From 821b94fdc97fb798c27695b75b64b3a4bf2cc6bf Mon Sep 17 00:00:00 2001 From: Joaquin Carletti Date: Thu, 5 Oct 2023 13:14:22 -0300 Subject: [PATCH] add tests for p256verify --- scripts/P256Verify.py | 136 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 136 insertions(+) create mode 100644 scripts/P256Verify.py diff --git a/scripts/P256Verify.py b/scripts/P256Verify.py new file mode 100644 index 00000000..4dd04790 --- /dev/null +++ b/scripts/P256Verify.py @@ -0,0 +1,136 @@ +import sys + +A = 0xffffffff00000001000000000000000000000000fffffffffffffffffffffffc +# A = 0xFCFFFFFFFFFFFFFFFFFFFFFF00000000000000000000000001000000FFFFFFFF +B = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b +# B = 0x4B60D2273E3CCE3BF6B053CCB0061D65BC86987655BDEBB3E7933AAAD835C65A + +def is_infinity(x, y): + if x == 0 and y == 0: + return True + +def inv_mod(a, mod): + return pow(a, mod - 2, mod) + +def add_mod(a,b,mod): + return (a + b) % mod + +def sub_mod(a,b,mod): + return add_mod(a, mod - b, mod) + +def div_mod(a,b,mod): + return mul_mod(a, inv_mod(b, mod), mod) + +def mul_mod(a,b,mod): + return (a * b) % mod + +def point_add(x1, y1, x2, y2): + mod = 0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff + if is_infinity(x1, y1) and is_infinity(x2, y2): + return (0, 0) + if is_infinity(x1, y1) and not is_infinity(x2, y2): + return (x2, y2) + if not is_infinity(x1, y1) and is_infinity(x2, y2): + return (x1, y1) + if x1 == x2 and sub_mod(0, y1, mod) == y2: + return (0, 0) + if x1 == x2 and y1 == y2: + return point_double(x1, y1, mod) + + m = div_mod(sub_mod(y1, y2, mod), sub_mod(x1, x2, mod), mod) + ret_x = sub_mod(mul_mod(m, m, mod), add_mod(x1, x2, mod), mod) + ret_y = sub_mod(mul_mod(m, sub_mod(x1, ret_x, mod), mod), y1, mod) + return (ret_x, ret_y) + + +def point_double(x, y): + mod = 0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff + if is_infinity(x, y): + return 0, 0 + if y == 0: + return 0, 0 + m = div_mod(add_mod(A, mul_mod(3, mul_mod(x, x, mod), mod), mod), add_mod(y, y, mod), mod) + ret_x = sub_mod(mul_mod(m, m, mod), add_mod(x, x, mod), mod) + ret_y = sub_mod(mul_mod(m, sub_mod(x, ret_x, mod), mod), y, mod) + return (ret_x, ret_y) + +def is_even(x): + return x % 2 == 0 + +def escalarMul(p, n): + multiplier = n + res = (0, 0) + + while multiplier > 0: + if not is_even(multiplier): + res = point_add(res[0], res[1], p[0], p[1]) + p = point_double(p[0], p[1]) + + multiplier = multiplier >> 1 + return res + +def main(): + for i in range(1, 1000): + n = 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551 + + z = 0x1899fa5c2e77910f63db2d279ae19dea9ec0d2f3b0c8c532c572fe27cd1bedba + # con 2 se achica e Y + da = i + k = 234 + + gx = 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296 + gy = 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5 + + # Signature + x, y = escalarMul((gx,gy),k) + r = x % n + assert r != 0 + + k_inv = pow(k, n-2, n) + assert k_inv * k % n == 1 + + s = (k_inv * (z + r * da)) % n + assert s != 0 + + # z = 0x5ad83880e16658d7521d4e878521defaf6b43dec1dbd69e514c09ab8f1f2ffe2 + # r = 0xBE2B5B76B868F64F255F8CF666EA3B0B17EE8A2C352757B9454DD4979539D7DE + # s = 0x93973E2948748003BC6C947D56A47411EA1C812B358BE9D0189E2BD0A0B9D11E + # public_key_x = 0x18905F76A53755C679FB732B7762251075BA95FC5FEDB60179E730D418A9143C + # public_key_y = 0x8571FF1825885D85D2E88688DD21F3258B4AB8E4BA19E45CDDF25357CE95560A + + public_key_x, public_key_y = escalarMul((gx, gy), da) + + # print(hex(z)) + # print(hex(r)) + # print(hex(s)) + # print(hex(public_key_x)) + # print(hex(public_key_y)) + if len(hex(public_key_y + 0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff)) == 66: + print(hex(z)) + print(hex(r)) + print(hex(s)) + print(hex(public_key_x)) + print(hex(public_key_y)) + print(hex(public_key_y + 0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff)) + + # Check generators + assert((0,0) == escalarMul((gx, gy), n)) + # Check Public key + assert((0,0) == escalarMul((public_key_x, public_key_y), n)) + + # Verification + s_inv = pow(s, n-2, n) + assert s_inv * s % n == 1 + + u1 = (z * s_inv) % n + u2 = (r * s_inv) % n + + x1, y1 = point_add(*escalarMul((gx, gy), u1),*escalarMul((public_key_x, public_key_y), u2)) + x1 = x1 % n + r = r % n + + print(x1 == r) + + +if __name__ == '__main__': + main()