本文来自JavaGuide,郎涯进行简单排版与补充
性能优化一向是后端服务优化的重点,但是线上性能故障问题不是经常出现,或者受限于业务产品,根本就没办法出现性能问题,包括笔者自己遇到的性能问题也不多,所以为了提前储备知识,当出现问题的时候不会手忙脚乱,我们本篇文章来模拟下常见的几个 Java 性能故障,来学习怎么去分析和定位。
既然是定位问题,肯定是需要借助工具,我们先了解下需要哪些工具可以帮忙定位问题。
top
命令使我们最常用的 Linux 命令之一,它可以实时的显示当前正在执行的进程的 CPU 使用率,内存使用率等系统信息。top -Hp pid
可以查看线程的系统资源使用情况。
vmstat 是一个指定周期和采集次数的虚拟内存检测工具,可以统计内存,CPU,swap 的使用情况,它还有一个重要的常用功能,用来观察进程的上下文切换。字段说明如下:
- r: 运行队列中进程数量(当数量大于 CPU 核数表示有阻塞的线程)
- b: 等待 IO 的进程数量
- swpd: 使用虚拟内存大小
- free: 空闲物理内存大小
- buff: 用作缓冲的内存大小(内存和硬盘的缓冲区)
- cache: 用作缓存的内存大小(CPU 和内存之间的缓冲区)
- si: 每秒从交换区写到内存的大小,由磁盘调入内存
- so: 每秒写入交换区的内存大小,由内存调入磁盘
- bi: 每秒读取的块数
- bo: 每秒写入的块数
- in: 每秒中断数,包括时钟中断。
- cs: 每秒上下文切换数。
- us: 用户进程执行时间百分比(user time)
- sy: 内核系统进程执行时间百分比(system time)
- wa: IO 等待时间百分比
- id: 空闲时间百分比
pidstat 是 Sysstat 中的一个组件,也是一款功能强大的性能监测工具,top
和 vmstat
两个命令都是监测进程的内存、CPU 以及 I/O 使用情况,而 pidstat 命令可以检测到线程级别的。pidstat
命令线程切换字段说明如下:
-
UID :被监控任务的真实用户 ID。
-
TGID :线程组 ID。
-
TID:线程 ID。
-
cswch/s:主动切换上下文次数,这里是因为资源阻塞而切换线程,比如锁等待等情况。
-
nvcswch/s:被动切换上下文次数,这里指 CPU 调度切换了线程。
jps
(JVM Process Status) 命令类似 UNIX 的 ps
命令。
jps
:显示虚拟机执行主类名称以及这些进程的本地虚拟机唯一 ID(Local Virtual Machine Identifier,LVMID)。jps -q
:只输出进程的本地虚拟机唯一 ID。
C:\Users\SnailClimb>jps
7360 NettyClient2
17396
7972 Launcher
16504 Jps
17340 NettyServer
jps -l
:输出主类的全名,如果进程执行的是 Jar 包,输出 Jar 路径。
C:\Users\SnailClimb>jps -l
7360 firstNettyDemo.NettyClient2
17396
7972 org.jetbrains.jps.cmdline.Launcher
16492 sun.tools.jps.Jps
17340 firstNettyDemo.NettyServer
jps -v
:输出虚拟机进程启动时 JVM 参数。
jps -m
:输出传递给 Java 进程 main() 函数的参数。
jstack 是 JDK 工具命令,它是一种线程堆栈分析工具,最常用的功能就是使用 jstack pid
命令查看线程的堆栈信息,也经常用来排除死锁情况。
生成线程快照的目的主要是定位线程长时间出现停顿的原因,如线程间死锁、死循环、请求外部资源导致的长时间等待等都是导致线程长时间停顿的原因。线程出现停顿的时候通过jstack
来查看各个线程的调用堆栈,就可以知道没有响应的线程到底在后台做些什么事情,或者在等待些什么资源。
下面是一个线程死锁的代码。我们下面会通过 jstack
命令进行死锁检查,输出死锁信息,找到发生死锁的线程。
public class DeadLockDemo {
private static Object resource1 = new Object();//资源 1
private static Object resource2 = new Object();//资源 2
public static void main(String[] args) {
new Thread(() -> {
synchronized (resource1) {
System.out.println(Thread.currentThread() + "get resource1");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread() + "waiting get resource2");
synchronized (resource2) {
System.out.println(Thread.currentThread() + "get resource2");
}
}
}, "线程 1").start();
new Thread(() -> {
synchronized (resource2) {
System.out.println(Thread.currentThread() + "get resource2");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread() + "waiting get resource1");
synchronized (resource1) {
System.out.println(Thread.currentThread() + "get resource1");
}
}
}, "线程 2").start();
}
}
Output
Thread[线程 1,5,main]get resource1
Thread[线程 2,5,main]get resource2
Thread[线程 1,5,main]waiting get resource2
Thread[线程 2,5,main]waiting get resource1
线程 A 通过 synchronized (resource1) 获得 resource1 的监视器锁,然后通过 Thread.sleep(1000);
让线程 A 休眠 1s 为的是让线程 B 得到执行然后获取到 resource2 的监视器锁。线程 A 和线程 B 休眠结束了都开始企图请求获取对方的资源,然后这两个线程就会陷入互相等待的状态,这也就产生了死锁。
通过 jstack
命令分析:
C:\Users\SnailClimb>jps
13792 KotlinCompileDaemon
7360 NettyClient2
17396
7972 Launcher
8932 Launcher
9256 DeadLockDemo
10764 Jps
17340 NettyServer
C:\Users\SnailClimb>jstack 9256
输出的部分内容如下:
Found one Java-level deadlock:
=============================
"线程 2":
waiting to lock monitor 0x000000000333e668 (object 0x00000000d5efe1c0, a java.lang.Object),
which is held by "线程 1"
"线程 1":
waiting to lock monitor 0x000000000333be88 (object 0x00000000d5efe1d0, a java.lang.Object),
which is held by "线程 2"
Java stack information for the threads listed above:
===================================================
"线程 2":
at DeadLockDemo.lambda$main$1(DeadLockDemo.java:31)
- waiting to lock <0x00000000d5efe1c0> (a java.lang.Object)
- locked <0x00000000d5efe1d0> (a java.lang.Object)
at DeadLockDemo$$Lambda$2/1078694789.run(Unknown Source)
at java.lang.Thread.run(Thread.java:748)
"线程 1":
at DeadLockDemo.lambda$main$0(DeadLockDemo.java:16)
- waiting to lock <0x00000000d5efe1d0> (a java.lang.Object)
- locked <0x00000000d5efe1c0> (a java.lang.Object)
at DeadLockDemo$$Lambda$1/1324119927.run(Unknown Source)
at java.lang.Thread.run(Thread.java:748)
Found 1 deadlock.
可以看到 jstack
命令已经帮我们找到发生死锁的线程的具体信息。
它可以检测 Java 程序运行的实时情况,包括堆内存信息和垃圾回收信息,我们常常用来查看程序垃圾回收情况。常用的命令是jstat -gc pid
。信息字段说明如下:
-
S0C:年轻代中 To Survivor 的容量(单位 KB);
-
S1C:年轻代中 From Survivor 的容量(单位 KB);
-
S0U:年轻代中 To Survivor 目前已使用空间(单位 KB);
-
S1U:年轻代中 From Survivor 目前已使用空间(单位 KB);
-
EC:年轻代中 Eden 的容量(单位 KB);
-
EU:年轻代中 Eden 目前已使用空间(单位 KB);
-
OC:老年代的容量(单位 KB);
-
OU:老年代目前已使用空间(单位 KB);
-
MC:元空间的容量(单位 KB);
-
MU:元空间目前已使用空间(单位 KB);
-
YGC:从应用程序启动到采样时年轻代中 gc 次数;
-
YGCT:从应用程序启动到采样时年轻代中 gc 所用时间 (s);
-
FGC:从应用程序启动到采样时 老年代(Full Gc)gc 次数;
-
FGCT:从应用程序启动到采样时 老年代代(Full Gc)gc 所用时间 (s);
-
GCT:从应用程序启动到采样时 gc 用的总时间 (s)。
jstat
命令使用格式:
jstat -<option> [-t] [-h<lines>] <vmid> [<interval> [<count>]]
比如 jstat -gc -h3 31736 1000 10
表示分析进程 id 为 31736 的 gc 情况,每隔 1000ms 打印一次记录,打印 10 次停止,每 3 行后打印指标头部。
常见的 option 如下:
jstat -class vmid
:显示 ClassLoader 的相关信息;jstat -compiler vmid
:显示 JIT 编译的相关信息;jstat -gc vmid
:显示与 GC 相关的堆信息;jstat -gccapacity vmid
:显示各个代的容量及使用情况;jstat -gcnew vmid
:显示新生代信息;jstat -gcnewcapcacity vmid
:显示新生代大小与使用情况;jstat -gcold vmid
:显示老年代和永久代的行为统计,从jdk1.8开始,该选项仅表示老年代,因为永久代被移除了;jstat -gcoldcapacity vmid
:显示老年代的大小;jstat -gcpermcapacity vmid
:显示永久代大小,从jdk1.8开始,该选项不存在了,因为永久代被移除了;jstat -gcutil vmid
:显示垃圾收集信息;
另外,加上 -t
参数可以在输出信息上加一个 Timestamp 列,显示程序的运行时间。
jmap 也是 JDK 工具命令,他可以查看堆内存的初始化信息以及堆内存的使用情况,还可以生成 dump 文件来进行详细分析。查看堆内存情况命令jmap -heap pid
。
示例:将指定应用程序的堆快照输出到桌面。后面,可以通过 jhat、Visual VM 等工具分析该堆文件。
C:\Users\SnailClimb>jmap -dump:format=b,file=C:\Users\SnailClimb\Desktop\heap.hprof 17340
Dumping heap to C:\Users\SnailClimb\Desktop\heap.hprof ...
Heap dump file created
MAT(Memory Analyzer Tool)工具是 eclipse 的一个插件(MAT 也可以单独使用),它分析大内存的 dump 文件时,可以非常直观的看到各个对象在堆空间中所占用的内存大小、类实例数量、对象引用关系、利用 OQL 对象查询,以及可以很方便的找出对象 GC Roots 的相关信息。
idea 中也有这么一个插件,就是 JProfiler。
相关阅读:《性能诊断利器 JProfiler 快速入门和最佳实践》
基础环境 jdk1.8,采用 SpringBoot 框架来写几个接口来触发模拟场景,首先是模拟 CPU 占满情况
模拟 CPU 占满还是比较简单,直接写一个死循环计算消耗 CPU 即可。
/**
* 模拟CPU占满
*/
@GetMapping("/cpu/loop")
public void testCPULoop() throws InterruptedException {
System.out.println("请求cpu死循环");
Thread.currentThread().setName("loop-thread-cpu");
int num = 0;
while (true) {
num++;
if (num == Integer.MAX_VALUE) {
System.out.println("reset");
}
num = 0;
}
}
请求接口地址测试 curl localhost:8080/cpu/loop
,发现 CPU 立马飙升到 100%
通过执行 top -Hp 32805
查看 Java 线程情况
执行 printf '%x' 32826
获取 16 进制的线程 id,用于 dump
信息查询,结果为 803a
。最后我们执行 jstack 32805 |grep -A 20 803a
来查看下详细的dump
信息
这里 dump
信息直接定位出了问题方法以及代码行,这就定位出了 CPU 占满的问题。
模拟内存泄漏借助了 ThreadLocal 对象来完成,ThreadLocal 是一个线程私有变量,可以绑定到线程上,在整个线程的生命周期都会存在,但是由于 ThreadLocal 的特殊性,ThreadLocal 是基于 ThreadLocalMap 实现的,ThreadLocalMap 的 Entry 继承 WeakReference,而 Entry 的 Key 是 WeakReference 的封装,换句话说 Key 就是弱引用,弱引用在下次 GC 之后就会被回收,如果 ThreadLocal 在 set 之后不进行后续的操作,因为 GC 会把 Key 清除掉,但是 Value 由于线程还在存活,所以 Value 一直不会被回收,最后就会发生内存泄漏。
/**
* 模拟内存泄漏
*/
@GetMapping(value = "/memory/leak")
public String leak() {
System.out.println("模拟内存泄漏");
ThreadLocal<Byte[]> localVariable = new ThreadLocal<Byte[]>();
localVariable.set(new Byte[4096 * 1024]);// 为线程添加变量
return "ok";
}
我们给启动加上堆内存大小限制,同时设置内存溢出的时候输出堆栈快照并输出日志。
java -jar -Xms500m -Xmx500m -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/tmp/heapdump.hprof -XX:+PrintGCTimeStamps -XX:+PrintGCDetails -Xloggc:/tmp/heaplog.log analysis-demo-0.0.1-SNAPSHOT.jar
启动成功后我们循环执行 100 次,for i in {1..500}; do curl localhost:8080/memory/leak;done
,还没执行完毕,系统已经返回 500 错误了。查看系统日志出现了如下异常:
java.lang.OutOfMemoryError: Java heap space
我们用jstat -gc pid
命令来看看程序的 GC 情况。
很明显,内存溢出了,堆内存经过 45 次 Full Gc 之后都没释放出可用内存,这说明当前堆内存中的对象都是存活的,有 GC Roots 引用,无法回收。那是什么原因导致内存溢出呢?是不是我只要加大内存就行了呢?如果是普通的内存溢出也许扩大内存就行了,但是如果是内存泄漏的话,扩大的内存不一会就会被占满,所以我们还需要确定是不是内存泄漏。我们之前保存了堆 Dump 文件,这个时候借助我们的 MAT 工具来分析下。导入工具选择Leak Suspects Report
,工具直接就会给你列出问题报告。
这里已经列出了可疑的 4 个内存泄漏问题,我们点击其中一个查看详情。
这里已经指出了内存被线程占用了接近 50M 的内存,占用的对象就是 ThreadLocal。如果想详细的通过手动去分析的话,可以点击Histogram
,查看最大的对象占用是谁,然后再分析它的引用关系,即可确定是谁导致的内存溢出。
上图发现占用内存最大的对象是一个 Byte 数组,我们看看它到底被那个 GC Root 引用导致没有被回收。按照上图红框操作指引,结果如下图:
我们发现 Byte 数组是被线程对象引用的,图中也标明,Byte 数组对像的 GC Root 是线程,所以它是不会被回收的,展开详细信息查看,我们发现最终的内存占用对象是被 ThreadLocal 对象占据了。这也和 MAT 工具自动帮我们分析的结果一致。
死锁会导致耗尽线程资源,占用内存,表现就是内存占用升高,CPU 不一定会飙升(看场景决定),如果是直接 new 线程,会导致 JVM 内存被耗尽,报无法创建线程的错误,这也是体现了使用线程池的好处。
ExecutorService service = new ThreadPoolExecutor(4, 10,
0, TimeUnit.SECONDS, new LinkedBlockingQueue<Runnable>(1024),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.AbortPolicy());
/**
* 模拟死锁
*/
@GetMapping("/cpu/test")
public String testCPU() throws InterruptedException {
System.out.println("请求cpu");
Object lock1 = new Object();
Object lock2 = new Object();
service.submit(new DeadLockThread(lock1, lock2), "deadLookThread-" + new Random().nextInt());
service.submit(new DeadLockThread(lock2, lock1), "deadLookThread-" + new Random().nextInt());
return "ok";
}
public class DeadLockThread implements Runnable {
private Object lock1;
private Object lock2;
public DeadLockThread1(Object lock1, Object lock2) {
this.lock1 = lock1;
this.lock2 = lock2;
}
@Override
public void run() {
synchronized (lock2) {
System.out.println(Thread.currentThread().getName()+"get lock2 and wait lock1");
try {
TimeUnit.MILLISECONDS.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (lock1) {
System.out.println(Thread.currentThread().getName()+"get lock1 and lock2 ");
}
}
}
}
我们循环请求接口 2000 次,发现不一会系统就出现了日志错误,线程池和队列都满了,由于我选择的当队列满了就拒绝的策略,所以系统直接抛出异常。
java.util.concurrent.RejectedExecutionException: Task java.util.concurrent.FutureTask@2760298 rejected from java.util.concurrent.ThreadPoolExecutor@7ea7cd51[Running, pool size = 10, active threads = 10, queued tasks = 1024, completed tasks = 846]
通过 ps -ef|grep java
命令找出 Java 进程 pid,执行 jstack pid
即可出现 java 线程堆栈信息,这里发现了 5 个死锁,我们只列出其中一个,很明显线程 pool-1-thread-2
锁住了 0x00000000f8387d88
等待 0x00000000f8387d98
锁,线程 pool-1-thread-1
锁住了 0x00000000f8387d98
等待锁 0x00000000f8387d88
,这就产生了死锁。
Java stack information for the threads listed above:
===================================================
"pool-1-thread-2":
at top.luozhou.analysisdemo.controller.DeadLockThread2.run(DeadLockThread.java:30)
- waiting to lock <0x00000000f8387d98> (a java.lang.Object)
- locked <0x00000000f8387d88> (a java.lang.Object)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
"pool-1-thread-1":
at top.luozhou.analysisdemo.controller.DeadLockThread1.run(DeadLockThread.java:30)
- waiting to lock <0x00000000f8387d88> (a java.lang.Object)
- locked <0x00000000f8387d98> (a java.lang.Object)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Found 5 deadlocks.
上下文切换会导致将大量 CPU 时间浪费在寄存器、内核栈以及虚拟内存的保存和恢复上,导致系统整体性能下降。当你发现系统的性能出现明显的下降时候,需要考虑是否发生了大量的线程上下文切换。
@GetMapping(value = "/thread/swap")
public String theadSwap(int num) {
System.out.println("模拟线程切换");
for (int i = 0; i < num; i++) {
new Thread(new ThreadSwap1(new AtomicInteger(0)),"thread-swap"+i).start();
}
return "ok";
}
public class ThreadSwap1 implements Runnable {
private AtomicInteger integer;
public ThreadSwap1(AtomicInteger integer) {
this.integer = integer;
}
@Override
public void run() {
while (true) {
integer.addAndGet(1);
Thread.yield(); //让出CPU资源
}
}
}
这里我创建多个线程去执行基础的原子+1 操作,然后让出 CPU 资源,理论上 CPU 就会去调度别的线程,我们请求接口创建 100 个线程看看效果如何,curl localhost:8080/thread/swap?num=100
。接口请求成功后,我们执行 vmstat 1 10
,表示每 1 秒打印一次,打印 10 次,线程切换采集结果如下:
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
101 0 128000 878384 908 468684 0 0 0 0 4071 8110498 14 86 0 0 0
100 0 128000 878384 908 468684 0 0 0 0 4065 8312463 15 85 0 0 0
100 0 128000 878384 908 468684 0 0 0 0 4107 8207718 14 87 0 0 0
100 0 128000 878384 908 468684 0 0 0 0 4083 8410174 14 86 0 0 0
100 0 128000 878384 908 468684 0 0 0 0 4083 8264377 14 86 0 0 0
100 0 128000 878384 908 468688 0 0 0 108 4182 8346826 14 86 0 0 0
这里我们关注 4 个指标,r
,cs
,us
,sy
。
r=100,说明等待的进程数量是 100,线程有阻塞。
cs=800 多万,说明每秒上下文切换了 800 多万次,这个数字相当大了。
us=14,说明用户态占用了 14%的 CPU 时间片去处理逻辑。
sy=86,说明内核态占用了 86%的 CPU,这里明显就是做上下文切换工作了。
我们通过 top
命令以及 top -Hp pid
查看进程和线程 CPU 情况,发现 Java 线程 CPU 占满了,但是线程 CPU 使用情况很平均,没有某一个线程把 CPU 吃满的情况。
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
87093 root 20 0 4194788 299056 13252 S 399.7 16.1 65:34.67 java
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
87189 root 20 0 4194788 299056 13252 R 4.7 16.1 0:41.11 java
87129 root 20 0 4194788 299056 13252 R 4.3 16.1 0:41.14 java
87130 root 20 0 4194788 299056 13252 R 4.3 16.1 0:40.51 java
87133 root 20 0 4194788 299056 13252 R 4.3 16.1 0:40.59 java
87134 root 20 0 4194788 299056 13252 R 4.3 16.1 0:40.95 java
结合上面用户态 CPU 只使用了 14%,内核态 CPU 占用了 86%,可以基本判断是 Java 程序线程上下文切换导致性能问题。
我们使用pidstat
命令来看看 Java 进程内部的线程切换数据,执行pidstat -p 87093 -w 1 10
,采集数据如下:
11:04:30 PM UID TGID TID cswch/s nvcswch/s Command
11:04:30 PM 0 - 87128 0.00 16.07 |__java
11:04:30 PM 0 - 87129 0.00 15.60 |__java
11:04:30 PM 0 - 87130 0.00 15.54 |__java
11:04:30 PM 0 - 87131 0.00 15.60 |__java
11:04:30 PM 0 - 87132 0.00 15.43 |__java
11:04:30 PM 0 - 87133 0.00 16.02 |__java
11:04:30 PM 0 - 87134 0.00 15.66 |__java
11:04:30 PM 0 - 87135 0.00 15.23 |__java
11:04:30 PM 0 - 87136 0.00 15.33 |__java
11:04:30 PM 0 - 87137 0.00 16.04 |__java
根据上面采集的信息,我们知道 Java 的线程每秒切换 15 次左右,正常情况下,应该是个位数或者小数。结合这些信息我们可以断定 Java 线程开启过多,导致频繁上下文切换,从而影响了整体性能。
为什么系统的上下文切换是每秒 800 多万,而 Java 进程中的某一个线程切换才 15 次左右?
系统上下文切换分为三种情况:
1、多任务:在多任务环境中,一个进程被切换出 CPU,运行另外一个进程,这里会发生上下文切换。
2、中断处理:发生中断时,硬件会切换上下文。在 vmstat 命令中是in
3、用户和内核模式切换:当操作系统中需要在用户模式和内核模式之间进行转换时,需要进行上下文切换,比如进行系统函数调用。
Linux 为每个 CPU 维护了一个就绪队列,将活跃进程按照优先级和等待 CPU 的时间排序,然后选择最需要 CPU 的进程,也就是优先级最高和等待 CPU 时间最长的进程来运行。也就是 vmstat 命令中的r
。
那么,进程在什么时候才会被调度到 CPU 上运行呢?
- 进程执行完终止了,它之前使用的 CPU 会释放出来,这时再从就绪队列中拿一个新的进程来运行
- 为了保证所有进程可以得到公平调度,CPU 时间被划分为一段段的时间片,这些时间片被轮流分配给各个进程。当某个进程时间片耗尽了就会被系统挂起,切换到其它等待 CPU 的进程运行。
- 进程在系统资源不足时,要等待资源满足后才可以运行,这时进程也会被挂起,并由系统调度其它进程运行。
- 当进程通过睡眠函数 sleep 主动挂起时,也会重新调度。
- 当有优先级更高的进程运行时,为了保证高优先级进程的运行,当前进程会被挂起,由高优先级进程来运行。
- 发生硬件中断时,CPU 上的进程会被中断挂起,转而执行内核中的中断服务程序。
结合我们之前的内容分析,阻塞的就绪队列是 100 左右,而我们的 CPU 只有 4 核,这部分原因造成的上下文切换就可能会相当高,再加上中断次数是 4000 左右和系统的函数调用等,整个系统的上下文切换到 800 万也不足为奇了。Java 内部的线程切换才 15 次,是因为线程使用Thread.yield()
来让出 CPU 资源,但是 CPU 有可能继续调度该线程,这个时候线程之间并没有切换,这也是为什么内部的某个线程切换次数并不是非常大的原因。
本文模拟了常见的性能问题场景,分析了如何定位 CPU100%、内存泄漏、死锁、线程频繁切换问题。分析问题我们需要做好两件事,第一,掌握基本的原理,第二,借助好工具。本文也列举了分析问题的常用工具和命令,希望对你解决问题有所帮助。当然真正的线上环境可能十分复杂,并没有模拟的环境那么简单,但是原理是一样的,问题的表现也是类似的,我们重点抓住原理,活学活用,相信复杂的线上问题也可以顺利解决。
1、https://linux.die.net/man/1/pidstat
2、https://linux.die.net/man/8/vmstat
3、https://help.eclipse.org/2020-03/index.jsp?topic=/org.eclipse.mat.ui.help/welcome.html
4、https://www.linuxblogs.cn/articles/18120200.html
5、https://www.tutorialspoint.com/what-is-context-switching-in-operating-system