-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathCodegen.jl
490 lines (382 loc) · 13.4 KB
/
Codegen.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
# SPDX-License-Identifier: MIT
# Author: Pierre Lairez
module Codegen
using IntervalArithmetic
using StaticArrays
import Base: +, *, -, one, convert, promote_rule
export coord, @genpredicate
@enum FilterEnum fastfp_flt zerotest_flt accuratefp_flt interval_flt exact_flt naive_flt nothing_flt
struct InvalidPrecisionError{T} <: Exception
x::T
end
function Base.showerror(io :: IO, e :: InvalidPrecisionError{T}) where {T}
print(io, "Invalid precision used for input ", e.x, "::$T. You can only use Float64 numbers in predicates.")
end
@inline _coord(x :: NTuple{N,Float64}) where {N} = x
_coord(x :: Tuple) = throw(InvalidPrecisionError(x))
_coord(x) = coord(x)
@inline coord(x) = _coord(Tuple(x))
@inline coord(x :: Complex) = _coord(reim(x))
function adddict(a, b)
d = copy(a)
for k in keys(b)
if haskey(a, k)
d[k] += b[k]
else
d[k] = b[k]
end
end
return d
end
function mergedict(a, b)
d = copy(a)
for k in keys(b)
if haskey(a, k)
d[k] = union(d[k], b[k])
else
d[k] = b[k]
end
end
return d
end
mutable struct Formula <: Number
id :: Symbol
head :: Symbol
args :: Vector
group :: Union{Nothing, Symbol}
end
function Formula(name :: Union{Expr, Symbol}, group = nothing)
s = gensym()
Formula(s, :sym, [name], group)
end
macro var(args...)
vars = [Formula(v) for v in args]
Expr(:block,
[Expr(:(=), esc(args[i]), vars[i]) for i in 1:length(vars)]...)
end
macro point2(args...)
vars = [SVector(Formula(:($v[1])), Formula(:($v[2]))) for v in args]
Expr(:block,
[Expr(:(=), esc(args[i]), vars[i]) for i in 1:length(vars)]...)
end
function +(f :: Formula, g :: Formula)
Formula(gensym(), :+, [f, g], nothing)
end
function *(f :: Formula, g :: Formula)
Formula(gensym(), :*, [f, g], nothing)
end
function -(f :: Formula, g :: Formula)
Formula(gensym(), :-, [f, g], nothing)
end
function -(f :: Formula)
Formula(gensym(), :-, [f], nothing)
end
function convert(::Type{Formula}, i :: T) where T <: Integer
Formula(gensym(), :const, [i], nothing)
end
zero(::Type{Formula}) = convert(Formula, 0)
promote_rule(::Type{T}, ::Type{Formula}) where {T <: Integer} = Formula
promote_rule(::Type{Bool}, ::Type{Formula}) = Formula # method ambiguity
function group!(args...)
@gensym g
for f in args
f.group = g
end
end
function accumulator(f :: Formula)
if f.head == :sym
ret = (deg = Dict(), groups = Dict(), bound = Inf, error = 0.0)
elseif f.head == :+ || (f.head == :- && length(f.args) == 2)
af = accumulator(f.args[1])
ag = accumulator(f.args[2])
@assert af.deg == ag.deg
bound = nextfloat(af.bound + ag.bound)
error = nextfloat(nextfloat(af.error + ag.error) + eps(bound)/2)
ret = (deg = af.deg, groups = mergedict(af.groups, ag.groups), bound = bound, error = error)
elseif f.head == :*
af = accumulator(f.args[1])
ag = accumulator(f.args[2])
bound = nextfloat(af.bound * ag.bound)
error = nextfloat(nextfloat(nextfloat(af.error*ag.bound) + nextfloat(af.bound*ag.error)) + eps(bound)/2)
ret = (deg = adddict(af.deg, ag.deg), groups = mergedict(af.groups, ag.groups), bound = bound, error = error)
elseif f.head == :-
ret = accumulator(f.args[1])
elseif f.head == :const
ret = (deg = Dict(), groups = Dict(), bound = abs(float(f.args[1])), error = 0.0)
else
throw(DomainError())
end
if !isnothing(f.group)
@assert f.head == :sym || f.head == :- && f.args[1].head == f.args[2].head == :sym
ret = (deg = Dict(f.group => 1), groups = Dict(f.group => Set([f.id])), bound = 1.0, error = eps(1.0)/2)
end
return ret
end
function evalcode(f :: Formula, conv = nothing)
code = []
stack = [f]
syms = Set{Symbol}()
while !isempty(stack)
e = pop!(stack)
if e.id ∈ syms
continue
end
s = (e.id)
if e.head == :sym
if isnothing(conv)
push!(code, Expr(:(=), s, e.args[1]))
else
push!(code, Expr(:(=), s, conv(e.args[1])))
end
elseif e.head == :const
push!(code, code, Expr(:(=), s, e.args[1]))
else
if all(a.id ∈ syms for a in e.args)
push!(code, Expr(:(=), s, Expr(:call, e.head, ((a.id) for a in e.args)...)))
else
push!(stack, e, e.args...)
continue
end
end
push!(syms, e.id)
end
return quote
$(code...)
$(f.id)
end
end
function fastfilter(f :: Formula ; withretcode :: Bool = false)
code = []
@gensym res
let
fpcode = quote
$res = $(evalcode(f))
end
push!(code, fpcode)
end
# Now code contains the computation of the formula, nothing more. We can
# reliably determine the sign of the result if its absolute value is larger
# than acc.error*scaling. The scaling depends on the homogeneity structure
# of the formula.
# The format of acc.groups is Dict(g1=>[a,b,c,...], g2=>[d,e,f,...], ...),
# where a, b, c, ... are input gates (or difference or input gates, which
# are considered as new input gates). The formula is expected to be
# multihomogeneous w.r.t. to each group. The degree of homogeneity w.r.t to
# the group g is acc.deg[g]. Therefore, the appropriate scaling is the
# product of all λ[g]^acc.deg[g], where λ[g] is the maximum
# absolute value of an input in group g.
# The accurate way of determining if abs(res) >
# acc.error*Π λ[g]^acc.deg[g] is to do the computation with fp numbers.
# But we can check quickly a sufficient condition just with integer
# arithmetic on the exponents.
# There are two fundamental things to check: that no overflow occurred with computing res
# and that no underflow occurs when computing acc.error*Π λ[g]^acc.deg[g].
acc = accumulator(f)
totdeg = UInt(sum(values(acc.deg)))
@gensym signres
let
# we first try to determine if the absolute value of the result is
# bigger than the maximal possible absolute error by looking only at the
# exponents.
emask = Base.exponent_mask(Float64)
mantissabits = UInt(Base.Math.significand_bits(Float64))
grouplogs = []
for (idx, g) in acc.groups
@gensym glog
push!(grouplogs, glog)
alllogs = [:(reinterpret(UInt64, $v) & $emask) for v in g]
push!(code, :($glog = max($(alllogs...)) >> $mantissabits))
# we could probably work without the shift, but it would make it
# harder to think about overflows/underflows.
if acc.deg[idx] != 1
push!(code, :($glog *= $(acc.deg[idx])))
end
end
errlog = ((reinterpret(UInt64, acc.error) & emask) >> mantissabits) -
totdeg * ( Base.exponent_one(Float64) >> mantissabits ) + totdeg
@gensym ε
@gensym reslog
@gensym rawres
filter = quote
$ε = $(Expr(:call, :+, errlog, grouplogs...))
$rawres = reinterpret(UInt64, $res)
$signres = Base.ifelse($rawres & $(Base.sign_mask(Float64)) == 0, 1, -1)
$reslog = ($rawres & $emask) >> $mantissabits
if $reslog != $(emask >> mantissabits) && # protect against Inf and Nan
#$ε ≥ 0 && # protect against underflow in computation of ε
$reslog > $ε # main test
# we should check that ε is not
# negative. But since we are in unsigned arithmetic, ε < 0 means
# actually that ε is big, so reslog > ε cannot hold.
$(withretcode ? :(return ($signres, $fastfp_flt)) : :(return $signres))
end
end
push!(code, filter)
end
let
# Quick test is non conclusive. We check if there is a group in which
# all the variables are zero, in which case the result is zero.
filter = quote
if $(Expr(:call, :|,
(Expr(:call, :&,
(Expr(:call, :(==), v, 0.0)
for v in g)...)
for g in values(acc.groups))...)
)
$(withretcode ? :(return (0, $zerotest_flt)) : :(return 0))
end
end
push!(code, filter)
end
let
# We now go to the finer, more straight forward, test.
groupabs = []
for (idx, g) in acc.groups
@gensym gabs
push!(groupabs, gabs)
allabs = [:(abs($v)) for v in g]
push!(code, :($gabs = max($(allabs...))))
if acc.deg[idx] != 1
push!(code, :($gabs = $gabs^$(acc.deg[idx])))
end
end
errabs = acc.error * (1+eps(1.0))^totdeg
@gensym ε
filter = quote
$ε = *($(groupabs...)) * $errabs
if !issubnormal($ε) && $ε > 0 && isfinite($res) && abs($res) > $ε
$(withretcode ? :(return ($signres, $accuratefp_flt)) : :(return $signres))
end
end
push!(code, filter)
end
return quote
$(code...)
end
end
function ivfilter(f :: Formula ; withretcode :: Bool = false)
@gensym ivres
quote
# We now resort to interval arithmetic It is an interesting filter when
# the data is made of exactly representable integers.
$ivres = $(evalcode(f, s -> :( interval($s) )))
if isstrictless($ivres, interval(0.0))
$(withretcode ? :(return (-1, $interval_flt)) : :(return -1))
elseif isstrictless(interval(0.0), $ivres)
$(withretcode ? :(return (1, $interval_flt)) : :(return 1))
elseif mag($ivres) == 0
$(withretcode ? :(return (0, $interval_flt)) : :(return 0))
end
end
end
function exfilter(f :: Formula ; withretcode :: Bool = false)
@gensym exrec
quote
# Exact arithmetic. Always conclusive.
$exrec = $(evalcode(f, s -> :( Rational{BigInt}($s) )))
$(withretcode ? :(return (Int(sign($exrec)), $exact_flt)) : :(return Int(sign($exrec))))
end
end
function naivefilter(f :: Formula ; withretcode :: Bool = false)
@gensym fpres
quote
# Exact arithmetic. Always conclusive.
$fpres = $(evalcode(f))
if $fpres < 0
$(withretcode ? :(return (-1, $naive_flt)) : :(return -1))
elseif $fpres > 0
$(withretcode ? :(return (1, $naive_flt)) : :(return 1))
else
$(withretcode ? :(return (0, $naive_flt)) : :(return 0))
end
end
end
"""
Generate sign predicate for a function that computes a polynomial in the
coordinates of the arguments.
"""
macro genpredicate(args...)
if first(args) == :nogeneric
defgeneric = false
fun = args[2]
else
defgeneric = true
fun = args[1]
end
sig = fun.args[1]
args = sig.args[2:length(sig.args)]
@assert fun.head == :function
nargs = []
tupleconv = []
input = []
for a in args
if isa(a, Symbol)
push!(input, Formula(a))
push!(nargs, :($a :: Float64))
elseif isa(a, Expr) && a.head == :(::)
v, dim = a.args
push!(input, SVector((Formula(:($v[$i])) for i in 1:dim)...))
push!(nargs, :($v :: NTuple{$dim, Float64}))
push!(tupleconv, :($v = _coord($v)))
else
throw(DomainError("Unknown argument $a"))
end
end
base = string(sig.args[1])
mainf = esc(Symbol(base))
slowf = esc(Symbol(base, "_slow"))
referencef = esc(Symbol(base, "_reference"))
naivef = esc(Symbol(base, "_naive"))
debug = s -> esc(Symbol(s.args[1], "_dbg"))
nsig = (a for a in nargs)
vars = (a.args[1] for a in nargs)
# This is the fun part: we inject into the body of the function given in
# argument the formal input. This gives an object of type Formula that
# represents the polynomial.
formula = Core.eval(__module__,
Expr(:call,
Expr(:->, Expr(:tuple, vars...), fun.args[2]),
input...))
if defgeneric
genfun = quote
function $(mainf)($(vars...))
$(tupleconv...)
return $(mainf)($(vars...))
end
end
else
genfun = quote end
end
quote
function $(naivef)($(nsig...))
$(naivefilter(formula))
end
function $(debug(naivef))($(nsig...))
$(naivefilter(formula, withretcode=true))
end
function $(referencef)($(nsig...))
$(exfilter(formula))
end
function $(debug(referencef))($(nsig...))
$(exfilter(formula, withretcode=true))
end
function $(slowf)($(nsig...))
$(ivfilter(formula))
return $(referencef)($(vars...))
end
function $(debug(slowf))($(nsig...))
$(ivfilter(formula, withretcode=true))
return $(debug(referencef))($(vars...))
end
Core.@__doc__(@inline function $(mainf)($(nsig...))
$(fastfilter(formula))
return $(slowf)($(vars...))
end)
function $(debug(mainf))($(nsig...))
$(fastfilter(formula, withretcode=true))
return $(debug(slowf))($(vars...))
end
$(genfun)
end
end
end