diff --git a/chrombpnet/evaluation/make_bigwigs/predict_to_bigwig.py b/chrombpnet/evaluation/make_bigwigs/predict_to_bigwig.py index 466ca0ef..53c48fc4 100644 --- a/chrombpnet/evaluation/make_bigwigs/predict_to_bigwig.py +++ b/chrombpnet/evaluation/make_bigwigs/predict_to_bigwig.py @@ -116,7 +116,7 @@ def load_model_wrapper(model_hdf5): # read .h5 model custom_objects={"multinomial_nll":losses.multinomial_nll, "tf": tf} get_custom_objects().update(custom_objects) - model=load_model(model_hdf5) + model=load_model(model_hdf5, compile=False) print("got the model") model.summary() return model diff --git a/chrombpnet/evaluation/marginal_footprints/marginal_footprinting.py b/chrombpnet/evaluation/marginal_footprints/marginal_footprinting.py index 027af8d0..c6fd0d86 100644 --- a/chrombpnet/evaluation/marginal_footprints/marginal_footprinting.py +++ b/chrombpnet/evaluation/marginal_footprints/marginal_footprinting.py @@ -26,7 +26,7 @@ def load_model_wrapper(args): # read .h5 model custom_objects={"multinomial_nll":losses.multinomial_nll, "tf": tf} get_custom_objects().update(custom_objects) - model=load_model(args.model_h5) + model=load_model(args.model_h5, compile=False) print("got the model") model.summary() return model diff --git a/chrombpnet/evaluation/variant_effect_prediction/snp_scoring.py b/chrombpnet/evaluation/variant_effect_prediction/snp_scoring.py index 14511834..9f89ad43 100644 --- a/chrombpnet/evaluation/variant_effect_prediction/snp_scoring.py +++ b/chrombpnet/evaluation/variant_effect_prediction/snp_scoring.py @@ -32,7 +32,7 @@ def load_model_wrapper(args): # read .h5 model custom_objects={"tf": tf, "multinomial_nll":losses.multinomial_nll} get_custom_objects().update(custom_objects) - model=load_model(args.model_h5) + model=load_model(args.model_h5, compile=False) print("model loaded succesfully") return model diff --git a/chrombpnet/training/predict.py b/chrombpnet/training/predict.py index 7e2db3ea..a25e82a8 100644 --- a/chrombpnet/training/predict.py +++ b/chrombpnet/training/predict.py @@ -55,7 +55,7 @@ def load_model_wrapper(args): # read .h5 model custom_objects={"tf": tf, "multinomial_nll":losses.multinomial_nll} get_custom_objects().update(custom_objects) - model=load_model(args.model_h5) + model=load_model(args.model_h5, compile=False) print("got the model") #model.summary() return model