-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
312 lines (278 loc) · 12.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import time
from options import Options
from data_loader import create_data_loader, Data, map_data
from util.util import AverageMeter, DictAverageMeter
from util import util
from models import models
# from util.visualizer import Visualizer
import torchvision.utils
import torch
from torch.autograd import Variable
import os
import loss
import numpy as np
import cv2
import sys
import tensorboard_logger as tl
def to_gray(x):
return x[:, 0, :, :] * 0.299 + x[:, 1, :, :] * 0.587 + x[:, 2, :, :] * 0.114
def visualize(data, warpped, global_step, sid, opt, mode='both', name=''):
def draw(img, pts, mask, color=None):
res = img.copy()
assert(pts.shape[0] == opt.max_matches)
assert(mask.shape[0] == opt.max_matches)
pts = (pts / 2 + .5) * (img.shape[:2])[::-1]
# print('pts={}'.format(pts))
pts = pts.astype(np.int32)
for i in range(pts.shape[0]):
if not mask[i]: continue
cv2.circle(res, tuple(pts[i]), 5, tuple(np.random.rand(3)) if color is None else color)
return res
prefix = util.train2show(torch.stack(list(map(lambda x: x[sid], data.prefix)), dim=0).data)
unstable = util.train2show(torch.stack(list(map(lambda x: x[sid], data.unstable)), dim=0).data)
target = util.train2show(torch.stack(list(map(lambda x: x[sid], data.target)), dim=0).data)
warpped = util.train2show(torch.stack(list(map(lambda x: x[sid], warpped)), dim=0).data)
diff = torch.abs(warpped - target)
diff = to_gray(diff)
diff = torch.stack([diff, diff, diff], dim=1)
fm = list(map(lambda x: x.data, data.fm))
fm_mask = list(map(lambda x: x.data, data.fm_mask))
for i in range(len(fm)):
pts = fm[i][sid].cpu().numpy()
mask = fm_mask[i][sid].cpu().numpy()
img = target[i].cpu().numpy().transpose([1, 2, 0])
# print(img.shape, pts.shape, mask.shape)
# print('mask={}'.format(mask))
img = draw(img, pts[:, :2], mask) # stable
target[i].copy_(torch.from_numpy(img.transpose([2, 0, 1])))
img = unstable[i].cpu().numpy().transpose([1, 2, 0])
img = draw(img, pts[:, 2:], mask) # unstable
unstable[i].copy_(torch.from_numpy(img.transpose([2, 0, 1])))
vis = torch.cat(
(unstable, warpped, target, diff),
dim=0
)
expr_dir = os.path.join(opt.checkpoints_dir, opt.name)
prefix_grid = torchvision.utils.make_grid(prefix, nrow=1)
vis_grid = torchvision.utils.make_grid(vis, nrow=vis.shape[0] // 4)
if name != '': name += '-'
if mode == 'both' or mode == 'save':
torchvision.utils.save_image(prefix,
os.path.join(expr_dir, name + 'prefix-{:0>4}-{:0>3}.png'.format(global_step, sid)), nrow=1)
torchvision.utils.save_image(vis,
os.path.join(expr_dir, name + 'input-output-target-{:0>4}-{:0>3}.png'.format(global_step, sid)), nrow=vis.shape[0] // 4)
if name != '': name = name[:-1] + '/'
if mode == 'both' or mode == 'log':
tl.log_images(name + 'prefix/{}'.format(sid), [prefix_grid.cpu().numpy()], step=global_step)
tl.log_images(name + 'input-output-target/{}'.format(sid), [vis_grid.cpu().numpy()], step=global_step)
tl.log_images(name + 'diff/{}'.format(sid), diff[:, 0, ...].cpu().numpy(), step=global_step)
def train(epoch):
global global_step, criterion
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, data in enumerate(train_dataloader):
# measure data loading time
if opt.gpu_ids:
data = map_data(lambda x: Variable(x.cuda()), data)
else:
data = map_data(lambda x: Variable(x), data)
data_time.update(time.time() - end)
data = Data(*data)
output = model.forward(data)
loss = criterion(output, data)
# measure accuracy and record loss
losses.update(loss.data[0], opt.batch_size)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
if (global_step + 1) % opt.print_freq == 0:
all_loss = criterion.summary()
util.diagnose_network(model.cnn)
util.diagnose_network(model.fc_loc)
visualize(data, output.warpped, global_step, 0, opt, mode='save', name='train')
print('Epoch: [{0}][{1}/{2}]\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Learning Rate {learning_rate}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\n\t'
'ALl Loss {all_loss}'.format(
epoch, i, len(train_dataloader), batch_time=batch_time, learning_rate=scheduler.get_lr(),
data_time=data_time, loss=losses, all_loss=all_loss))
if (global_step + 1) % opt.log_freq == 0:
all_loss = criterion.summary()
tl.log_value('train/Loss', losses.val, global_step)
tl.log_value('train/Learning Rate', scheduler.get_lr()[0], global_step)
# tl.log_value('train/Batch Time', batch_time.val, global_step)
tl.log_value('train/Data Time', data_time.val, global_step)
for k, v in all_loss.items():
tl.log_value('train/loss/' + k, v, global_step)
for sid in range(data.fm[0].shape[0]):
visualize(data, output.warpped, global_step, sid, opt, mode='log', name='train')
if (global_step + 1) % opt.val_freq == 0:
validate(epoch)
validate(epoch, False)
# if global_step == 500:
# opt.id_loss_weight = 0
# criterion = sys.modules['loss'].Loss(opt)
global_step += 1
end = time.time()
def validate(epoch, isEval=True):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
dict_losses = DictAverageMeter()
# switch to train mode
evalStr = 'NoEval'
if isEval:
model.eval()
evalStr = ''
end = time.time()
for i, data_raw in enumerate(val_dataloader):
if i == opt.val_iters: break
data = data_raw
if opt.gpu_ids:
data = map_data(lambda x: Variable(x.cuda(), volatile=True), data)
else:
data = map_data(lambda x: Variable(x, volatile=True), data)
data = Data(*data)
data_time.update(time.time() - end)
output = model.forward(data)
warpped = output.warpped
loss = criterion(output, data)
# measure accuracy and record loss
losses.update(loss.data[0], opt.batch_size)
dict_losses.update(criterion.summary(), opt.batch_size)
all_loss = dict_losses.avg
print('{evalStr}Validation: Epoch: [{0}]\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Total Time {1:.3f}\n\t'
'ALl Loss {all_loss}'.format(
epoch, time.time() - end, loss=losses, all_loss=all_loss, evalStr=evalStr))
for sid in range(data.fm[0].shape[0]):
visualize(data, warpped, global_step, sid, opt, mode='both', name='{}val'.format(evalStr))
tl.log_value('{}val/Loss'.format(evalStr), losses.val, global_step)
tl.log_value('{}val/Learning Rate'.format(evalStr), scheduler.get_lr()[0], global_step)
# tl.log_value('val/Batch Time', batch_time.val, global_step)
tl.log_value('{}val/Data Time'.format(evalStr), data_time.val, global_step)
for k, v in all_loss.items():
tl.log_value('{}val/loss/'.format(evalStr) + k, v, global_step)
model.train()
return losses.val
def create_model(opt):
if opt.model == 'LRCN':
model = models.LRCNModel(opt)
# elif opt.model == 'Simple':
# model = models.SimpleModel(opt)
elif opt.model == 'ConvLSTM':
model = models.ConvLSTM(opt)
else:
raise ValueError('Unrecognized opt.mode={}'.format(opt.model))
criterion = loss.Loss(opt)
if opt.gpu_ids:
model.cuda()
torch.backends.cudnn.benchmark = True
return model, criterion
def main():
global opt, train_dataloader, val_dataloader, model, criterion, optimizer, scheduler, global_step
opt = Options().parse()
expr_dir = os.path.join(opt.checkpoints_dir, opt.name)
tl.configure(expr_dir)
train_dataloader, val_dataloader = create_data_loader(opt)
dataset_size = len(train_dataloader)
print('#training images = %d' % dataset_size)
model, criterion = create_model(opt)
print('--------- model begin ----------')
print(model)
print('--------- model end ----------')
print('--------- criterion begin ----------')
print(criterion)
print('--------- criterion end ----------')
start_epoch = 0
global_step = 0
best_loss = float('inf')
cnn_params = model.cnn.parameters()
model.freeze_cnn(True)
rest_params = list(filter(lambda x: x.requires_grad, model.parameters()))
optimizer = torch.optim.Adam([
{'params': rest_params, 'lr': opt.lr}
])
if opt.continue_train:
if os.path.isfile(opt.continue_train):
print("=> loading checkpoint '{}'".format(opt.continue_train))
checkpoint = torch.load(opt.continue_train, map_location=lambda storage, loc: storage)
start_epoch = checkpoint['epoch'] + 1
global_step = checkpoint['global_step']
best_loss = checkpoint['best_loss']
model.load_state_dict(checkpoint['state_dict'])
# optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(opt.continue_train, checkpoint['epoch']))
else:
raise ValueError("=> no checkpoint found at '{}'".format(opt.continue_train))
if opt.start_epoch is not None:
start_epoch = opt.start_epoch
global_step = dataset_size // opt.batch_size * start_epoch
if start_epoch > opt.freeze_epochs:
print('finetune enable')
model.freeze_cnn(False)
optimizer = torch.optim.Adam(model.parameters(), opt.lr)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, opt.decay_epochs, opt.lr_decay)
for epoch in range(start_epoch, opt.max_epoch):
# TODO decay lr
if epoch == opt.freeze_epochs:
print('finetune enable')
model.freeze_cnn(False)
# optimizer = torch.optim.Adam(model.parameters(), opt.lr)
optimizer.add_param_group({
'params': cnn_params,
'lr': opt.lr
})
# scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, opt.decay_epochs, opt.lr_decay)
scheduler.step(epoch)
epoch_start_time = time.time()
train(epoch)
if (epoch + 1) % opt.save_epoch_freq == 0:
print('saving checkpoint')
util.save_checkpoint({
'epoch': epoch,
'global_step': global_step,
'state_dict': model.state_dict(),
'best_loss': best_loss,
# 'optimizer' : optimizer.state_dict(),
}, False, expr_dir)
# iter_start_time = time.time()
# visualizer.reset()
# total_steps += opt.batch_size
# epoch_iter += opt.batch_size
# model.set_input(data)
# model.optimize_parameters()
# if total_steps % opt.display_freq == 0:
# save_result = total_steps % opt.update_html_freq == 0
# visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)
# if total_steps % opt.print_freq == 0:
# errors = model.get_current_errors()
# t = (time.time() - iter_start_time) / opt.batch_size
# visualizer.print_current_errors(epoch, epoch_iter, errors, t)
# if opt.display_id > 0:
# visualizer.plot_current_errors(epoch, float(epoch_iter)/dataset_size, opt, errors)
# if total_steps % opt.save_latest_freq == 0:
# print('saving the latest model (epoch %d, total_steps %d)' %
# (epoch, total_steps))
# model.save('latest')
# if epoch % opt.save_epoch_freq == 0:
# print('saving the model at the end of epoch %d, iters %d' %
# (epoch, total_steps))
# model.save('latest')
# model.save(epoch)
# print('End of epoch %d / %d \t Time Taken: %d sec' %
# (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
# model.update_learning_rate()
if __name__ == '__main__':
main()