-
Notifications
You must be signed in to change notification settings - Fork 15.6k
/
sambanova.py
318 lines (280 loc) Β· 12.3 KB
/
sambanova.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import json
from typing import Dict, Generator, List, Optional
import requests
from langchain_core.embeddings import Embeddings
from langchain_core.utils import get_from_dict_or_env, pre_init
from pydantic import BaseModel, ConfigDict
class SambaStudioEmbeddings(BaseModel, Embeddings):
"""SambaNova embedding models.
To use, you should have the environment variables
``SAMBASTUDIO_EMBEDDINGS_BASE_URL``, ``SAMBASTUDIO_EMBEDDINGS_BASE_URI``
``SAMBASTUDIO_EMBEDDINGS_PROJECT_ID``, ``SAMBASTUDIO_EMBEDDINGS_ENDPOINT_ID``,
``SAMBASTUDIO_EMBEDDINGS_API_KEY``
set with your personal sambastudio variable or pass it as a named parameter
to the constructor.
Example:
.. code-block:: python
from langchain_community.embeddings import SambaStudioEmbeddings
embeddings = SambaStudioEmbeddings(sambastudio_embeddings_base_url=base_url,
sambastudio_embeddings_base_uri=base_uri,
sambastudio_embeddings_project_id=project_id,
sambastudio_embeddings_endpoint_id=endpoint_id,
sambastudio_embeddings_api_key=api_key,
batch_size=32)
(or)
embeddings = SambaStudioEmbeddings(batch_size=32)
(or)
# CoE example
embeddings = SambaStudioEmbeddings(
batch_size=1,
model_kwargs={
'select_expert':'e5-mistral-7b-instruct'
}
)
"""
sambastudio_embeddings_base_url: str = ""
"""Base url to use"""
sambastudio_embeddings_base_uri: str = ""
"""endpoint base uri"""
sambastudio_embeddings_project_id: str = ""
"""Project id on sambastudio for model"""
sambastudio_embeddings_endpoint_id: str = ""
"""endpoint id on sambastudio for model"""
sambastudio_embeddings_api_key: str = ""
"""sambastudio api key"""
model_kwargs: dict = {}
"""Key word arguments to pass to the model."""
batch_size: int = 32
"""Batch size for the embedding models"""
model_config = ConfigDict(protected_namespaces=())
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["sambastudio_embeddings_base_url"] = get_from_dict_or_env(
values, "sambastudio_embeddings_base_url", "SAMBASTUDIO_EMBEDDINGS_BASE_URL"
)
values["sambastudio_embeddings_base_uri"] = get_from_dict_or_env(
values,
"sambastudio_embeddings_base_uri",
"SAMBASTUDIO_EMBEDDINGS_BASE_URI",
default="api/predict/generic",
)
values["sambastudio_embeddings_project_id"] = get_from_dict_or_env(
values,
"sambastudio_embeddings_project_id",
"SAMBASTUDIO_EMBEDDINGS_PROJECT_ID",
)
values["sambastudio_embeddings_endpoint_id"] = get_from_dict_or_env(
values,
"sambastudio_embeddings_endpoint_id",
"SAMBASTUDIO_EMBEDDINGS_ENDPOINT_ID",
)
values["sambastudio_embeddings_api_key"] = get_from_dict_or_env(
values, "sambastudio_embeddings_api_key", "SAMBASTUDIO_EMBEDDINGS_API_KEY"
)
return values
def _get_tuning_params(self) -> str:
"""
Get the tuning parameters to use when calling the model
Returns:
The tuning parameters as a JSON string.
"""
if "api/v2/predict/generic" in self.sambastudio_embeddings_base_uri:
tuning_params_dict = self.model_kwargs
else:
tuning_params_dict = {
k: {"type": type(v).__name__, "value": str(v)}
for k, v in (self.model_kwargs.items())
}
tuning_params = json.dumps(tuning_params_dict)
return tuning_params
def _get_full_url(self, path: str) -> str:
"""
Return the full API URL for a given path.
:param str path: the sub-path
:returns: the full API URL for the sub-path
:rtype: str
"""
return f"{self.sambastudio_embeddings_base_url}/{self.sambastudio_embeddings_base_uri}/{path}" # noqa: E501
def _iterate_over_batches(self, texts: List[str], batch_size: int) -> Generator:
"""Generator for creating batches in the embed documents method
Args:
texts (List[str]): list of strings to embed
batch_size (int, optional): batch size to be used for the embedding model.
Will depend on the RDU endpoint used.
Yields:
List[str]: list (batch) of strings of size batch size
"""
for i in range(0, len(texts), batch_size):
yield texts[i : i + batch_size]
def embed_documents(
self, texts: List[str], batch_size: Optional[int] = None
) -> List[List[float]]:
"""Returns a list of embeddings for the given sentences.
Args:
texts (`List[str]`): List of texts to encode
batch_size (`int`): Batch size for the encoding
Returns:
`List[np.ndarray]` or `List[tensor]`: List of embeddings
for the given sentences
"""
if batch_size is None:
batch_size = self.batch_size
http_session = requests.Session()
url = self._get_full_url(
f"{self.sambastudio_embeddings_project_id}/{self.sambastudio_embeddings_endpoint_id}"
)
params = json.loads(self._get_tuning_params())
embeddings = []
if "api/predict/nlp" in self.sambastudio_embeddings_base_uri:
for batch in self._iterate_over_batches(texts, batch_size):
data = {"inputs": batch, "params": params}
response = http_session.post(
url,
headers={"key": self.sambastudio_embeddings_api_key},
json=data,
)
if response.status_code != 200:
raise RuntimeError(
f"Sambanova /complete call failed with status code "
f"{response.status_code}.\n Details: {response.text}"
)
try:
embedding = response.json()["data"]
embeddings.extend(embedding)
except KeyError:
raise KeyError(
"'data' not found in endpoint response",
response.json(),
)
elif "api/v2/predict/generic" in self.sambastudio_embeddings_base_uri:
for batch in self._iterate_over_batches(texts, batch_size):
items = [
{"id": f"item{i}", "value": item} for i, item in enumerate(batch)
]
data = {"items": items, "params": params}
response = http_session.post(
url,
headers={"key": self.sambastudio_embeddings_api_key},
json=data,
)
if response.status_code != 200:
raise RuntimeError(
f"Sambanova /complete call failed with status code "
f"{response.status_code}.\n Details: {response.text}"
)
try:
embedding = [item["value"] for item in response.json()["items"]]
embeddings.extend(embedding)
except KeyError:
raise KeyError(
"'items' not found in endpoint response",
response.json(),
)
elif "api/predict/generic" in self.sambastudio_embeddings_base_uri:
for batch in self._iterate_over_batches(texts, batch_size):
data = {"instances": batch, "params": params}
response = http_session.post(
url,
headers={"key": self.sambastudio_embeddings_api_key},
json=data,
)
if response.status_code != 200:
raise RuntimeError(
f"Sambanova /complete call failed with status code "
f"{response.status_code}.\n Details: {response.text}"
)
try:
if params.get("select_expert"):
embedding = response.json()["predictions"]
else:
embedding = response.json()["predictions"]
embeddings.extend(embedding)
except KeyError:
raise KeyError(
"'predictions' not found in endpoint response",
response.json(),
)
else:
raise ValueError(
f"handling of endpoint uri: {self.sambastudio_embeddings_base_uri} not implemented" # noqa: E501
)
return embeddings
def embed_query(self, text: str) -> List[float]:
"""Returns a list of embeddings for the given sentences.
Args:
sentences (`List[str]`): List of sentences to encode
Returns:
`List[np.ndarray]` or `List[tensor]`: List of embeddings
for the given sentences
"""
http_session = requests.Session()
url = self._get_full_url(
f"{self.sambastudio_embeddings_project_id}/{self.sambastudio_embeddings_endpoint_id}"
)
params = json.loads(self._get_tuning_params())
if "api/predict/nlp" in self.sambastudio_embeddings_base_uri:
data = {"inputs": [text], "params": params}
response = http_session.post(
url,
headers={"key": self.sambastudio_embeddings_api_key},
json=data,
)
if response.status_code != 200:
raise RuntimeError(
f"Sambanova /complete call failed with status code "
f"{response.status_code}.\n Details: {response.text}"
)
try:
embedding = response.json()["data"][0]
except KeyError:
raise KeyError(
"'data' not found in endpoint response",
response.json(),
)
elif "api/v2/predict/generic" in self.sambastudio_embeddings_base_uri:
data = {"items": [{"id": "item0", "value": text}], "params": params}
response = http_session.post(
url,
headers={"key": self.sambastudio_embeddings_api_key},
json=data,
)
if response.status_code != 200:
raise RuntimeError(
f"Sambanova /complete call failed with status code "
f"{response.status_code}.\n Details: {response.text}"
)
try:
embedding = response.json()["items"][0]["value"]
except KeyError:
raise KeyError(
"'items' not found in endpoint response",
response.json(),
)
elif "api/predict/generic" in self.sambastudio_embeddings_base_uri:
data = {"instances": [text], "params": params}
response = http_session.post(
url,
headers={"key": self.sambastudio_embeddings_api_key},
json=data,
)
if response.status_code != 200:
raise RuntimeError(
f"Sambanova /complete call failed with status code "
f"{response.status_code}.\n Details: {response.text}"
)
try:
if params.get("select_expert"):
embedding = response.json()["predictions"][0]
else:
embedding = response.json()["predictions"][0]
except KeyError:
raise KeyError(
"'predictions' not found in endpoint response",
response.json(),
)
else:
raise ValueError(
f"handling of endpoint uri: {self.sambastudio_embeddings_base_uri} not implemented" # noqa: E501
)
return embedding