parameterString = '-c 1 -v 0';
filename_model = 'outputmodel.dat';
svm_rank_learn(label, qid, feature, parameterString, filename_model);
AvgSwappedpairsPercent = svm_rank_classify(label, qid, feature, filename_model);
parameterString: the parameters described in the refenence below.
label: stores the target value for each example. (double precision)
qid: indicates the grouping information. (double precision)
feature: a single precision matrix, each column represents a feature vector.
Please check wrapperTest.m
for example.
ubuntu 14.04/matlab R2014b
OSX 10.11/matlab R2015a
https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html