-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathswipe.m
131 lines (124 loc) · 4.58 KB
/
swipe.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
% The following MATLAB code is taken from Camacho's dissertation appendix,
% and has only been subject to slight modification to make it more
% readable. The default values are Camacho's, not mine (and in fact, are
% definitely not appropriate for speech, in my opinion).
more on;
function [p,t,s] = swipep(x,fs,plim,dt,sTHR)
if ~ exist( 'plim', 'var' ) || isempty(plim), plim = [30 5000]; end
if ~ exist( 'dt', 'var' ) || isempty(dt), dt = 0.01; end
dlog2p = 1/96;
dERBs = 0.1;
if ~ exist( 'sTHR', 'var' ) || isempty(sTHR), sTHR = -Inf; end
t = [ 0: dt: length(x)/fs ]'; % Times
dc = 4; % Hop size (in cycles)
K = 2; % Parameter k for Hann window
% Define pitch candidates
log2pc = [ log2(plim(1)): dlog2p: log2(plim(end)) ]';
pc = 2 .^ log2pc;
S = zeros( length(pc), length(t) ); % Pitch strength matrix
% Determine P2-WSs
logWs = round( log2( 4*K * fs ./ plim ) );
ws = 2.^[ logWs(1): -1: logWs(2) ]; % P2-WSs
pO = 4*K * fs ./ ws; % Optimal pitches for P2-WSs
% Determine window sizes used by each pitch candidate
d = 1 + log2pc - log2( 4*K*fs./ws(1) );
% Create ERBs spaced frequencies (in Hertz)
fERBs = erbs2hz([ hz2erbs(pc(1)/4): dERBs: hz2erbs(fs/2) ]');
for i = 1 : length(ws)
dn = round( dc * fs / pO(i) ); % Hop size (in samples)
% Zero pad signal
xzp = [ zeros( ws(i)/2, 1 ); x(:); zeros( dn + ws(i)/2, 1 ) ];
% Compute spectrum
w = hanning( ws(i) ); % Hann window
o = max( 0, round( ws(i) - dn ) ); % Window overlap
[ X, f, ti ] = specgram( xzp, ws(i), fs, w, o );
% Interpolate at equidistant ERBs steps
M = max( 0, interp1( f, abs(X), fERBs, 'spline', 0) ); % Magnitude
L = sqrt( M ); % Loudness
% Select candidates that use this window size
if i==length(ws)
j = find(d - i > -1);
k = find(d(j) - i < 0);
elseif i==1
j = find(d - i < 1);
k = find(d(j) - i > 0);
else
j = find(abs(d - i) < 1);
k = (1:length(j))'; % transpose added by KG
end
Si = pitchStrengthAllCandidates( fERBs, L, pc(j) );
% Interpolate at desired times
if size(Si,2) > 1
Si = interp1( ti, Si', t, 'linear', NaN )';
else
Si = repmat( NaN, length(Si), length(t) );
end
lambda = d( j(k) ) - i;
mu = ones( size(j) );
mu(k) = 1 - abs( lambda );
S(j,:) = S(j,:) + repmat(mu,1,size(Si,2)) .* Si;
end
% Fine-tune the pitch using parabolic interpolation
p = repmat( NaN, size(S,2), 1 );
s = repmat( NaN, size(S,2), 1 );
for j = 1 : size(S,2)
[ s(j), i ] = max( S(:,j) );
if s(j) < sTHR, continue, end
if i==1
p(j)=pc(1);
elseif i==length(pc)
p(j)=pc(1);
else
I = i-1 : i+1;
tc = 1 ./ pc(I);
ntc = ( tc/tc(2) - 1 ) * 2*pi;
c = polyfit( ntc, S(I,j), 2 );
ftc = 1 ./ 2.^[ log2(pc(I(1))): 1/12/64: log2(pc(I(3))) ];
nftc = ( ftc/tc(2) - 1 ) * 2*pi;
[s(j) k] = max( polyval( c, nftc ) );
p(j) = 2 ^ ( log2(pc(I(1))) + (k-1)/12/64 );
end
end
p(isnan(s)) = NaN; % added by KG for 0s
end
function S = pitchStrengthAllCandidates( f, L, pc )
% Normalize loudness
warning off MATLAB:divideByZero
L = L ./ repmat( sqrt( sum(L.*L) ), size(L,1), 1 );
warning on MATLAB:divideByZero
% Create pitch salience matrix
S = zeros( length(pc), size(L,2) );
for j = 1 : length(pc)
S(j,:) = pitchStrengthOneCandidate( f, L, pc(j) );
end
end
function S = pitchStrengthOneCandidate( f, L, pc )
n = fix( f(end)/pc - 0.75 ); % Number of harmonics
k = zeros( size(f) ); % Kernel
q = f / pc; % Normalize frequency w.r.t. candidate
for i = [ 1 primes(n) ]
a = abs( q - i );
% Peak's weigth
p = a < .25;
k(p) = cos( 2*pi * q(p) );
% Valleys' weights
v = .25 < a & a < .75;
k(v) = k(v) + cos( 2*pi * q(v) ) / 2;
end
% Apply envelope
k = k .* sqrt( 1./f );
% K+-normalize kernel
k = k / norm( k(k>0) );
% Compute pitch strength
S = k' * L;
end
function erbs = hz2erbs(hz)
erbs = 21.4 * log10( 1 + hz/229 );
end
function hz = erbs2hz(erbs)
hz = ( 10 .^ (erbs./21.4) - 1 ) * 229;
end
[x,fs] = wavread('test.wav');
[p,t,s] = swipep(x, fs, [100 600], 0.001, 0.3);
plot(p)
pause