-
Notifications
You must be signed in to change notification settings - Fork 123
/
_data_passing_rewriter.py
854 lines (766 loc) · 43.5 KB
/
_data_passing_rewriter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
# Copyright 2019-2020 kubeflow.org
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import json
import re
import pathlib
from typing import List, Optional, Set
from kfp_tekton.compiler._k8s_helper import sanitize_k8s_name
from kfp_tekton.compiler._op_to_template import _get_base_step, _add_mount_path, _prepend_steps, _update_volumes
from os import environ as env
BIG_DATA_MIDPATH = "artifacts/$ORIG_PR_NAME"
BIG_DATA_PATH_FORMAT = "/".join(["$(workspaces.$TASK_NAME.path)", BIG_DATA_MIDPATH, "$TASKRUN_NAME", "$TASK_PARAM_NAME"])
ARTIFACT_OUTPUTLIST_ANNOTATION_KEY = 'artifact_outputs'
OUTPUT_RESULT_PATH_SUFFIX = '-datap'
def fix_big_data_passing(workflow: dict, loops_pipeline: dict, loop_name_prefix: str) -> dict:
"""
fix_big_data_passing converts a workflow where some artifact data is passed
as parameters and converts it to a workflow where this data is passed as
artifacts.
Args:
workflow: The workflow to fix
Returns:
The fixed workflow
Motivation:
DSL compiler only supports passing Tekton parameters.
Due to the convoluted nature of the DSL compiler, the artifact consumption
and passing has been implemented on top of that using parameter passing.
The artifact data is passed as parameters and the consumer template creates
an artifact/file out of that data.
Due to the limitations of Kubernetes and Tekton this scheme cannot pass data
larger than few kilobytes preventing any serious use of artifacts.
This function rewrites the compiled workflow so that the data consumed as
artifact is passed as artifact.
It also prunes the unused parameter outputs. This is important since if a
big piece of data is ever returned through a file that is also output as
parameter, the execution will fail.
This makes is possible to pass large amounts of data.
Implementation:
1. Index the pipelines to understand how data is being passed and which inputs/outputs
are connected to each other.
2. Search for direct data consumers in container/resource templates and some
pipeline task attributes (e.g. conditions and loops) to find out which inputs
are directly consumed as parameters/artifacts.
3. Propagate the consumption information upstream to all inputs/outputs all
the way up to the data producers.
4. Convert the inputs, outputs based on how they're consumed downstream.
5. Use workspaces instead of result and params for big data passing.
6. Added workspaces to tasks, pipelines, pipelineruns, if the parmas is big data.
7. A PVC named with pipelinerun name will be created if big data is passed, as workspaces need to use it.
User need to define proper volume or enable dynamic volume provisioning refer to the link of:
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning
"""
workflow = copy.deepcopy(workflow)
tasks = workflow["spec"]["pipelineSpec"].get(
'tasks', []) + workflow["spec"]["pipelineSpec"].get('finally', [])
resource_templates = []
for task in tasks:
resource_params = [
param.get('name') for param in task.get("taskSpec", {}).get('params', [])
if param.get('name') == 'action'
or param.get('name') == 'success-condition'
]
if 'action' in resource_params and 'success-condition' in resource_params:
resource_templates.append(task)
# TODO: use split on condition
resource_template_names = set(task["name"] for task in resource_templates)
container_templates = [
task for task in tasks if task["name"] not in resource_template_names
]
pipeline_template = workflow["spec"]["pipelineSpec"]
pipelinerun_template = load_annotations(workflow)
# 1. Index the pipelines to understand how data is being passed and which
# inputs/outputs are connected to each other.
template_input_to_parent_pipeline_inputs = {
} # (task_template_name, task_input_name) -> Set[(pipeline_template_name, pipeline_input_name)]
template_input_to_parent_task_outputs = {
} # (task_template_name, task_input_name) -> Set[(upstream_template_name, upstream_output_name)]
template_input_to_parent_constant_arguments = {
} # (task_template_name, task_input_name) -> Set[argument_value] # Unused
pipeline_output_to_parent_template_outputs = {
} # (pipeline_template_name, output_name) -> Set[(upstream_template_name, upstream_output_name)]
# pipeline has no name when embedded in pipelineRun
pipelinerun_name = workflow.get('metadata', {}).get('name')
# Indexing task arguments
pipeline_tasks = pipeline_template.get(
"tasks", []) + pipeline_template.get('finally', [])
for task in pipeline_tasks:
task_template_name = task['name']
parameter_arguments = task['params']
for parameter_argument in parameter_arguments:
task_input_name = parameter_argument['name']
argument_value = parameter_argument['value']
argument_placeholder_parts = deconstruct_tekton_single_placeholder(
argument_value)
if not argument_placeholder_parts: # Argument is considered to be constant string
template_input_to_parent_constant_arguments.setdefault(
(task_template_name, task_input_name),
set()).add(argument_value)
else:
placeholder_type = argument_placeholder_parts[0]
if placeholder_type not in ('params', 'outputs', 'tasks',
'steps', 'workflow', 'pod',
'item'):
# Do not fail on Jinja or other double-curly-brace templates
continue
if placeholder_type == 'params':
pipeline_input_name = argument_placeholder_parts[1]
template_input_to_parent_pipeline_inputs.setdefault(
(task_template_name, task_input_name), set()).add(
(pipelinerun_name, pipeline_input_name))
elif placeholder_type == 'tasks':
upstream_task_name = argument_placeholder_parts[1]
assert argument_placeholder_parts[2] == 'results'
upstream_output_name = argument_placeholder_parts[3]
# upstream_template_name = upstream_task_name
template_input_to_parent_task_outputs.setdefault(
(task_template_name, task_input_name), set()).add(
(upstream_task_name, upstream_output_name))
elif placeholder_type in ('item', 'workflow', 'pod'):
# workflow.parameters.* placeholders are not supported,
# but the DSL compiler does not produce those.
template_input_to_parent_constant_arguments.setdefault(
(task_template_name, task_input_name),
set()).add(argument_value)
else:
raise AssertionError
pipeline_input_name = extract_tekton_input_parameter_name(
argument_value)
if pipeline_input_name:
template_input_to_parent_pipeline_inputs.setdefault(
(task_template_name, task_input_name), set()).add(
(pipelinerun_name, pipeline_input_name))
else:
template_input_to_parent_constant_arguments.setdefault(
(task_template_name, task_input_name),
set()).add(argument_value)
# Finshed indexing the pipelines
# 2. Search for direct data consumers in container/resource templates and some pipeline task attributes
# (e.g. conditions and loops) to find out which inputs are directly consumed as parameters/artifacts.
inputs_directly_consumed_as_parameters = set()
inputs_directly_consumed_as_artifacts = set()
outputs_directly_consumed_as_parameters = set()
# Searching for artifact input consumers in container template inputs
for template in container_templates:
template_name = template['name']
for input_artifact in template.get("taskSpec", {}).get('artifacts', {}):
raw_data = input_artifact['raw'][
'data'] # The structure must exist
# The raw data must be a single input parameter reference. Otherwise (e.g. it's a string
# or a string with multiple inputs) we should not do the conversion to artifact passing.
input_name = extract_tekton_input_parameter_name(raw_data)
if input_name:
inputs_directly_consumed_as_artifacts.add(
(template_name, input_name))
del input_artifact[
'raw'] # Deleting the "default value based" data passing hack
# so that it's replaced by the "argument based" way of data passing.
input_artifact[
'name'] = input_name # The input artifact name should be the same
# as the original input parameter name
# Searching for parameter input consumers in container and resource templates
for template in container_templates + resource_templates:
template_name = template['name']
placeholders = extract_all_tekton_placeholders(
template.get('taskSpec', {}))
for placeholder in placeholders:
parts = placeholder.split('.')
placeholder_type = parts[0]
if placeholder_type not in ('inputs', 'outputs', 'tasks', 'steps',
'workflow', 'pod', 'item', 'results'):
# Do not fail on Jinja or other double-curly-brace templates
continue
if placeholder_type == 'workflow' or placeholder_type == 'pod':
pass
elif placeholder_type == 'inputs':
if parts[1] == 'params':
input_name = parts[2]
inputs_directly_consumed_as_parameters.add(
(template_name, input_name))
elif parts[1] == 'artifacts':
raise RuntimeError(
'Found unexpected Tekton input artifact placeholder in container template: {}'
.format(placeholder))
else:
raise RuntimeError(
'Found unexpected Tekton input placeholder in container template: {}'
.format(placeholder))
elif placeholder_type == 'results':
input_name = parts[1]
outputs_directly_consumed_as_parameters.add(
(template_name, input_name))
else:
raise RuntimeError(
'Found unexpected Tekton placeholder in container template: {}'
.format(placeholder))
# Finished indexing data consumers
# 3. Propagate the consumption information upstream to all inputs/outputs all the way up to the data producers.
inputs_consumed_as_parameters = set()
inputs_consumed_as_artifacts = set()
outputs_consumed_as_parameters = set()
outputs_consumed_as_artifacts = set()
def mark_upstream_ios_of_input(template_input, marked_inputs,
marked_outputs):
# Stopping if the input has already been visited to save time and handle recursive calls
if template_input in marked_inputs:
return
marked_inputs.add(template_input)
upstream_inputs = template_input_to_parent_pipeline_inputs.get(
template_input, [])
for upstream_input in upstream_inputs:
mark_upstream_ios_of_input(upstream_input, marked_inputs,
marked_outputs)
upstream_outputs = template_input_to_parent_task_outputs.get(
template_input, [])
for upstream_output in upstream_outputs:
mark_upstream_ios_of_output(upstream_output, marked_inputs,
marked_outputs)
def mark_upstream_ios_of_output(template_output, marked_inputs,
marked_outputs):
# Stopping if the output has already been visited to save time and handle recursive calls
if template_output in marked_outputs:
return
marked_outputs.add(template_output)
upstream_outputs = pipeline_output_to_parent_template_outputs.get(
template_output, [])
for upstream_output in upstream_outputs:
mark_upstream_ios_of_output(upstream_output, marked_inputs,
marked_outputs)
for input in inputs_directly_consumed_as_parameters:
mark_upstream_ios_of_input(input, inputs_consumed_as_parameters,
outputs_consumed_as_parameters)
for input in inputs_directly_consumed_as_artifacts:
mark_upstream_ios_of_input(input, inputs_consumed_as_artifacts,
outputs_consumed_as_artifacts)
for output in outputs_directly_consumed_as_parameters:
mark_upstream_ios_of_output(output, inputs_consumed_as_parameters,
outputs_consumed_as_parameters)
# 4. Convert the inputs, outputs and arguments based on how they're consumed downstream.
# Add workspaces to pipeline and pipeline task_ref if big data passing
pipeline_workspaces = set()
pipelinerun_workspaces = set()
output_tasks_consumed_as_artifacts = {
output[0]
for output in outputs_consumed_as_artifacts
}
# task_workspaces = set()
# Converting pipeline inputs
pipeline, pipeline_workspaces = big_data_passing_pipeline(
pipelinerun_name, pipeline_template, inputs_consumed_as_artifacts,
output_tasks_consumed_as_artifacts)
# Add workspaces to pipelinerun if big data passing
if pipeline_workspaces:
pipeline, pipelinerun_workspaces = big_data_passing_pipelinerun(
pipelinerun_name, pipelinerun_template, pipeline_workspaces)
# Use workspaces to tasks if big data passing instead of 'results', 'copy-inputs'
for task_template in container_templates:
task_template = big_data_passing_tasks(pipelinerun_name,
task_template,
pipelinerun_template,
inputs_consumed_as_artifacts,
outputs_consumed_as_artifacts,
loops_pipeline,
loop_name_prefix)
# Remove input parameters unless they're used downstream.
# This also removes unused container template inputs if any.
for template in container_templates + [pipeline_template]:
spec = template.get('taskSpec', {}) or template.get('pipelineSpec', {})
spec['params'] = [
input_parameter for input_parameter in spec.get('params', []) if (
template.get(
'name'
), # TODO: pipeline has no name, use pipelineRun name?
input_parameter['name']) in inputs_consumed_as_parameters
or input_parameter['name'].endswith("-trname")
or input_parameter['name'].endswith(OUTPUT_RESULT_PATH_SUFFIX)
]
# Remove output parameters unless they're used downstream
for template in container_templates + [pipeline_template]:
spec = template.get('taskSpec', {}) or template.get('pipelineSpec', {})
spec['results'] = [
output_parameter for output_parameter in spec.get('results', [])
]
spec['results'] = sorted(spec['results'], key=lambda k: k['name'])
# tekton results doesn't support underscore
renamed_results_in_pipeline_task = set()
for task_result in spec['results']:
task_result_old_name = task_result.get('name')
task_result_new_name = sanitize_k8s_name(task_result_old_name, allow_capital=True)
if task_result_new_name != task_result_old_name:
task_result['name'] = task_result_new_name
renamed_results_in_pipeline_task.add(
(task_result_old_name, task_result_new_name))
for renamed_result in renamed_results_in_pipeline_task:
# Change results.downloaded_resultOutput to results.downloaded-resultoutput
template['taskSpec'] = replace_big_data_placeholder(
spec, 'results.%s' % renamed_result[0],
'results.%s' % renamed_result[1])
# Remove pipeline task parameters unless they're used downstream
for task in pipeline_tasks:
# Don't process condition and custom task parameters
is_condition = 'condition-' in task['name']
is_custom_task = task.get('taskRef') or task.get('taskSpec', {}).get('apiVersion')
if not is_condition and not is_custom_task:
task['params'] = [
parameter_argument
for parameter_argument in task.get('params', [])
if (task['name'], parameter_argument['name']
) in inputs_consumed_as_parameters and
(task['name'],
parameter_argument['name']) not in inputs_consumed_as_artifacts
or task['name'] in resource_template_names
or parameter_argument['name'].endswith("-trname")
or parameter_argument['name'].endswith(OUTPUT_RESULT_PATH_SUFFIX)
]
# tekton results doesn't support underscore
for argument in task['params']:
argument_value = argument.get('value')
argument_placeholder_parts = deconstruct_tekton_single_placeholder(
argument_value)
if len(argument_placeholder_parts) == 4 \
and argument_placeholder_parts[0] == 'tasks':
argument['value'] = '$(tasks.%s.%s.%s)' % (
argument_placeholder_parts[1],
argument_placeholder_parts[2],
sanitize_k8s_name(argument_placeholder_parts[3], allow_capital=True))
workflow = jsonify_annotations(workflow)
# Need to confirm:
# I didn't find the use cases to support workflow parameter consumed as artifacts downstream in tekton.
# Whether this case need to be supporting?
clean_up_empty_workflow_structures(workflow)
return workflow
def extract_all_tekton_placeholders(template: dict) -> Set[str]:
template_str = json.dumps(template)
placeholders = set(re.findall('\\$\\(([-._a-zA-Z0-9]+)\\)', template_str))
return placeholders
def extract_tekton_input_parameter_name(s: str) -> Optional[str]:
match = re.fullmatch('\\$\\(inputs.params.([-_a-zA-Z0-9]+)\\)', s)
if not match:
return None
(input_name, ) = match.groups()
return input_name
def deconstruct_tekton_single_placeholder(s: str) -> List[str]:
if not re.fullmatch('\\$\\([-._a-zA-Z0-9]+\\)', s):
return []
return s.lstrip('$(').rstrip(')').split('.')
def replace_big_data_placeholder(template: dict, old_str: str,
new_str: str) -> dict:
template_str = json.dumps(template)
template_str = template_str.replace(old_str, new_str)
template = json.loads(template_str)
return template
def big_data_passing_pipeline(name: str, template: dict, inputs_tasks: set(),
outputs_tasks: set):
pipeline_workspaces = set()
pipeline_name = name
pipeline_spec = template
tasks = pipeline_spec.get('tasks', []) + pipeline_spec.get('finally', [])
for task in tasks:
parameter_arguments = task.get('params', [])
for parameter_argument in parameter_arguments:
input_name = parameter_argument['name']
if (task.get('name'), input_name) in inputs_tasks:
pipeline_workspaces.add(pipeline_name)
# Add workspaces instead of params, for tasks of big data inputs
if not task.setdefault('workspaces', []):
task['workspaces'].append({
"name": task.get('name'),
"workspace": pipeline_name
})
# runAfter add to the task, which was depends on the result of the task.
argument_value = parameter_argument['value']
argument_placeholder_parts = deconstruct_tekton_single_placeholder(
argument_value)
if argument_placeholder_parts[
0] == 'tasks' and argument_placeholder_parts[
2] == 'results':
dependency_task = argument_placeholder_parts[1]
task.setdefault('runAfter', [])
task['runAfter'].append(dependency_task)
if task.get('name') in outputs_tasks:
# Add workspaces for tasks of big data outputs
if not task.setdefault('workspaces', []):
task['workspaces'].append({
"name": task.get('name'),
"workspace": pipeline_name
})
artifact_output_list = task.get('taskSpec', {}).get('metadata', {}).get('annotations', {}).get(
ARTIFACT_OUTPUTLIST_ANNOTATION_KEY, '')
if artifact_output_list:
tmp_list = set()
for output in json.loads(artifact_output_list):
tmp_list.add(sanitize_k8s_name(output, allow_capital=True))
for task_output in task.get('taskSpec', {}).get('results', []):
if task_output.get('name') in tmp_list:
if not task.setdefault('workspaces', []):
task['workspaces'].append({
"name": task.get('name'),
"workspace": pipeline_name
})
pipeline_workspaces.add(pipeline_name)
break
if pipeline_name in pipeline_workspaces:
# Add workspaces to pipeline
if not pipeline_spec.setdefault('workspaces', []):
pipeline_spec['workspaces'].append({"name": pipeline_name})
return template, pipeline_workspaces
def big_data_passing_pipelinerun(name: str, pr: dict, pw: set):
prw = set()
pipelinerun_name = name
if pipelinerun_name in pw:
pr.get('spec', {}).setdefault('workspaces', [])
# Change persistentVolumeClaim to volumeClaimTemplate which need Tekton version > 0.12
# User could modify default size of storage in the yaml file mannually if necessary.
DEFAULT_ACCESSMODES = env.get('DEFAULT_ACCESSMODES', 'ReadWriteMany')
DEFAULT_STORAGE_SIZE = env.get('DEFAULT_STORAGE_SIZE', '2Gi')
DEFAULT_STORAGE_CLASS = env.get('DEFAULT_STORAGE_CLASS', 'kfp-csi-s3')
pr['spec']['workspaces'].append({
"name": pipelinerun_name,
"volumeClaimTemplate": {
"spec": {
"storageClassName": DEFAULT_STORAGE_CLASS,
"accessModes": [DEFAULT_ACCESSMODES],
"resources": {
"requests": {
"storage": DEFAULT_STORAGE_SIZE
}
}
}
}
})
prw.add(pipelinerun_name)
return pr, prw
def big_data_passing_tasks(prname: str, task: dict, pipelinerun_template: dict,
inputs_tasks: set, outputs_tasks: set, loops_pipeline: dict,
loop_name_prefix: str) -> dict:
task_name = task.get('name')
task_spec = task.get('taskSpec', {})
# Data passing for the task outputs
appended_taskrun_name = False
appended_taskrun_path_step = None
artifact_output_list = task_spec.get('metadata', {}).get('annotations', {}).get(ARTIFACT_OUTPUTLIST_ANNOTATION_KEY, '')
if artifact_output_list:
temp_list = json.loads(artifact_output_list)
artifact_output_list = []
for output in temp_list:
artifact_output_list.append(sanitize_k8s_name(output, allow_capital=True))
for task_output in task.get('taskSpec', {}).get('results', []):
if (task_name, task_output.get('name')) in outputs_tasks or \
(artifact_output_list and task_output.get('name') in artifact_output_list):
if not task.get('taskSpec', {}).setdefault('workspaces', []):
task.get('taskSpec', {})['workspaces'].append({"name": task_name})
# Replace the args for the outputs in the task_spec
# $(results.task_output.get('name').path) -->
# $(workspaces.task_name.path)/task_name-task_output.get('name')
placeholder = '$(results.%s.path)' % (sanitize_k8s_name(
task_output.get('name'), allow_capital=True))
workspaces_parameter = '$(workspaces.%s.path)/%s/%s/%s' % (
task_name, BIG_DATA_MIDPATH, "$(context.taskRun.name)", task_output.get('name'))
if env.get('OUTPUT_BIG_DATA_PATH', 'false').lower() == 'true':
# For child nodes to know the taskrun output path, it has to pass to results via /tekton/results emptydir
if not appended_taskrun_path_step:
appended_taskrun_path_step = _get_base_step('output-taskrun-path')
if len(appended_taskrun_path_step['command']) <= 2:
appended_taskrun_path_step['command'].append('')
appended_taskrun_path_step['command'][-1] += 'echo -n "%s/%s/%s" > $(results.%s%s.path)\n' % \
(BIG_DATA_MIDPATH, "$(context.taskRun.name)", task_output.get('name'),
task_output.get('name'), OUTPUT_RESULT_PATH_SUFFIX)
task['taskSpec']['results'].append({"name": "%s%s" % (task_output.get('name'), OUTPUT_RESULT_PATH_SUFFIX),
"type": "string"})
else:
# For child nodes to know the taskrun name, it has to pass to results via /tekton/results emptydir
if not appended_taskrun_name:
copy_taskrun_name_step = _get_base_step('output-taskrun-name')
copy_taskrun_name_step['command'].append('echo -n "$(context.taskRun.name)" > "$(results.taskrun-name.path)"')
task['taskSpec']['results'].append({"name": "taskrun-name", "type": "string"})
task['taskSpec']['steps'].append(copy_taskrun_name_step)
_append_original_pr_name_env(task)
appended_taskrun_name = True
task['taskSpec'] = replace_big_data_placeholder(
task.get("taskSpec", {}), placeholder, workspaces_parameter)
artifact_items = pipelinerun_template['metadata']['annotations'].get('tekton.dev/artifact_items', '{}')
if artifact_items != '{}':
artifact_items[task['name']] = replace_big_data_placeholder(
artifact_items[task['name']], placeholder, workspaces_parameter)
pipelinerun_template['metadata']['annotations']['tekton.dev/artifact_items'] = \
artifact_items
if appended_taskrun_path_step:
task['taskSpec']['steps'].append(appended_taskrun_path_step)
_append_original_pr_name_env(task)
task_spec = task.get('taskSpec', {})
task_params = task_spec.get('params', [])
task_artifacts = task_spec.get('artifacts', [])
# Data passing for task inputs
for task_param in task_params:
if (task_name, task_param.get('name')) in inputs_tasks:
if not task_spec.setdefault('workspaces', []):
task_spec['workspaces'].append({"name": task_name})
# Replace the args for the inputs in the task_spec
# /tmp/inputs/text/data ---->
# $(workspaces.task_name.path)/task_param.get('name')
placeholder = '/tmp/inputs/text/data'
for task_artifact in task_artifacts:
if task_artifact.get('name') == task_param.get('name'):
placeholder = task_artifact.get('path')
task_param_task_name = ""
task_param_param_name = ""
for o_task in outputs_tasks:
if '-'.join(o_task) == task_param.get('name'):
task_param_task_name = o_task[0]
task_param_param_name = o_task[1]
break
# If the param name is constructed with task_name-param_name,
# use the current task_name as the path prefix
def append_taskrun_params(task_name_append: str, task_path_name: str):
taskrun_param_name = task_name_append + "-trname"
inserted_taskrun_param = False
param_name = {"name": taskrun_param_name}
param_nested_name = task_name_append + '-taskrun-name'
param_content = {"name": taskrun_param_name, "value": "$(tasks.%s.results.taskrun-name)" % task_name_append}
param_nested_content = {'name': task_name_append + '-taskrun-name',
'value': '$(tasks.%s.results.taskrun-name)' % task_name_append}
if env.get('OUTPUT_BIG_DATA_PATH', 'false').lower() == 'true':
param_path_name = '-'.join([task_name_append, task_path])
param_name = {"name": param_path_name}
param_nested_name = param_path_name
param_content = {"name": param_path_name,
"value": "$(tasks.%s.results.%s)" % (task_name_append, task_path_name)}
param_nested_content = param_content
else:
for param in task['taskSpec'].get('params', []):
if param.get('name', "") == taskrun_param_name:
inserted_taskrun_param = True
break
if (not inserted_taskrun_param) or env.get('OUTPUT_BIG_DATA_PATH', 'false').lower() == 'true':
task['taskSpec']['params'].append(param_name)
task['params'].append(param_content)
parent_task_queue = [task['name']]
while parent_task_queue:
current_task = parent_task_queue.pop(0)
for loop_name, loop_spec in loops_pipeline.items():
if current_task in loop_spec.get('task_list', []):
parent_task_queue.append(loop_name.replace(loop_name_prefix, ""))
loop_param_names = [loop_param['name'] for loop_param in loops_pipeline[loop_name]['spec']['params']]
if param_nested_name in loop_param_names:
continue
loops_pipeline[loop_name]['spec']['params'].append(param_nested_content)
if task_param_task_name:
workspaces_parameter = '$(workspaces.%s.path)/%s/$(params.%s-trname)/%s' % (
task_name, BIG_DATA_MIDPATH, task_param_task_name, task_param_param_name)
task_path = sanitize_k8s_name(task_param_param_name, allow_capital=True) + OUTPUT_RESULT_PATH_SUFFIX
if env.get('OUTPUT_BIG_DATA_PATH', 'false').lower() == 'true':
workspaces_parameter = '$(workspaces.%s.path)/$(params.%s)' % (task_name, '-'.join([task_param_task_name, task_path]))
if task_param_task_name != task_name:
append_taskrun_params(task_param_task_name, task_path) # need to get taskrun name from parent path
else:
workspaces_parameter = '$(workspaces.%s.path)/%s/%s/%s' % (
task_name, BIG_DATA_MIDPATH, "$(context.taskRun.name)", task_param.get('name'))
_append_original_pr_name_env(task)
task['taskSpec'] = replace_big_data_placeholder(
task_spec, placeholder, workspaces_parameter)
task_spec = task.get('taskSpec', {})
# Handle the case of input artifact without dependent the output of other tasks
for task_artifact in task_artifacts:
if (task_name, task_artifact.get('name')) not in inputs_tasks:
# add input artifact processes
task = input_artifacts_tasks(task, task_artifact)
if (prname, task_artifact.get('name')) in inputs_tasks:
# add input artifact processes for pipeline parameter
if not task_artifact.setdefault('raw', {}):
for i in range(len(pipelinerun_template['spec']['params'])):
param_name = pipelinerun_template['spec']['params'][i]['name']
param_value = pipelinerun_template['spec']['params'][i]['value']
if (task_artifact.get('name') == param_name):
task_artifact['raw']['data'] = param_value
task = input_artifacts_tasks_pr_params(task, task_artifact)
# If a task produces a result and artifact, add a step to copy artifact to results.
artifact_items = pipelinerun_template['metadata']['annotations'].get('tekton.dev/artifact_items', '{}')
add_copy_results_artifacts_step = False
if task.get("taskSpec", {}):
if task_spec.get('results', []):
copy_results_artifact_step = _get_base_step('copy-results-artifacts')
copy_results_artifact_step['onError'] = 'continue' # supported by v0.27+ of tekton.
script = "set -exo pipefail\nTOTAL_SIZE=0\n"
injected_script = False
for result in task_spec['results']:
if task['name'] in artifact_items:
artifact_i = artifact_items[task['name']]
for index, artifact_tuple in enumerate(artifact_i):
artifact_name, artifact = artifact_tuple
src = artifact
dst = '$(results.%s.path)' % sanitize_k8s_name(result['name'], allow_capital=True)
if artifact_name == result['name'] and src != dst:
if not injected_script:
add_copy_results_artifacts_step = True
src_arg = '"$1"'
dst_arg = '"$2"'
total_size_command = 'ARTIFACT_SIZE=`wc -c %s${SUFFIX} | awk \'{print $1}\'`\n' % src_arg + \
'TOTAL_SIZE=$( expr $TOTAL_SIZE + $ARTIFACT_SIZE)\n'
copy_command = ' cp ' + src_arg + ' ' + dst_arg + '\n'
if env.get('OUTPUT_PREVIEW', 'false').lower() == 'true':
preview_size = env.get('OUTPUT_PREVIEW_SIZE', '100')
total_size_command = 'TOTAL_SIZE=$( expr $TOTAL_SIZE + %s)\n' % preview_size
copy_command = ' dd if=' + src_arg + ' of=' + \
dst_arg + ' bs=' + preview_size + ' count=1\n'
script += (
'copy_artifact() {\n'
'if [ -d ' + src_arg + ' ]; then\n' +
' tar -czvf ' + src_arg + '.tar.gz ' + src_arg + '\n' +
' SUFFIX=".tar.gz"\n' +
'fi\n' +
total_size_command +
'touch ' + dst_arg + '\n' + # create an empty file by default.
'if [[ $TOTAL_SIZE -lt 3072 ]]; then\n' +
' if [ -d ' + src_arg + ' ]; then\n' +
' tar -tzf ' + src_arg + '.tar.gz > ' + dst_arg + '\n' +
' elif ! awk "/[^[:print:]]/{f=1} END{exit !f}" %s; then\n' % src_arg +
copy_command +
' fi\n' +
'fi\n' +
'}\n'
)
injected_script = True
script += 'copy_artifact %s %s\n' % (src, dst)
copy_results_artifact_step['command'].append(script)
_append_original_pr_name_env_to_step(copy_results_artifact_step)
if add_copy_results_artifacts_step:
task['taskSpec']['steps'].append(copy_results_artifact_step)
# Remove artifacts parameter from params
task.get("taskSpec", {})['params'] = [
param for param in task_spec.get('params', [])
if (task_name, param.get('name')) not in inputs_tasks or
param.get('name').endswith("-trname") or
param.get('name').endswith(OUTPUT_RESULT_PATH_SUFFIX)
]
# Remove artifacts from task_spec
if 'artifacts' in task_spec:
del task['taskSpec']['artifacts']
return task
def input_artifacts_tasks_pr_params(template: dict, artifact: dict) -> dict:
copy_inputs_step = _get_base_step('copy-inputs')
task_name = template.get('name')
task_spec = template.get('taskSpec', {})
task_params = task_spec.get('params', [])
script = "set -exo pipefail\n"
for task_param in task_params:
# For pipeline parameter input artifacts, it will never come from another task because pipeline
# params are global parameters. Thus, task_name will always be the executing task name.
workspaces_parameter = '$(workspaces.%s.path)/%s/%s/%s' % (
task_name, BIG_DATA_MIDPATH, "$(context.taskRun.name)", task_param.get('name'))
if 'raw' in artifact:
script += 'mkdir -p %s\n' % pathlib.Path(workspaces_parameter).parent
script += 'echo -n "%s" > %s\n' % (
artifact['raw']['data'], workspaces_parameter)
_append_original_pr_name_env(template)
copy_inputs_step['command'].append(script)
template['taskSpec']['steps'] = _prepend_steps(
[copy_inputs_step], template['taskSpec']['steps'])
return template
def input_artifacts_tasks(template: dict, artifact: dict) -> dict:
# The input artifacts in KFP is not pulling from s3, it will always be passed as a raw input.
# Visit https://github.com/kubeflow/pipelines/issues/336 for more details on the implementation.
volume_mount_step_template = []
volume_template = []
mounted_param_paths = []
copy_inputs_step = _get_base_step('copy-inputs')
has_copy_input = False
copy_input_index = 0
if 'raw' in artifact:
for step_index in range(len(template['taskSpec']['steps'])):
if template['taskSpec']['steps'][step_index].get('name') == 'copy-inputs':
copy_input_index = step_index
has_copy_input = True
if has_copy_input:
template['taskSpec']['steps'][copy_input_index]['command'][-1] = \
template['taskSpec']['steps'][copy_input_index]['command'][-1] + \
'echo -n "%s" > %s\n' % (artifact['raw']['data'], artifact['path'])
else:
copy_inputs_step['command'].append('set -exo pipefail\necho -n "%s" > %s\n' % (
artifact['raw']['data'], artifact['path']))
mount_path = artifact['path'].rsplit("/", 1)[0]
if mount_path not in mounted_param_paths:
_add_mount_path(artifact['name'], artifact['path'], mount_path,
volume_mount_step_template, volume_template,
mounted_param_paths)
if not has_copy_input:
template['taskSpec']['steps'] = _prepend_steps(
[copy_inputs_step], template['taskSpec']['steps'])
_update_volumes(template['taskSpec'], volume_mount_step_template, volume_template)
return template
def clean_up_empty_workflow_structures(workflow: list):
template_spec = workflow['spec']
if not template_spec.setdefault('params', []):
del template_spec['params']
if not template_spec.setdefault('artifacts', []):
del template_spec['artifacts']
if not template_spec.setdefault('results', []):
del template_spec['results']
if not template_spec: # ?
del workflow['spec']
# if template['kind'] == 'Pipeline':
for task in workflow['spec']['pipelineSpec']['tasks'] + workflow['spec'][
'pipelineSpec'].get('finally', []):
if not task.setdefault('params', []):
del task['params']
if not task.setdefault('artifacts', []):
del task['artifacts']
if not workflow['spec']['pipelineSpec'].setdefault('finally', []):
del workflow['spec']['pipelineSpec']['finally']
def load_annotations(template: dict):
if env.get('DISABLE_ARTIFACT_TRACKING', 'false').lower() != 'true':
artifact_items = json.loads(
str(template['metadata']['annotations'].get('tekton.dev/artifact_items', '{}')))
template['metadata']['annotations']['tekton.dev/artifact_items'] = \
artifact_items
return template
def jsonify_annotations(template: dict):
if env.get('DISABLE_ARTIFACT_TRACKING', 'false').lower() != 'true':
template['metadata']['annotations']['tekton.dev/artifact_items'] = \
json.dumps(template['metadata']['annotations'].get('tekton.dev/artifact_items', '{}'))
return template
def _append_original_pr_name_env_to_step(step):
step.setdefault('env', [])
has_original_pr_name = False
for task_env in step['env']:
if task_env['name'] == "ORIG_PR_NAME":
has_original_pr_name = True
if not has_original_pr_name:
step['env'].append({"name": "ORIG_PR_NAME",
"valueFrom":
{"fieldRef":
{"fieldPath": "metadata.labels['custom.tekton.dev/originalPipelineRun']"}}})
def _append_original_pr_name_env(task_template):
for step in task_template['taskSpec']['steps']:
if step['name'] == 'main':
_append_original_pr_name_env_to_step(step)
def fix_big_data_passing_using_volume(workflow, pipeline_conf):
if workflow['spec'].get('workspaces') and pipeline_conf.data_passing_method._volume is not None:
volume_dict = pipeline_conf.data_passing_method._volume.to_dict()
volume_dict_pvc = volume_dict.get('persistent_volume_claim')
if volume_dict_pvc:
for workspace in workflow['spec']['workspaces']:
if workspace['name'] == workflow['metadata']['name']:
workspace.pop('volumeClaimTemplate')
temp_vc = {}
for key, value in volume_dict_pvc.items():
if value != None:
if key == 'claim_name':
temp_vc['claimName'] = value
if key == 'read_only':
temp_vc['readOnly'] = value
workspace['persistentVolumeClaim'] = temp_vc
if pipeline_conf.data_passing_method._path_prefix != None:
workspace['subPath'] = pipeline_conf.data_passing_method._path_prefix
break
return workflow