-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathloupe.py
211 lines (164 loc) · 7.15 KB
/
loupe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Copyright 2017 Antoine Miech All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Learnable mOdUle for Pooling fEatures (LOUPE)
Contains a collection of models (NetVLAD, NetRVLAD, NetFV and Soft-DBoW)
which enables pooling of a list of features into a single compact
representation.
Reference:
Learnable pooling method with Context Gating for video classification
Antoine Miech, Ivan Laptev, Josef Sivic
"""
import math
import tensorflow as tf
import tensorflow.contrib.slim as slim
import numpy as np
class PoolingBaseModel(object):
"""Inherit from this class when implementing new models."""
def __init__(self, feature_size, max_samples, cluster_size, output_dim,
gating=True,add_batch_norm=True, is_training=True):
"""Initialize a NetVLAD block.
Args:
feature_size: Dimensionality of the input features.
max_samples: The maximum number of samples to pool.
cluster_size: The number of clusters.
output_dim: size of the output space after dimension reduction.
add_batch_norm: (bool) if True, adds batch normalization.
is_training: (bool) Whether or not the graph is training.
"""
self.feature_size = feature_size
self.max_samples = max_samples
self.output_dim = output_dim
self.is_training = is_training
self.gating = gating
self.add_batch_norm = add_batch_norm
self.cluster_size = cluster_size
def forward(self, reshaped_input):
raise NotImplementedError("Models should implement the forward pass.")
def context_gating(self, input_layer):
"""Context Gating
Args:
input_layer: Input layer in the following shape:
'batch_size' x 'number_of_activation'
Returns:
activation: gated layer in the following shape:
'batch_size' x 'number_of_activation'
"""
input_dim = input_layer.get_shape().as_list()[1]
gating_weights = tf.get_variable("gating_weights",
[input_dim, input_dim],
initializer = tf.random_normal_initializer(
stddev=1 / math.sqrt(input_dim)))
gates = tf.matmul(input_layer, gating_weights)
if self.add_batch_norm:
gates = slim.batch_norm(
gates,
center=True,
scale=True,
is_training=self.is_training,
scope="gating_bn")
else:
gating_biases = tf.get_variable("gating_biases",
[input_dim],
initializer = tf.random_normal(stddev=1 / math.sqrt(input_dim)))
gates += gating_biases
gates = tf.sigmoid(gates)
activation = tf.multiply(input_layer,gates)
return activation
#Edited based on the original version
class NetVLAD(PoolingBaseModel):
"""Creates a NetVLAD class.
"""
def __init__(self, feature_size, max_samples, cluster_size, output_dim,
gating=True,add_batch_norm=True, is_training=True):
super(self.__class__, self).__init__(
feature_size=feature_size,
max_samples=max_samples,
cluster_size=cluster_size,
output_dim=output_dim,
gating=gating,
add_batch_norm=add_batch_norm,
is_training=is_training)
def forward(self, reshaped_input):
"""Forward pass of a NetVLAD block.
Args:
reshaped_input: If your input is in that form:
'batch_size' x 'max_samples' x 'feature_size'
It should be reshaped in the following form:
'batch_size*max_samples' x 'feature_size'
by performing:
reshaped_input = tf.reshape(input, [-1, features_size])
Returns:
vlad: the pooled vector of size: 'batch_size' x 'output_dim'
"""
cluster_weights = tf.get_variable("cluster_weights",
[self.feature_size, self.cluster_size],
initializer = tf.random_normal_initializer(
stddev=1 / math.sqrt(self.feature_size)))
activation = tf.matmul(reshaped_input, cluster_weights)
# activation = tf.contrib.layers.batch_norm(activation,
# center=True, scale=True,
# is_training=self.is_training,
# scope='cluster_bn')
# activation = slim.batch_norm(
# activation,
# center=True,
# scale=True,
# is_training=self.is_training,
# scope="cluster_bn")
if self.add_batch_norm:
activation = slim.batch_norm(
activation,
center=True,
scale=True,
is_training=self.is_training,
scope="cluster_bn", fused=False)
else:
cluster_biases = tf.get_variable("cluster_biases",
[self.cluster_size],
initializer = tf.random_normal_initializer(
stddev=1 / math.sqrt(self.feature_size)))
activation += cluster_biases
activation = tf.nn.softmax(activation)
activation = tf.reshape(activation,
[-1, self.max_samples, self.cluster_size])
a_sum = tf.reduce_sum(activation,-2,keep_dims=True)
cluster_weights2 = tf.get_variable("cluster_weights2",
[1,self.feature_size, self.cluster_size],
initializer = tf.random_normal_initializer(
stddev=1 / math.sqrt(self.feature_size)))
a = tf.multiply(a_sum,cluster_weights2)
activation = tf.transpose(activation,perm=[0,2,1])
reshaped_input = tf.reshape(reshaped_input,[-1,
self.max_samples, self.feature_size])
vlad = tf.matmul(activation,reshaped_input)
vlad = tf.transpose(vlad,perm=[0,2,1])
vlad = tf.subtract(vlad,a)
vlad = tf.nn.l2_normalize(vlad,1)
vlad = tf.reshape(vlad,[-1, self.cluster_size*self.feature_size])
vlad = tf.nn.l2_normalize(vlad,1)
hidden1_weights = tf.get_variable("hidden1_weights",
[self.cluster_size*self.feature_size, self.output_dim],
initializer=tf.random_normal_initializer(
stddev=1 / math.sqrt(self.cluster_size)))
##Tried using dropout
#vlad=tf.layers.dropout(vlad,rate=0.5,training=self.is_training)
vlad = tf.matmul(vlad, hidden1_weights)
##Added a batch norm
vlad = tf.contrib.layers.batch_norm(vlad,
center=True, scale=True,
is_training=self.is_training,
scope='bn')
if self.gating:
vlad = super(self.__class__, self).context_gating(vlad)
return vlad