-
Notifications
You must be signed in to change notification settings - Fork 0
/
04-feature-selection.Rmd
248 lines (203 loc) · 4.87 KB
/
04-feature-selection.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
---
title: "Feature Selection"
author: "Kundan K. Rao"
date: "01/12/2021"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
```{r}
#principle component
pr.out<-prcomp(data,scale=T)
```
```{r}
names(pr.out)
```
```{r}
pr.out$center
```
```{r}
pr.out$scale
```
```{r}
pr.out$sdev
```
```{r}
# principle component loading vector
pr.out$rotation
```
```{r}
#principle component score vectors dimention
dim(pr.out$x)
```
```{r}
#principle component score vector
head(pr.out$x)
```
assessing clustering tendency:-
```{r}
# Plot the random df
fviz_pca_ind(pr.out, title = "PCA - Random data",
geom = "point", ggtheme = theme_classic())
```
```{r}
# biplot
ggbiplot::ggbiplot(pr.out)
#biplot(pr.out,scale=0)
```
Observation:-
1. Alcohol, Color intensity, Proline, Magnesium, Ash seems to form a cluster
2. Hue, Total phenols, Flavanoids, 0D280/0D315 of diluted wines seems to form another cluster
3. Malic acid, Nonflavanoid phenols, Alcalinity of ash seems to form yet another cluster
```{r}
# variances explained by principle components
pr.var <- pr.out$sdev^2
pr.var
```
```{r}
#PVE proportion of variance explained by each principle components
pve <- pr.var/sum(pr.var)
pve
```
```{r}
# plot of PVE explained by each principle component
par(mfwow=c(2,1))
plot(pve, xlab="Principle Component", ylab = "Proportion of variance explained", ylim=c(0,1), type="b")
plot(cumsum(pve), xlab="principle component",ylab="Cumulative proportion of variance explained", ylim=c(0,1), type="b")
```
# Matrix completion
```{r}
x <- data.matrix(scale(data))
pcob <- prcomp(x)
summary(pcob)
```
```{r}
# singular value decomposition
sX<-svd(x)
names(sX)
round(sX$v,3)
```
```{r}
# compare with the above , both is same i.e. loading matrix
pcob$rotation
```
# Assesing clustering tendency:-
Statistical method:-
```{r}
library(clustertend)
# Compute Hopkins statistic for wine dataset
set.seed(123)
hopkin <-hopkins(data, n = nrow(data)-1)
hopkin
```
Visual method:-
```{r}
fviz_dist(dist(data), show_labels = FALSE)+
labs(title = "Wine data")
```
```{r}
fviz_dist(dist(data.scaled), show_labels = FALSE)+
labs(title = "Wine data")
```
The visual assessment of cluster tendency (VAT) detects the clustering tendency in a visual form by counting the number of
square shaped dark blocks along the diagonal in a VAT image.
# determining optimum number of clusters:-
Kmeans
```{r}
# Elbow method
fviz_nbclust(data.scaled, kmeans, method = "wss") +
#geom_vline(xintercept = 4, linetype = 2)+
labs(subtitle = "Elbow method")
```
```{r}
# Silhouette method
fviz_nbclust(data.scaled, kmeans, method = "silhouette")+
labs(subtitle = "Silhouette method")
```
```{r}
# Gap statistic
# nboot = 50 to keep the function speedy.
# recommended value: nboot= 500 for your analysis.
# Use verbose = FALSE to hide computing progression.
set.seed(123)
fviz_nbclust(data.scaled, kmeans, nstart = 25, method = "gap_stat", nboot = 50)+
labs(subtitle = "Gap statistic method")
```
## pam
```{r}
# Elbow method
fviz_nbclust(data.scaled, pam, method = "wss") +
#geom_vline(xintercept = 4, linetype = 2)+
labs(subtitle = "Elbow method")
```
```{r}
# Silhouette method
fviz_nbclust(data.scaled, pam, method = "silhouette")+
labs(subtitle = "Silhouette method")
```
```{r}
# Gap statistic
# nboot = 50 to keep the function speedy.
# recommended value: nboot= 500 for your analysis.
# Use verbose = FALSE to hide computing progression.
set.seed(123)
fviz_nbclust(data.scaled, pam, nstart = 25, method = "gap_stat", nboot = 50)+
labs(subtitle = "Gap statistic method")
```
## Hierarchical
```{r}
# Elbow method
fviz_nbclust(data.scaled, hcut, method = "wss") +
#geom_vline(xintercept = 4, linetype = 2)+
labs(subtitle = "Elbow method")
```
```{r}
# Silhouette method
fviz_nbclust(data.scaled, hcut, method = "silhouette")+
labs(subtitle = "Silhouette method")
```
```{r}
# Gap statistic
# nboot = 50 to keep the function speedy.
# recommended value: nboot= 500 for your analysis.
# Use verbose = FALSE to hide computing progression.
set.seed(123)
fviz_nbclust(data.scaled, hcut, nstart = 25, method = "gap_stat", nboot = 50)+
labs(subtitle = "Gap statistic method")
```
# NbClust() Method
## Majority rule
## Kmeans
```{r}
library(NbClust)
nb <- NbClust(data.scaled, distance = "euclidean", min.nc = 2,
max.nc = 10, method = "kmeans")
# visualising the result
fviz_nbclust(nb)
```
## hierarchical
ward.D
```{r}
library(NbClust)
nb.ward2 <- NbClust(data.scaled, distance = "euclidean", min.nc = 2,
max.nc = 10, method = "ward.D")
# visualising the result
fviz_nbclust(nb.ward2)
```
average
```{r}
library(NbClust)
nb.avg <- NbClust(data.scaled, distance = "euclidean", min.nc = 2,
max.nc = 10, method = "average")
# visualising the result
fviz_nbclust(nb.avg)
```
complete
```{r}
library(NbClust)
nb.complete <- NbClust(data.scaled, distance = "euclidean", min.nc = 2,
max.nc = 10, method = "complete")
# visualising the result
fviz_nbclust(nb.complete)
```