbPybyHjYC+ihbCh5+LYv38sQyrf1tQvPx2x7831P6H4aBI5RY43nOp088R
RbvcZlpdxy347FD+eaBAFCuazH2KlLaARl7iSWSFKB40PyVfsLQJr0sHnGpb
RLGPhuZuTNQmjP85uXLyjyh+e33aT+XJBugW5/dtrYriyPzNFe2TGxBzh6/8
5XYx3HqVVHhRcAMUpdrjJtnEsGUpM3oyaR18jx2RvKwqhg0mcluJiWuwmGt+
6Km3GHIbPl/huLoCZjfeEg0DxZC2aOggN/V8PT5Mxz8UKoarHN4mqmvLoDtR
NiJ3Rwwdew/T/wxchlABCMlLF8PlQSvVUO8l2BGu+bpjTAyFr9ywmTj3D1j3
iq9xO4rjDtu0P7cK56HJ23dCx0MchUNzDN7cnoeHjymddn7i+OztLje9E/PA
N3MsNyVcnPq+YRSr+jcH4k9uB0o/E8dtCR4/QolzoDn7d1azRRxPd2SsucZP
wzKfUf/xbnEMOcDUc1F3GvKN79ZdGhLHHp/DRP/hKTB8KvehYE4cHe/1avHp
TYG5ySlPk90S2J8TsSi4MAF2z76PWJtK4Jr3K+vK2+MgWMnZEnRAArMUr3VU
GI1D/9zZssfWEijni/mJq2PgbLr+X4+jBN4ejGTI8BoD73nV085XJFBctUnb
3e4XRJg97TyfK4Ed3263Z9mNgFHAWNWjIgkcfa7pu0t4BGiSibnfKiXQKfEL
neDQMEQv1CWstUig9u3DJAevYbifvMP6+rwEnvXUF5CJHoLXf7zq7stLYp70
rojj1Pu/UlGgKV5NErn7lO8fyB6AcZcfrXE6kniS3v9AZwT1+9Ah1RtjKond
LwOi3osNwCdK3+Q1R0kUfPZ8SLSlD4puWDGcfyqJRY9/5gvK9cBA4SaT/3+S
6HY5NNSmoxu2L2ew+qZJYhYl2zfmVjeYejLwnsuRxGq2j7W9k11Qe7BU2qlJ
Eh9n3wrpL+iETh6i8dFdUjiUsJC3PbYdVq2GzA6zSeG911BbbNkOgjHx+w7x
SqHjmP3HwwztcGZ96sg+aSnc78D8euhWG/waeH12r5EUMskKH4241wp/3vFc
0QiRwvi15PlPlc3AOVxxTe2qFPo/+OgZF98MWoIXbqrcksKCu1uX+E42Q0hc
Q6xCghSmc6KX1kITEM5HJ0l8ksIi7SIla9km2K2/lscxIYU7SNzGlz41gOfw
7K9381IoW2YW/PFaA1TGjHDgihRyujM7PjjaAOGdP7296KXxBMHx3tuZepgL
ShWrkJZGYyspCfrYOmjJNokOcpLGmyvnqlt21ILqCb0cpnPSaLS33rntWw3E
ElSGXwRIowTZymneqwZMD/Ea1F+Vxug3mj4uXdWQOzUxJ5MqjV0vhSomSn5A
kky8bWePNPp2lXxJK/4Oy3WRN3xHpHE+ew6KIr+DTdClT7RT0ujis7xaYPEd
mCscmdTXqPrU7CH3tkqIcNQsjuGTQTum9APyqxXQwyA/LSomg5CQJ6NTUQG6
2cL832RlcF9sZB3fvQpY2Np5YVhbBhNThX4fVKgA5+QuGf1jMhgzQJNs6FEO
xcb11k0OMsiZlV71Tq8chKbKrrq7yGBvKe9SG1M5tOl96H54QQbDqzI1fD+X
gXnHlbvT92WwMUA+/BRDGShySC2l1MuguJ9T4uu2EljlpVf+3CaDcjzC2W+/
lkCV8KTz914ZlK1aNdN7RH0/y2c3zU5S80U2xzAdK4GkPQaZSC+L6Ts5vpr2
FYOnmeioNYss5hJ5GDJLikHnwA5BD25ZDM7doZv8uhhabH9E35OURXY+9XEW
32Jg8rNxGUJZtO26+VOFnvpeD9RJWjSTxYGI5Uvh/UWQdlmgedchWWTzd2BP
zSoC46hB1HCQxRcbtg9HjxRBaIq3YOQlWZQPKpOxf03ljVdWRx9HyOJ57eRn
vqGFwJuuEZMRJYsx0YJ/Qq0L4cvXlaWWR7LU+4xMurqzEKZqbzRLfaLmo8Rq
CF4qgPwm9116ebLYURre8ft4Adzq2LfnYLEsVoliWQaVjyRH2LKC6mTxokc7
A9sqBRZ+/x2NaZXF99xXvmb3UKB4tl3weY8skvDmAdNiCtivJcd8n5DFSZEP
TPtjKCC/7WpJ97wsWl7Yx1noR4FlOufl2WVZFJ36c1GKynMP2eVdeXfK4Z2x
czxtchRw5N2drMgshw1k0BTlpICq8FwzcsnhL2vp82e3yFArl7PHQ0IOl189
163pIMNTlSfBYfJyyBDQ+fRfJRncNUOz7qnJIVNTdy1/Dhm0SKd/vdaRw9G/
M1r6b8hAs8dIKB/kMHDXSTxJ5dcmUynrOlM5TDVyt7oUTYbU/fS3hw7IodnP
U3WJoWTwOTJZsmgthwe7borl+pFB37ZueZe9HCY8kc3udiHDrlPZKiJOcpin
4TO6w54MHU4PXTU85TDFVu+d+lEyvPG4mGzmL4dN2WcfeVJ5/IKvXcvJYDnc
9SJsf6YxGYwCDRj9rsjhxm0ZfwKQgfWyqFHkTTk807T82kmPDH0ROy49jpXD
8faY2C4tMry/+Ssr46Ec7t8KqnYjkuHLKgvriSQ5HEgXbt1QJwPFR9eP9pUc
livfcRiktiuGHBuy38sheWrAnpuqrzt2R/XUZzkcfp82/R/Vr736a/wushyK
jwgYRVPzDRj2z+WUUvPvPn+nkTqe35/oDztVy+H15782r5iSYUFaPZulSQ4D
2LNqnhwkw9rTk2yUTjn83NEkKWlLrS/LDX/3QWq99rHelnQiA9P1zEbO33J4
+V/O/H++ZOBaalcrmZPDvcx3M16GkUH43Lb73sty+Lb2DItaLBmk++UX+Ajy
mO721/twChlUjlofqdwpjzbc7IJM2WTQ+R72KYBFHlsXH3m7V5BhD+ktuwiP
PEpl3j/s000Gy6yGgBpheVzkf3dK5g8ZjkqsNl2UlscJDWGfZCbq/kyU0JBU
lsfXs1onumQo4MJ44EGDpjxWG+usjBlTwOdK0J9QA3ncZb4l3eBEgStuPz63
7pfHV+8j+ezfUuBW9wLHNWt5ZMh/z8VXS4H4Q4IXlO3lUWzVWmhwgQIvtH2J
UefksT1KwLvCtADev3/8UOO8PB5PWAlcP18AX0RK//aHyGPvxPUTQS8LoHIn
11edGHlkMzCuvcBQCPWXDblG78mj5ZsDHvxYCB2zboH3nsijgeIKncmlQpho
z9ecSJPH0YRG5aA/hfBn38ijhI/y2Ml1z+gtsQjWi3YvGuXK49r5sz+zgotg
d9qZnGff5VGjycmzjqYYuAVjuM3r5TGl93nZcYViEI7/HPS3TR7fFeWeDT1a
DKrBdNoHfsnjx9XF5Lq0YrA2z/i2SaOACxyjGdIeJeBAaeV5z6SAJwq2B4il
lICr6tbF45wK6JPIOUJsLYGLvEd0Pkoo4M0TW6XTFqUQcefyY3sFBVQkGrmQ
o0rhFuH1Mr2GAloPpk0tfC+Fp+NLuWeNFFCKc8Vk/VAZvLQX42O2VMCG+Hrn
9cQyyGiwvJR/WAFtaJ+Llg+VQWFusi7HWQU8q9KtK3K1HAZv7c0vv6KAXkYH
xA6NVIAlY53ygSgFpB8UeUJvXAmfYm1ftsYp4FNClrz720q4dt/7zq9kBdQz
mPybcek7THAuE3xfK2DgyCPRnvHvcCTxWuBShgLu14++aWlfBeJJiafoKQoo
RpM9mWD1A2KExZvjyxTQdCbFpLHxByykZpjx1Sjg30MW4zS21VD6ukRVvksB
tZgvy8tcqAGnrMnt+5cV0EKSNHtj/ifUqgVdbNlSwC3/hea01DogfiFM2e9U
xOI0B7YXx+qBJo+r1ZtbEetrKAYCXg3gRUq1WBRSxEZLsyRiUwO0FMgXhksp
Ij2ltOKQfiO8KoW3d4mKyNw4VKUh1ARMJtUCvPqKGMeYNX70YRNc+G4dn7pX
ETmi+HdIsTaDca3HpewjiihZwdPwhLsFRlsf7Gv2U0Sr+dfxzs5tcNBWuPhk
sCLuKYphSKRrh5yuNOLIFUWkuxnZI5bVDjf7C4T+xSniRE5ZiDJnJ8ycNb8f
lqCIikZtWvKNnXBspImOLkURy6otB/wfdYH077FZ7g/U/AWKrYPEHog7F+D8
/IsiLgYqtUez9sLi9HqHDEURC9ZK34T+7YXKBbZSnRpFnD/s9XVPWz+4rZMe
2v2m5sNdQgw0Q9AQXkk/PKeIl2Oag88lDIHOtsNh55YVsVx35vaA0jDQ07m6
hu5UQh92osZZrxFIY4nXSZFSwrVegmex3Biw3uf/IK2khN7Rzcerfo1BMOdr
sSyiEh5l+C/pyLtxMOfL31W8VwkvOMR59hpOwG/xkZ7Bs0oY5C6Tz50+DaU7
HE6OuythsKmhft/VGUgaae2c8VVCU9+26p8Os2D15nvbWpgScj/0eZ0fPwc5
cu8buJ4qYelLmdYB9wW4rhpQbtGkhP4pgb88LBbBnm3SyKpTCVWbMw1PVC6C
1oJTybEBJfxvt7x2mdESTHy2KXSaUUIv/9jjQrrLYKWtmxu2SxlvcLaqhHOt
gjzvJ61INmVsLe5f641ahR0r8l9jeJVxhOS9NrG0Cjn5gp8SpZXxOWOMql7D
GggZEjKyjZTxpOA2myD7DVgUviSfa6GMAn9+Ca7lbEDD1nxaoZUymt76I1y3
exMiS4Zf15xSxoIjA29/Z23CqRf2kk0uysgaHC+ybW0TtK+3vujwUkY+rqR8
GqMtmDD+/nw0RBn/EJWvPCzbgnIpFJ66qozvdmSuMm5uQTJdXtLCLWVUGOWX
leAnYNCYmsDKXWW0LrKtEtUgoFVV+pOtBGVUqRqQ27IgoPw7CV66FGX0FtlR
XHyKgDQxSQlMr5XxZkzfT3d/AvZ5cnFxZCjjbZeZgPWrBPy2L+4B32dl1Hpv
G301noDxijvZRfOVcTWhPmYriYCeuyPipUuUcVFs/6P////AeGaZWalKGaVT
yJz0H6m8XO8fq1GvjBIt0bvf5BBwOWuCUa9NGb+seYQ5Ufm/Md4pBnuVUe9R
78y+QgKm+/fQm40o4yOaW4nniqh8f8Qm6sCkMubpxsvWU+OnNOporReU8cnn
moLrFAJqc5pF2q0oY3C4UmtCLgFZ/xVtP0tQwcn0GWnuzwScaNW56rZTBa1+
v8pgySBgeU72ljezChLVO4PvvSRgSqJ8+AUuFUyROJX/7gkBg4NfrocIqqB1
p91L1zgCHj4hePmqhAoGCKo6tFHr4ZrWLS6qoIJu7iJ5PwMIGLL0tLpQXQUf
8Zy8fdqRgC8e8fGv71FBuluDnY8NCJgz0lHy1EIFdd87FjrKEbBG47GH7mEV
/PnWtp6Rk4B/G7nzgs6ooMfTfXPBtVtAL9Z2hstdBY8lus1UPtsCIb9H9F98
VXDsOsOolccWmDJz2s6Hq+DynoGQO1ub8NiSbelcsgoyCB5oTBTYhIwnDSm7
XqugKEX/VUn/BpSM3zV9l6GC+UbFYosvNmDiJnPCL7IKugqT9FulN0C/jFHz
bJcKRjZss7wrvQ5zQtd13zOqol9ontJpzlUIqXCMDWFRRUMDTdPQxhWg8TYa
tOBQxQ+vsg4lxa0AH2Vb9Di/Kua1MCoxMqyAkV1Eh5S8Ki5nOGXc31qChwlh
F1PNVfG+XK8qrvwDHZbgr49uqCK7cMLpQf0FWBs9yCwZrYrf+kwndjAsQCFF
yu3THVXs5lV9+Kx1How9m3nrH6ji2pYkj6LfPFhVKIfSv1DF62GmNF3pc+B+
edTocqEqTnY+Uxz1mgGFI5RnDKWq+E9UjWWOYwZmZB/8TaxQxaE0scsj5Gm4
0IZvvtSq4kHbed6bzNMQoZbEMNOlijZmMtLxhZPweOxIw5kl6nxHmS0+mP+G
k4VycrOrqhj4kqu1cmMchB8RroVtqmLtBaGEr5/H4ZVRpsZTWjUkDT8PYhIf
h4/JDInNHGp4/PMH0wD6Mag6WuxgqqqGGZJK+WmrI3BbPjGnRUMNi/hTra0o
I3Bwmw+Lk7Ya5r+DU5/CR6AlU6DkiqEaznxNa06hHYEBhouSefvV0OZT5uC4
wDAsFSlNKniooaKtEqHEfRA6qBuJzlsNjyoHfFxVHYTcbrHKAT81nLrczTa7
MgDBS1z/PQpWw26W4uit2AFYVd48thWlhvRDV012hfXDZnJdadMbNazaM3+3
ILwH+t6bq35IV0PC10eyKZI9UJRXmhyVqYZy0fePfqnphojWnGD9HDVMkXt5
IkCoG7btfq78pkIN32UGk+vrOoEm1PfppRE1ZMm22L3u0g4j0b93Wo+rYfiv
dbUYoXaoSHQKVJ6i1scxIYS7rQ1ufj5uNfxHDYUrx5mELNuAfhLoDuxQx/gP
Be63DVqB0Y41QFRcHb+yPn9qc6gZptxi+lel1DHchm/JgasZagNpDrTKqaPc
6iEarZ4muHNvWSZGTR3f6Irct/RqAuYfA71/UB2l4uNSCx41ArtOtsX30+o4
Npy/+J6xAcR/niy566SOuUEPKr9S6kHdkU7X1k0dKz1shO2c6uHInZOyv32o
4xmQvej6pQ7uD9DuZAxXx7srslpiLj+BI9qu/GCSOgrzbG9o36gGSWFafZ5U
dRyKc4po/1oNxM9Zn/tfqqN8iYTtsE81WPfSvPR7r46+dzV72Ed+wEO1rKv3
89VRVkenNrirCji7dkBbhzq+XznGUfa3EiR9M3NSetQxMulxMx+lEog0J5Td
BtTxZexHjoORlWCtnCm0PKaOi6dsr5jwVMLDa7brfEvqyLEk5KRkVgGveHZc
GFqlzl9/p4MSVwV8yfgwmb6pjskGeVVLw+XQ0ra9m0SngeVd/KrD18uBS+FD
ngOXBqpHRF7qri0D6eLjatJ8GvjZZib3b2oZaNlsfzcjqIF/z1dsfg8sg2NX
jj++IqmBiuDw/qFYGSQ0b7v4n4YGElEq79HVUuAOPUYcPayB/krt9mVnS+A0
Ln/0stHAkfqu+0NGJZBG81Tpr60GMoz6hMdKloBubK/0jjMaWJCiKnztdzHY
pzjzifloYNLfbO8fl4rhtSNdQpq/Btpo+32SO10MM9Jp7KqBGvi8wVeM2aQY
IrImGSFUA2fmjM3OsBfDy+KATfsYDUwkC7+Xdi2CqUjOyyOxGhiuum9xQ6cI
iBY5S+fuaeDmvqeKTUxFUNm4MhfyWAOlxIyPen+j8sFQxPDjNxoYNQM2R3gL
QeOt+BnRdA0sPXe66e9CAYSeK+95+0EDVcoMs+7UFcDuvzvbcr5ooIRNiMKz
WwWgSnu3qqVUA8mVK+/k6Avg0g9VE/tKav0+nn7uPUGB0timkuEfGvjPmU//
1U8KHOXmJi80aCBN5vq+3wkUSOr6ph3SooFn/qXELIdSYCTlxJdtHRrYff6/
62tUngqSSf7A2k+dX+BN1z4iBYomDeUfD2lgepq5WpEwBeg/DrwR+aWBLgHy
wY8YKPBURzJVeVoDm0jSIDlEhuH1CsGcOQ38MSPG31dPBsUStycGfzXQpOdR
UnwhGQos3t/fv6aB8Qcy5Uep/EjHfIClZVMDc8tztqLjyXCwaeb2ye1ElHPY
Yla6TobEhHj6YVoi3mLVK6gPovKvnfoNTwYixnTw+p4/RwY5kZZtC0xE9Fc8
EM13lgwBw4Hhl1iJOFtw6HbZcTKQ3/KsETiJ+PUCofL8ISr/euVdvMVDxH6L
1jZFczIcUD35l0WA6qdlfHJ+DxkS/q77JQoTsUWjbK5Mn8r3uSnTwuJE7NKr
Ir7VIYNMGHq+kSJirvGP8mRNMvjtGfqlJEfEO5b6hukaZMiljXT6qkjE8yaJ
hvVUvt9WLTWgr0pEsTVaLxZq3DLuu325BhFZlF2UfKi8/zGaaSZRm4iOqTZ/
1bXJwH3j8JVzJCJ+T0i/foREhtCIBFYAIkYxSdM0IbW+l7v/Y99LxJn16JQc
M6rfRVGNX6ZE3Ov0+DKtFdUvwKU8z5KIsnI+ZWUnqH4+6TaxB4k4OrCHe8mZ
6ucx++vMESIeFSOFvfEnw5AzMZh4jIibxKeGnVfIYH7mEgO9HRH9XJ+nJtwl
Q+bJwqfdDkRUJ9z+PZpKBq7jOxSzzhKxdX/y6brPVL8j5gXXXIiYuuBnebyK
6ncg9uAxDyJm7r5feKuP2t+Yx3/Dj4iWS2lDjKwU4ET77Y0XiPjS3EfUX4EC
IaT/HrwKJqJG5Ejna3MKmKkr5OyLIOI5Td4vr29RIFPJz0wkkoi7DPaNR72n
9pf72rEQRcRa3Q0xtwYKDIjA2pO71HooXXM8JFoApgKRd7wfEJE5zLnWf18B
ZHD/ENqTSETpdw7nKoKp52X3URxPofpP2njs6SqAAfrHjeQXRHzS9iAxhrkQ
TGl6He++IaJzW6ivqUkhsK+53tDKpK6vdqixXX4hBC++5971iYjG4W6sXcuF
0Dc/97b3KxGfeosS+PWK4P14SHVkARH//Ne6W6WiCNhHik7alhAx1JDomLiz
GIL7aaYVKoho5MGRLKFcDMZtcSzNtUQsU2T8xRNRDOmNzalvGoh4sGzt+LP3
xcD6k1c9pIWIe6SrJwY7iqG37IW1WA8RfcGkYkGnBIKyc574ThJxLCrmOANb
KfRkrMnvnSWizHTXiwv7S8EoDSncf6jrE7PorxpTCizPq/sKVol4r3TX9X9M
ZRD0lMXv3iYRNXsqcxWPlEHPI+ttLts1MV2X9gTr0zJIu9MnwbRLE5sqgc1I
vRyYb0l87d+tiSIuXOTqa+Vw4bq76Wc2TYzdbXPMr60cMGTB3Y5PE/nKOx9H
R1VApxtdZpqsJjpJ1USkcn6H4PtGxiRFan/ZfMZjId+BuyC866eKJh6r2tf8
bfg7WLMv0f3R0sTzayHM7KVV8EdfI/mGniZmnZBuOKb9A+67+WrwGmqiVqZ1
f//HH9BAGTttYKKJ04vmFW7Z1eA7JrFYb66JWzY09EU6NcDMfuaO435N/KA+
9Jixogb2u3XkRh3VxJl5tbOW07VQxfaDremsJlJ+i59Sv1YPbvq0ac4u1Pn8
SFILF2gAOrc9hkvumij8pDDA8FIDGFPyPAX9NPHxs0h7a2iE4V//CFnnNfEc
8dDk7NtGuMamnrjnInV8e7sc/DmboNg1vcw1XBMDPHSTilaa4PS9XydWrmri
joB6cndAM2ySxedu39DEB5VL6mFzzaDP9kww+44m/hQ+k7K+0gK55NuBa0+p
flWDz6ct2+H4r++McSmaSMzPG5ObbodFVpoXoi80sW+3P8n5UQcQXUPrTN5p
onjngO3L5U5ojs917sjQxOalaVP2L10QQP676vlRE3e5pasfDeqGj6zeMvHf
qPW9qDIsSeX9Q6R3BeJkTcxLqdomMd4LMy6jR78WauJI/i7nn9/7QJHsENFV
oYl/UlaCrxwagDSXg52SLZroa1+iuffEEJjFx/h+a6fGDxr21Pwagl/5lbSW
3Zp4G2VX5oKHQZIV1H2HNFGiMvCG/fsRSM1XuZ03p4nauQt8tpZjAKPnxPb/
1cRv2VOF5zbHoI8l7Vvfkibut9clXvg2DoIuoiM7tjSxoXC06KjOBDxmYTM4
uFsLA7NWznefnwbXkrDeOlYt/NfqsDRpMQOa5yfCDnFqYfT1fd9kJWehqa2s
0EpAC7taT5cbBszB7pQgPCqnhRnvVCjWZgtwTbFnr62JFr6pqvuWJ7EIVn3m
Ix3mWkg4tNHpnroIIvFfI0/s18LdnTtLXwkuAeVPXIXdUS2s+UVn18O+DEv5
e8wczmrhlFqk0dTsClR6ZY71Omsh/bmd9hmOq/BQWODWKXctjChwJis3r4L6
tb9Vp321cGb6ncnbjDXwsnhr6RimhdtWHgRJ6m+A3hrH5FAENb9lzP23iRvA
8CHitlOkFprGzvlGz27AG1a7WufbWvgi3Fpz/sEmBJZWeo3GaeHdgDfrewc2
wfiCxm7X+1pI9FtVviu7BYPtTAfdnlD9VZUD6jO2qN+fSzNjSdR6yL28/2F8
C8JJv+LcU7VQ5kDqvDwrAQ9MH1H5/VILf/sJcwxTeVPweVG9x1stPFEwnR6+
h8rDVop+E+layHKf8GzrGAHztj9hPZephfuvCHxw9yTgrS+02ZPZ1PXpS7Yp
vEzAY64Bh72+aiFDThg73W0CSvH2z0/laqF8TcoH08dUfv2x7743RQtXW/M3
oqg8XXo5V32mSAv1tEJ+NFF5+56SVLNPmRZymE53qH4h4Jn+e+dnK7UwrlH9
SUYeAZXvbXL4VWvhyh8Jh8MFBNwwOvdl7qcWLs/CiDyV/2v/tlv7N2phwlLh
OxNq++kb43/zLVo4IjXkk0nVe9hmPwro0EKzxaSwgHwC6uwS1vrTrYVe/Q/2
P/9KQDpKTNv5fi0095p8bZRFwFbvpaC/Q1ro0XTEx/MtAV+JOPME/tJCB4G6
D5IpBAxobPj277cWMv8aCLzygIB7rhvYBk1T94NfUeutKOp4vQ7s3juvhXUP
NtjFLhGQ38ahlOWfFu5c/3HxoAc1n6H3xZ5lLbx/9M0TcVsCLkiHKb5b18Iz
J99VZZoQsI8ldjCQoI3XsJ6TRp2A1ctJCUY02igX8UxZQ4iAL6ophB5GbSyJ
860rGtiCuM+1X9NYtNH1rsjCysctCEnq8Qzk0MZ/fAYdLle24IjPeguzgDaO
ne37ZsqzBdvZ9d/tkddGHUuLZFmtTZhZ3XeKWVkbzXy6uOZXN6Br+CRHt5o2