forked from ANSSI-FR/libecc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ecfsdsa.c
694 lines (605 loc) · 18.9 KB
/
ecfsdsa.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
/*
* Copyright (C) 2017 - This file is part of libecc project
*
* Authors:
* Ryad BENADJILA <[email protected]>
* Arnaud EBALARD <[email protected]>
* Jean-Pierre FLORI <[email protected]>
*
* Contributors:
* Nicolas VIVET <[email protected]>
* Karim KHALFALLAH <[email protected]>
*
* This software is licensed under a dual BSD and GPL v2 license.
* See LICENSE file at the root folder of the project.
*/
#include "../lib_ecc_config.h"
#ifdef WITH_SIG_ECFSDSA
#include "../nn/nn_rand.h"
#include "../nn/nn_mul.h"
#include "../nn/nn_logical.h"
#include "sig_algs_internal.h"
#include "ec_key.h"
#ifdef VERBOSE_INNER_VALUES
#define EC_SIG_ALG "ECFSDSA"
#endif
#include "../utils/dbg_sig.h"
void ecfsdsa_init_pub_key(ec_pub_key *out_pub, ec_priv_key *in_priv)
{
prj_pt_src_t G;
/* Blinding mask for scalar multiplication */
nn scalar_b;
int ret;
MUST_HAVE(out_pub != NULL);
priv_key_check_initialized_and_type(in_priv, ECFSDSA);
/* Zero init public key to be generated */
local_memset(out_pub, 0, sizeof(ec_pub_key));
/* We use blinding for the scalar multiplication */
ret = nn_get_random_mod(&scalar_b, &(in_priv->params->ec_gen_order));
if (ret) {
goto err;
}
/* Y = xG */
G = &(in_priv->params->ec_gen);
/* Use blinding with scalar_b when computing point scalar multiplication */
if(prj_pt_mul_monty_blind(&(out_pub->y), &(in_priv->x), G, &scalar_b, &(in_priv->params->ec_gen_order))){
goto err;
}
nn_uninit(&scalar_b);
out_pub->key_type = ECFSDSA;
out_pub->params = in_priv->params;
out_pub->magic = PUB_KEY_MAGIC;
err:
return;
}
u8 ecfsdsa_siglen(u16 p_bit_len, u16 q_bit_len, u8 hsize, u8 blocksize)
{
MUST_HAVE((p_bit_len <= CURVES_MAX_P_BIT_LEN) &&
(q_bit_len <= CURVES_MAX_Q_BIT_LEN) &&
(hsize <= MAX_DIGEST_SIZE) && (blocksize <= MAX_BLOCK_SIZE));
return (u8)ECFSDSA_SIGLEN(p_bit_len, q_bit_len);
}
/*
* Generic *internal* ECFSDSA signature functions (init, update and finalize).
* Their purpose is to allow passing a specific hash function (along with
* their output size) and the random ephemeral key k, so that compliance
* tests against test vectors can be made without ugly hack in the code
* itself.
*
* Global EC-FSDSA signature process is as follows (I,U,F provides
* information in which function(s) (init(), update() or finalize())
* a specific step is performed):
*
*| IUF - ECFSDSA signature
*|
*| I 1. Get a random value k in ]0,q[
*| I 2. Compute W = (W_x,W_y) = kG
*| I 3. Compute r = FE2OS(W_x)||FE2OS(W_y)
*| I 4. If r is an all zero string, restart the process at step 1.
*| IUF 5. Compute h = H(r||m)
*| F 6. Compute e = OS2I(h) mod q
*| F 7. Compute s = (k + ex) mod q
*| F 8. If s is 0, restart the process at step 1 (see c. below)
*| F 9. Return (r,s)
*
* Implementation notes:
*
* a) sig is built as the concatenation of r and s. r is encoded on
* 2*ceil(bitlen(p)) bytes and s on ceil(bitlen(q)) bytes.
* b) in EC-FSDSA, the public part of the key is not needed per se during
* the signature but - as it is needed in other signature algs implemented
* in the library - the whole key pair is passed instead of just the
* private key.
* c) Implementation of EC-FSDSA in an init()/update()/finalize() logic
* cannot be made deterministic, in the sense that if s is 0 at step
* 8 above, there is no way to restart the whole signature process
* w/o rehashing m. So, even if the event is extremely unlikely,
* signature process may fail to provide a signature of the data
* during finalize() call.
*/
#define ECFSDSA_SIGN_MAGIC ((word_t)(0x1ed9635924b48ddaULL))
#define ECFSDSA_SIGN_CHECK_INITIALIZED(A) \
MUST_HAVE((((const void *)(A)) != NULL) && \
((A)->magic == ECFSDSA_SIGN_MAGIC))
int _ecfsdsa_sign_init(struct ec_sign_context *ctx)
{
prj_pt_src_t G;
nn_src_t q;
nn *k;
#ifdef USE_SIG_BLINDING
/* scalar_b is the scalar multiplication blinder */
nn scalar_b;
#endif
u8 *r;
prj_pt kG;
aff_pt W;
const ec_priv_key *priv_key;
bitcnt_t p_bit_len;
u8 i, p_len, r_len;
u16 p_len_;
int ret = -1;
/* First, verify context has been initialized */
SIG_SIGN_CHECK_INITIALIZED(ctx);
/* Zero init points */
local_memset(&kG, 0, sizeof(prj_pt));
/* Additional sanity checks on input params from context */
key_pair_check_initialized_and_type(ctx->key_pair, ECFSDSA);
if ((!(ctx->h)) || (ctx->h->digest_size > MAX_DIGEST_SIZE) ||
(ctx->h->block_size > MAX_BLOCK_SIZE)) {
ret = -1;
goto err;
}
/* Make things more readable */
priv_key = &(ctx->key_pair->priv_key);
G = &(priv_key->params->ec_gen);
q = &(priv_key->params->ec_gen_order);
r = ctx->sign_data.ecfsdsa.r;
k = &(ctx->sign_data.ecfsdsa.k);
p_bit_len = priv_key->params->ec_fp.p_bitlen;
p_len = (u8)BYTECEIL(p_bit_len);
r_len = (u8)ECFSDSA_R_LEN(p_bit_len);
p_len_ = p_len;
if (p_len_ > NN_MAX_BYTE_LEN) {
ret = -1;
goto err;
}
dbg_nn_print("p", &(priv_key->params->ec_fp.p));
dbg_nn_print("q", q);
dbg_priv_key_print("x", priv_key);
dbg_ec_point_print("G", G);
dbg_pub_key_print("Y", &(ctx->key_pair->pub_key));
restart:
/* 1. Get a random value k in ]0,q[ */
#ifdef NO_KNOWN_VECTORS
/* NOTE: when we do not need self tests for known vectors,
* we can be strict about random function handler!
* This allows us to avoid the corruption of such a pointer.
*/
/* Sanity check on the handler before calling it */
if(ctx->rand != nn_get_random_mod){
ret = -1;
goto err;
}
#endif
ret = ctx->rand(k, q);
if (ret) {
ret = -1;
goto err;
}
/* 2. Compute W = (W_x,W_y) = kG */
#ifdef USE_SIG_BLINDING
/* We use blinding for the scalar multiplication */
ret = nn_get_random_mod(&scalar_b, q);
if (ret) {
ret = -1;
goto err;
}
if(prj_pt_mul_monty_blind(&kG, k, G, &scalar_b, q)){
ret = -1;
goto err;
}
nn_uninit(&scalar_b);
#else
prj_pt_mul_monty(&kG, k, G);
#endif
prj_pt_to_aff(&W, &kG);
prj_pt_uninit(&kG);
dbg_nn_print("Wx", &(W.x.fp_val));
dbg_nn_print("Wy", &(W.y.fp_val));
/* 3. Compute r = FE2OS(W_x)||FE2OS(W_y) */
fp_export_to_buf(r, p_len, &(W.x));
fp_export_to_buf(r + p_len, p_len, &(W.y));
aff_pt_uninit(&W);
dbg_buf_print("r: ", r, r_len);
/* 4. If r is an all zero string, restart the process at step 1. */
ret = 0;
for (i = 0; i < r_len; i++) {
ret |= r[i];
}
if (ret == 0) {
goto restart;
}
/* 5. Compute h = H(r||m).
*
* Note that we only start the hash work here by initializing the hash
* context and processing r. Message m will be handled during following
* update() calls.
*/
/* Since we call a callback, sanity check our mapping */
if(hash_mapping_callbacks_sanity_check(ctx->h)){
ret = -1;
goto err;
}
ctx->h->hfunc_init(&(ctx->sign_data.ecfsdsa.h_ctx));
/* Since we call a callback, sanity check our mapping */
if(hash_mapping_callbacks_sanity_check(ctx->h)){
ret = -1;
goto err;
}
ctx->h->hfunc_update(&(ctx->sign_data.ecfsdsa.h_ctx), r, r_len);
ctx->sign_data.ecfsdsa.magic = ECFSDSA_SIGN_MAGIC;
ret = 0;
err:
PTR_NULLIFY(G);
PTR_NULLIFY(q);
PTR_NULLIFY(k);
PTR_NULLIFY(r);
PTR_NULLIFY(priv_key);
VAR_ZEROIFY(i);
VAR_ZEROIFY(p_len);
VAR_ZEROIFY(r_len);
return ret;
}
int _ecfsdsa_sign_update(struct ec_sign_context *ctx,
const u8 *chunk, u32 chunklen)
{
/*
* First, verify context has been initialized and private
* part too. This guarantees the context is an ECFSDSA
* signature one and we do not update() or finalize()
* before init().
*/
SIG_SIGN_CHECK_INITIALIZED(ctx);
ECFSDSA_SIGN_CHECK_INITIALIZED(&(ctx->sign_data.ecfsdsa));
/* 5. Compute h = H(r||m) */
/* Since we call a callback, sanity check our mapping */
if(hash_mapping_callbacks_sanity_check(ctx->h)){
return -1;
}
ctx->h->hfunc_update(&(ctx->sign_data.ecfsdsa.h_ctx), chunk, chunklen);
return 0;
}
int _ecfsdsa_sign_finalize(struct ec_sign_context *ctx, u8 *sig, u8 siglen)
{
nn_src_t q, x;
nn tmp, s, e, ex, *k;
const ec_priv_key *priv_key;
u8 e_buf[MAX_DIGEST_SIZE];
bitcnt_t p_bit_len, q_bit_len;
u8 hsize, s_len, r_len;
int ret = -1;
u8 *r;
#ifdef USE_SIG_BLINDING
/* b is the blinding mask */
nn b, binv;
#endif /* USE_SIG_BLINDING */
/*
* First, verify context has been initialized and private
* part too. This guarantees the context is an ECFSDSA
* signature one and we do not finalize() before init().
*/
SIG_SIGN_CHECK_INITIALIZED(ctx);
ECFSDSA_SIGN_CHECK_INITIALIZED(&(ctx->sign_data.ecfsdsa));
/* Make things more readable */
priv_key = &(ctx->key_pair->priv_key);
q = &(priv_key->params->ec_gen_order);
x = &(priv_key->x);
p_bit_len = ctx->key_pair->priv_key.params->ec_fp.p_bitlen;
q_bit_len = ctx->key_pair->priv_key.params->ec_gen_order_bitlen;
k = &(ctx->sign_data.ecfsdsa.k);
r_len = (u8)ECFSDSA_R_LEN(p_bit_len);
s_len = (u8)ECFSDSA_S_LEN(q_bit_len);
hsize = ctx->h->digest_size;
r = ctx->sign_data.ecfsdsa.r;
if (siglen != ECFSDSA_SIGLEN(p_bit_len, q_bit_len)) {
ret = -1;
goto err;
}
#ifdef USE_SIG_BLINDING
ret = nn_get_random_mod(&b, q);
if (ret) {
ret = -1;
goto err;
}
dbg_nn_print("b", &b);
#endif /* USE_SIG_BLINDING */
/* Since we call a callback, sanity check our mapping */
if(hash_mapping_callbacks_sanity_check(ctx->h)){
ret = -1;
goto err;
}
/* 5. Compute h = H(r||m) */
/* Since we call a callback, sanity check our mapping */
if(hash_mapping_callbacks_sanity_check(ctx->h)){
ret = -1;
goto err;
}
ctx->h->hfunc_finalize(&(ctx->sign_data.ecfsdsa.h_ctx), e_buf);
dbg_buf_print("h(R||m)", e_buf, hsize);
/* 6. Compute e by converting h to an integer and reducing it mod q */
nn_init_from_buf(&tmp, e_buf, hsize);
local_memset(e_buf, 0, hsize);
nn_mod(&e, &tmp, q);
#ifdef USE_SIG_BLINDING
/* Blind e with b */
nn_mul_mod(&e, &e, &b, q);
#endif /* USE_SIG_BLINDING */
/* 7. Compute s = (k + ex) mod q */
nn_mul_mod(&ex, &e, x, q);
nn_uninit(&e);
#ifdef USE_SIG_BLINDING
/* Blind k with b */
nn_mul_mod(&s, k, &b, q);
nn_mod_add(&s, &s, &ex, q);
#else
nn_mod_add(&s, k, &ex, q);
#endif /* USE_SIG_BLINDING */
nn_uninit(&ex);
nn_uninit(&tmp);
#ifdef USE_SIG_BLINDING
/* Unblind s */
nn_modinv(&binv, &b, q);
nn_mul_mod(&s, &s, &binv, q);
#endif /* USE_SIG_BLINDING */
dbg_nn_print("s: ", &s);
/*
* 8. If s is 0, restart the process at step 1.
*
* In practice, as we cannot restart the whole process in
* finalize() we just report an error.
*/
if (nn_iszero(&s)) {
nn_uninit(&s);
ret = -1;
goto err;
}
/* 9. Return (r,s) */
local_memcpy(sig, r, r_len);
nn_export_to_buf(sig + r_len, s_len, &s);
nn_uninit(&s);
ret = 0;
err:
/*
* We can now clear data part of the context. This will clear
* magic and avoid further reuse of the whole context.
*/
local_memset(&(ctx->sign_data.ecfsdsa), 0, sizeof(ecfsdsa_sign_data));
PTR_NULLIFY(q);
PTR_NULLIFY(x);
PTR_NULLIFY(k);
PTR_NULLIFY(priv_key);
PTR_NULLIFY(r);
VAR_ZEROIFY(hsize);
VAR_ZEROIFY(p_bit_len);
VAR_ZEROIFY(q_bit_len);
VAR_ZEROIFY(r_len);
VAR_ZEROIFY(s_len);
#ifdef USE_SIG_BLINDING
nn_zero(&b);
nn_zero(&binv);
#endif /* USE_SIG_BLINDING */
return ret;
}
/*
* Generic *internal* ECFSDSA verification functions (init, update and
* finalize). Their purpose is to allow passing a specific hash function
* (along with their output size) and the random ephemeral key k, so
* that compliance tests against test vectors can be made without ugly
* hack in the code itself.
*
* Global EC-FSDSA verification process is as follows (I,U,F provides
* information in which function(s) (init(), update() or finalize())
* a specific step is performed):
*
*| IUF - ECFSDSA verification
*|
*| I 1. Reject the signature if r is not a valid point on the curve.
*| I 2. Reject the signature if s is not in ]0,q[
*| IUF 3. Compute h = H(r||m)
*| F 4. Convert h to an integer and then compute e = -h mod q
*| F 5. compute W' = sG + eY, where Y is the public key
*| F 6. Compute r' = FE2OS(W'_x)||FE2OS(W'_y)
*| F 7. Accept the signature if and only if r equals r'
*
*/
#define ECFSDSA_VERIFY_MAGIC ((word_t)(0x26afb13ccd96fa04ULL))
#define ECFSDSA_VERIFY_CHECK_INITIALIZED(A) \
MUST_HAVE((((const void *)(A)) != NULL) && \
((A)->magic == ECFSDSA_VERIFY_MAGIC))
int _ecfsdsa_verify_init(struct ec_verify_context *ctx,
const u8 *sig, u8 siglen)
{
bitcnt_t p_bit_len, q_bit_len;
u8 p_len, r_len, s_len;
int ret = -1;
const u8 *r;
nn_src_t q;
fp rx, ry;
nn *s;
/* First, verify context has been initialized */
SIG_VERIFY_CHECK_INITIALIZED(ctx);
/* Do some sanity checks on input params */
pub_key_check_initialized_and_type(ctx->pub_key, ECFSDSA);
if ((!(ctx->h)) || (ctx->h->digest_size > MAX_DIGEST_SIZE) ||
(ctx->h->block_size > MAX_BLOCK_SIZE)) {
ret = -1;
goto err;
}
/* Make things more readable */
q = &(ctx->pub_key->params->ec_gen_order);
p_bit_len = ctx->pub_key->params->ec_fp.p_bitlen;
q_bit_len = ctx->pub_key->params->ec_gen_order_bitlen;
p_len = (u8)BYTECEIL(p_bit_len);
r_len = (u8)ECFSDSA_R_LEN(p_bit_len);
s_len = (u8)ECFSDSA_S_LEN(q_bit_len);
s = &(ctx->verify_data.ecfsdsa.s);
if (siglen != ECFSDSA_SIGLEN(p_bit_len, q_bit_len)) {
ret = -1;
goto err;
}
/* 1. Reject the signature if r is not a valid point on the curve. */
/* Let's first import r, i.e. x and y coordinates of the point */
r = sig;
fp_init(&rx, ctx->pub_key->params->ec_curve.a.ctx);
fp_import_from_buf(&rx, r, p_len);
fp_init(&ry, ctx->pub_key->params->ec_curve.a.ctx);
fp_import_from_buf(&ry, r + p_len, p_len);
/* Let's now check that r represents a point on the curve */
if (!is_on_curve(&rx, &ry, &(ctx->pub_key->params->ec_curve))) {
ret = -1;
goto err;
}
fp_uninit(&rx);
fp_uninit(&ry);
/* 2. Reject the signature if s is not in ]0,q[ */
/* Import s as a nn */
nn_init_from_buf(s, sig + r_len, s_len);
/* Check that s is in ]0,q[ */
if (nn_iszero(s) || (nn_cmp(s, q) >= 0)) {
ret = -1;
goto err;
}
/* 3. Compute h = H(r||m) */
/* Initialize the verify context */
local_memcpy(&(ctx->verify_data.ecfsdsa.r), r, r_len);
/* Since we call a callback, sanity check our mapping */
if(hash_mapping_callbacks_sanity_check(ctx->h)){
ret = -1;
goto err;
}
ctx->h->hfunc_init(&(ctx->verify_data.ecfsdsa.h_ctx));
/* Since we call a callback, sanity check our mapping */
if(hash_mapping_callbacks_sanity_check(ctx->h)){
ret = -1;
goto err;
}
ctx->h->hfunc_update(&(ctx->verify_data.ecfsdsa.h_ctx), r, r_len);
ctx->verify_data.ecfsdsa.magic = ECFSDSA_VERIFY_MAGIC;
ret = 0;
err:
if (ret) {
/*
* Signature is invalid. Clear data part of the context.
* This will clear magic and avoid further reuse of the
* whole context.
*/
local_memset(&(ctx->verify_data.ecfsdsa), 0,
sizeof(ecfsdsa_verify_data));
}
VAR_ZEROIFY(p_len);
VAR_ZEROIFY(r_len);
VAR_ZEROIFY(s_len);
VAR_ZEROIFY(p_bit_len);
VAR_ZEROIFY(q_bit_len);
PTR_NULLIFY(r);
PTR_NULLIFY(q);
PTR_NULLIFY(s);
return ret;
}
int _ecfsdsa_verify_update(struct ec_verify_context *ctx,
const u8 *chunk, u32 chunklen)
{
/*
* First, verify context has been initialized and public
* part too. This guarantees the context is an ECFSDSA
* verification one and we do not update() or finalize()
* before init().
*/
SIG_VERIFY_CHECK_INITIALIZED(ctx);
ECFSDSA_VERIFY_CHECK_INITIALIZED(&(ctx->verify_data.ecfsdsa));
/* 3. Compute h = H(r||m) */
/* Since we call a callback, sanity check our mapping */
if(hash_mapping_callbacks_sanity_check(ctx->h)){
return -1;
}
ctx->h->hfunc_update(&(ctx->verify_data.ecfsdsa.h_ctx), chunk,
chunklen);
return 0;
}
int _ecfsdsa_verify_finalize(struct ec_verify_context *ctx)
{
prj_pt_src_t G, Y;
nn_src_t q;
nn tmp, tmp2, e, *s;
prj_pt sG, eY, Wprime;
bitcnt_t p_bit_len, r_len;
aff_pt Wprime_aff;
u8 r_prime[2 * NN_MAX_BYTE_LEN];
u8 e_buf[MAX_DIGEST_SIZE];
u8 hsize, p_len;
const u8 *r;
int ret;
/*
* First, verify context has been initialized and public
* part too. This guarantees the context is an ECFSDSA
* verification one and we do not finalize() before init().
*/
SIG_VERIFY_CHECK_INITIALIZED(ctx);
ECFSDSA_VERIFY_CHECK_INITIALIZED(&(ctx->verify_data.ecfsdsa));
/* Zero init points */
local_memset(&sG, 0, sizeof(prj_pt));
local_memset(&eY, 0, sizeof(prj_pt));
/* Make things more readable */
G = &(ctx->pub_key->params->ec_gen);
Y = &(ctx->pub_key->y);
q = &(ctx->pub_key->params->ec_gen_order);
hsize = ctx->h->digest_size;
s = &(ctx->verify_data.ecfsdsa.s);
r = ctx->verify_data.ecfsdsa.r;
p_bit_len = ctx->pub_key->params->ec_fp.p_bitlen;
p_len = (u8)BYTECEIL(p_bit_len);
r_len = (u8)ECFSDSA_R_LEN(p_bit_len);
/* 3. Compute h = H(r||m) */
/* Since we call a callback, sanity check our mapping */
if(hash_mapping_callbacks_sanity_check(ctx->h)){
ret = -1;
goto err;
}
ctx->h->hfunc_finalize(&(ctx->verify_data.ecfsdsa.h_ctx), e_buf);
/*
* 4. Convert h to an integer and then compute e = -h mod q
*
* Because we only support positive integers, we compute
* e = q - (h mod q) (except when h is 0).
*/
nn_init_from_buf(&tmp, e_buf, hsize);
local_memset(e_buf, 0, hsize);
nn_mod(&tmp2, &tmp, q);
nn_uninit(&tmp);
if (nn_iszero(&tmp2)) {
nn_zero(&e);
} else {
nn_sub(&e, q, &tmp2);
}
nn_uninit(&tmp2);
/* 5. compute W' = (W'_x,W'_y) = sG + tY, where Y is the public key */
prj_pt_mul_monty(&sG, s, G);
prj_pt_mul_monty(&eY, &e, Y);
nn_uninit(&e);
prj_pt_add_monty(&Wprime, &sG, &eY);
prj_pt_uninit(&sG);
prj_pt_uninit(&eY);
prj_pt_to_aff(&Wprime_aff, &Wprime);
prj_pt_uninit(&Wprime);
/* 6. Compute r' = FE2OS(W'_x)||FE2OS(W'_y) */
fp_export_to_buf(r_prime, p_len, &(Wprime_aff.x));
fp_export_to_buf(r_prime + p_len, p_len, &(Wprime_aff.y));
aff_pt_uninit(&Wprime_aff);
dbg_buf_print("r_prime: ", r_prime, r_len);
/* 7. Accept the signature if and only if r equals r' */
ret = are_equal(r, r_prime, r_len) ? 0 : -1;
local_memset(r_prime, 0, r_len);
/*
* We can now clear data part of the context. This will clear
* magic and avoid further reuse of the whole context.
*/
local_memset(&(ctx->verify_data.ecfsdsa), 0,
sizeof(ecfsdsa_verify_data));
/* Clean what remains on the stack */
PTR_NULLIFY(G);
PTR_NULLIFY(Y);
PTR_NULLIFY(q);
PTR_NULLIFY(s);
PTR_NULLIFY(r);
VAR_ZEROIFY(p_len);
VAR_ZEROIFY(r_len);
VAR_ZEROIFY(hsize);
err:
return ret;
}
#else /* WITH_SIG_ECFSDSA */
/*
* Dummy definition to avoid the empty translation unit ISO C warning
*/
typedef int dummy;
#endif /* WITH_SIG_ECFSDSA */