Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[GSOC] Support for various Parameter distributions in Katib #2334

Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
169 changes: 169 additions & 0 deletions docs/proposals/parameter-distribution.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,169 @@
# Proposal for Supporting various parameter distributions in Katib

## Summary
The goal of this project is to enhance the existing Katib Experiment APIs to support various parameter distributions such as uniform, log-uniform, and qlog-uniform. Then extend the suggestion services to be able to configure distributions for search space using libraries provided in each framework.
shashank-iitbhu marked this conversation as resolved.
Show resolved Hide resolved

## Motivation
Currently, [Katib](https://github.com/kubeflow/katib) is limited to supporting only uniform distribution for integer, float, and categorical hyperparameters. By introducing additional distributions, Katib will become more flexible and powerful in conducting hyperparameter optimization tasks.

A Data Scientist requires Katib to support multiple hyperparameter distributions, such as log-uniform, normal, and log-normal, in addition to the existing uniform distribution. This enhancement is crucial for more flexible and precise hyperparameter optimization. For instance, learning rates often benefit from a log-uniform distribution because small values can significantly impact performance. Similarly, normal distributions are useful for parameters that are expected to vary around a central value.

### Goals
- Add `Distribution` field to `FeasibleSpace` alongside `ParameterType`.
- Support for the log-uniform, normal, and log-normal Distributions.
- Update the Experiment and gRPC API to support `Distribution`.
- Update logic to handle the new parameter distributions for each suggestion service (e.g., Optuna, Hyperopt).
- Extend the Python SDK to support the new `Distribution` field.
### Non-Goals
- This proposal do not aim to create new version for CRD APIs.
- This proposal do not aim to make the necessary Katib UI changes.
- No changes will be made to the core optimization algorithms beyond supporting new distributions.

## Proposal

### Parameter Distribution Comparison Table

| Distribution Type | Hyperopt | Optuna | Ray Tune | Nevergrad |
|-------------------------------|-----------------------|-------------------------------------------------|-----------------------|---------------------------------------------|
| **Uniform Continuous** | `hp.uniform` | `FloatDistribution` | `tune.uniform` | `p.Scalar` with uniform transformation |
| **Quantized Uniform** | `hp.quniform` | `DiscreteUniformDistribution` (deprecated) | `tune.quniform` | `p.Scalar` with uniform and step specified |
| **Log Uniform** | `hp.loguniform` | `LogUniformDistribution` (deprecated) | `tune.loguniform` | `p.Log` with uniform transformation |
| **Uniform Integer** | `hp.randint` or quantized distributions with step size `q` set to 1 | `IntDistribution` | `tune.randint` | `p.Scalar` with integer transformation |
| **Categorical** | `hp.choice` | `CategoricalDistribution` | `tune.choice` | `p.Choice` |
| **Quantized Log Uniform** | `hp.qloguniform` | Custom Implementation | `tune.qloguniform` | `p.Log` with uniform and step specified |
| **Normal** | `hp.normal` | (Not directly supported) | `tune.randn` | (Not directly supported) |
| **Quantized Normal** | `hp.qnormal` | (Not directly supported) | `tune.qrandn` | (Not directly supported) |
| **Log Normal** | `hp.lognormal` | (Not directly supported) | (Use custom transformation in `tune.randn`) | (Not directly supported) |
| **Quantized Log Normal** | `hp.qlognormal` | (Not directly supported) | (Use custom transformation in `tune.qrandn`) | (Not directly supported) |
| **Quantized Integer** | `hp.quniformint` | `IntUniformDistribution` (deprecated) | | `p.Scalar` with integer and step specified |
| **Log Integer** | | `IntLogUniformDistribution` (deprecated) | `tune.lograndint` | `p.Scalar` with log-integer transformation |


- Note:
In `Nevergrad`, parameter types like `p.Scalar`, `p.Log`, and `p.Choice` are mapped to corresponding `Hyperopt` search space definitions like `hp.uniform`, `hp.loguniform`, and `hp.choice` using internal functions to convert parameter bounds and distributions.

## API Design
### FeasibleSpace
Feasible space for optimization.
Int and Double type use Max/Min.
Discrete and Categorical type use List.


| Field | Type | Label | Description |
| ----- | ---- | ----- | ----------- |
| max | [string](#string) | | Max Value |
| min | [string](#string) | | Minimum Value |
| list | [string](#string) | repeated | List of Values. |
| step | [string](#string) | | Step for double or int parameter or q for quantization|
| distribution | [Distribution](#api-v1-beta1-Distribution) | | Type of the Distribution. |


<a name="api-v1-beta1-Distribution"></a>

### Distribution
- Types of value for HyperParameter Distributions.
- We add the `distribution` field to represent the hyperparameters search space rather than [`ParameterType`](https://github.com/kubeflow/katib/blob/2c575227586ff1c03cf6b5190d066e2f3061a404/pkg/apis/controller/experiments/v1beta1/experiment_types.go#L199-L207).
- The `distribution` allows users to configure more granular search space customizations.
- In this enhancement, we would propose the following 4 distributions:

| Name | Number | Description |
| ---- | ------ | ----------- |
| UNIFORM | 0 | Continuous uniform distribution. Samples values evenly between a minimum and maximum value. Use &#34;Max/Min&#34;. Use &#34;Step&#34; for `q`. |
| LOGUNIFORM | 1 | Samples values such that their logarithm is uniformly distributed. Use &#34;Max/Min&#34;. Use &#34;Step&#34; for `q`. |
| NORMAL | 2 | Normal (Gaussian) distribution type. Samples values according to a normal distribution characterized by a mean and standard deviation. Use &#34;Max/Min&#34;. Use &#34;Step&#34; for `q`. |
| LOGNORMAL | 3 | Log-normal distribution type. Samples values such that their logarithm is normally distributed. Use &#34;Max/Min&#34;. Use &#34;Step&#34; for `q`. |


## Experiment API changes
Scope: `pkg/apis/controller/experiments/v1beta1/experiment_types.go`

```go
type ParameterSpec struct {
Name string `json:"name,omitempty"`
ParameterType ParameterType `json:"parameterType,omitempty"`
FeasibleSpace FeasibleSpace `json:"feasibleSpace,omitempty"`
}
```
- Adding new field `Distribution` to `FeasibleSpace`

- The `Step` field can be used to define quantization steps for uniform or log-uniform distributions, effectively covering q-quantization requirements.

Updated `FeasibleSpace` struct
```diff
type FeasibleSpace struct {
Max string `json:"max,omitempty"`
Min string `json:"min,omitempty"`
List []string `json:"list,omitempty"`
Step string `json:"step,omitempty"` // Step can be used to define q-quantization
+ Distribution Distribution `json:"distribution,omitempty"` // Added Distribution field
}
```
- New Field Description: `Distribution`
- Type: `Distribution`
- Description: The Distribution field specifies the type of statistical distribution to be applied to the parameter. This allows the definition of various distributions, such as uniform, log-uniform, or other supported types.

- Defining `Distribution` type
```go
type Distribution string

const (
DistributionUniform Distribution = "uniform"
DistributionLogUniform Distribution = "logUniform"
DistributionNormal Distribution = "normal"
DistributionLogNormal Distribution = "logNormal"
)
```

## gRPC API changes
Scope: `pkg/apis/manager/v1beta1/api.proto`
- Add the `Distribution` field to the `FeasibleSpace` message
```diff
/**
* Feasible space for optimization.
* Int and Double type use Max/Min.
* Discrete and Categorical type use List.
*/
message FeasibleSpace {
string max = 1; /// Max Value
string min = 2; /// Minimum Value
repeated string list = 3; /// List of Values.
string step = 4; /// Step for double or int parameter
+ Distribution distribution = 4; // Distribution of the parameter.
}
```
- Define the `Distribution` enum
```
/**
* Distribution types for HyperParameter.
*/
enum Distribution {
UNIFORM = 0;
LOG_UNIFORM = 1;
NORMAL = 2;
LOG_NORMAL = 3;
}
```

shashank-iitbhu marked this conversation as resolved.
Show resolved Hide resolved
## Suggestion Service Logic
- For each suggestion service (e.g., Optuna, Hyperopt), the logic will be updated to handle the new parameter distributions.
- This involves modifying the conversion functions to map Katib distributions to the corresponding framework-specific distributions.

#### Optuna
ref: https://optuna.readthedocs.io/en/stable/reference/distributions.html

For example:
- Update the `_get_optuna_search_space` for new Distributions.
scope: `pkg/suggestion/v1beta1/optuna/base_service.py`

#### Goptuna
ref: https://github.com/c-bata/goptuna/blob/2245ddd9e8d1edba750839893c8a618f852bc1cf/distribution.go

#### Hyperopt
ref: http://hyperopt.github.io/hyperopt/getting-started/search_spaces/#parameter-expressions

#### Ray-tune
ref: https://docs.ray.io/en/latest/tune/api/search_space.html

## Python SDK
Extend the Python SDK to support the new `Distribution` field.