-
Notifications
You must be signed in to change notification settings - Fork 32
/
transformer_sentence_encoder.py
317 lines (273 loc) · 11.5 KB
/
transformer_sentence_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Optional, Tuple
import torch
import torch.nn as nn
from fairseq.modules import (
FairseqDropout,
LayerDropModuleList,
LayerNorm,
MultiheadAttention,
PositionalEmbedding,
TransformerSentenceEncoderLayer,
)
from fairseq.modules.quant_noise import quant_noise as apply_quant_noise_
from fairseq.quantization.utils.quant_modules import *
import logging
logger = logging.getLogger(__name__)
def init_bert_params(module):
"""
Initialize the weights specific to the BERT Model.
This overrides the default initializations depending on the specified arguments.
1. If normal_init_linear_weights is set then weights of linear
layer will be initialized using the normal distribution and
bais will be set to the specified value.
2. If normal_init_embed_weights is set then weights of embedding
layer will be initialized using the normal distribution.
3. If normal_init_proj_weights is set then weights of
in_project_weight for MultiHeadAttention initialized using
the normal distribution (to be validated).
"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=0.02)
if module.bias is not None:
module.bias.data.zero_()
if isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=0.02)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if isinstance(module, MultiheadAttention):
module.q_proj.weight.data.normal_(mean=0.0, std=0.02)
module.k_proj.weight.data.normal_(mean=0.0, std=0.02)
module.v_proj.weight.data.normal_(mean=0.0, std=0.02)
class TransformerSentenceEncoder(nn.Module):
"""
Implementation for a Bi-directional Transformer based Sentence Encoder used
in BERT/XLM style pre-trained models.
This first computes the token embedding using the token embedding matrix,
position embeddings (if specified) and segment embeddings
(if specified). After applying the specified number of
TransformerEncoderLayers, it outputs all the internal states of the
encoder as well as the final representation associated with the first
token (usually CLS token).
Input:
- tokens: B x T matrix representing sentences
- segment_labels: B x T matrix representing segment label for tokens
Output:
- a tuple of the following:
- a list of internal model states used to compute the
predictions where each tensor has shape T x B x C
- sentence representation associated with first input token
in format B x C.
"""
def __init__(
self,
padding_idx: int,
vocab_size: int,
num_encoder_layers: int = 6,
embedding_dim: int = 768,
ffn_embedding_dim: int = 3072,
num_attention_heads: int = 8,
dropout: float = 0.1,
attention_dropout: float = 0.1,
activation_dropout: float = 0.1,
layerdrop: float = 0.0,
max_seq_len: int = 256,
num_segments: int = 2,
use_position_embeddings: bool = True,
offset_positions_by_padding: bool = True,
encoder_normalize_before: bool = False,
apply_bert_init: bool = False,
activation_fn: str = "relu",
learned_pos_embedding: bool = True,
embed_scale: float = None,
freeze_embeddings: bool = False,
n_trans_layers_to_freeze: int = 0,
export: bool = False,
traceable: bool = False,
q_noise: float = 0.0,
qn_block_size: int = 8,
quant_mode: str = 'none',
force_dequant: str = 'none'
) -> None:
super().__init__()
self.padding_idx = padding_idx
self.vocab_size = vocab_size
self.dropout_module = FairseqDropout(dropout, module_name=self.__class__.__name__)
self.layerdrop = layerdrop
self.max_seq_len = max_seq_len
self.embedding_dim = embedding_dim
self.num_segments = num_segments
self.use_position_embeddings = use_position_embeddings
self.apply_bert_init = apply_bert_init
self.learned_pos_embedding = learned_pos_embedding
self.traceable = traceable
self.tpu = False # whether we're on TPU
self.quant_mode = quant_mode
self.force_dequant = force_dequant
self.embed_bit = 8
self.embed_act_bit = 16
self.ln_output_bit = 32
logger.info('Dropout {}, attn dropout {}, act dropout {}'.format(
dropout, attention_dropout, activation_dropout))
self.embed_tokens = QuantEmbedding(weight_bit=self.embed_bit, quant_mode=self.quant_mode)
self.embed_tokens.set_param(
nn.Embedding(self.vocab_size, self.embedding_dim, self.padding_idx)
)
self.embed_scale = embed_scale
if q_noise > 0:
self.quant_noise = apply_quant_noise_(
nn.Linear(self.embedding_dim, self.embedding_dim, bias=False),
q_noise,
qn_block_size,
)
else:
self.quant_noise = None
self.segment_embeddings = None
if self.num_segments > 0:
self.segment_embeddings = QuantEmbedding(weight_bit=self.embed_bit, quant_mode=self.quant_mode)
self.segment_embeddings.set_param(
nn.Embedding(self.num_segments, self.embedding_dim, padding_idx=None)
)
self.segment_embeddings_act = QuantAct(self.embed_act_bit, quant_mode=self.quant_mode)
self.embed_positions = None
if self.use_position_embeddings:
self.embed_positions = \
PositionalEmbedding(
self.max_seq_len,
self.embedding_dim,
padding_idx=(self.padding_idx if offset_positions_by_padding else None),
learned=self.learned_pos_embedding,
quant_mode=self.quant_mode,
embed_bit=self.embed_bit,
)
self.embed_positions_act = QuantAct(self.embed_act_bit, quant_mode=self.quant_mode)
if self.layerdrop > 0.0:
self.layers = LayerDropModuleList(p=self.layerdrop)
else:
self.layers = nn.ModuleList([])
self.layers.extend([
self.build_transformer_sentence_encoder_layer(
embedding_dim=self.embedding_dim,
ffn_embedding_dim=ffn_embedding_dim,
num_attention_heads=num_attention_heads,
dropout=self.dropout_module.p,
attention_dropout=attention_dropout,
activation_dropout=activation_dropout,
activation_fn=activation_fn,
export=export,
q_noise=q_noise,
qn_block_size=qn_block_size,
quant_mode = self.quant_mode,
force_dequant=self.force_dequant,
)
for _ in range(num_encoder_layers)
])
if encoder_normalize_before:
self.emb_layer_norm = IntLayerNorm(self.ln_output_bit, quant_mode=self.quant_mode,
force_dequant=self.force_dequant)
self.emb_layer_norm.set_param(LayerNorm(self.embedding_dim, export=export))
else:
self.emb_layer_norm = None
# Apply initialization of model params after building the model
if self.apply_bert_init:
self.apply(init_bert_params)
def freeze_module_params(m):
if m is not None:
for p in m.parameters():
p.requires_grad = False
if freeze_embeddings:
freeze_module_params(self.embed_tokens)
freeze_module_params(self.segment_embeddings)
freeze_module_params(self.embed_positions)
freeze_module_params(self.emb_layer_norm)
for layer in range(n_trans_layers_to_freeze):
freeze_module_params(self.layers[layer])
def build_embedding(self, vocab_size, embedding_dim, padding_idx):
return nn.Embedding(vocab_size, embedding_dim, padding_idx)
def build_transformer_sentence_encoder_layer(
self,
embedding_dim,
ffn_embedding_dim,
num_attention_heads,
dropout,
attention_dropout,
activation_dropout,
activation_fn,
export,
q_noise,
qn_block_size,
quant_mode,
force_dequant,
):
return TransformerSentenceEncoderLayer(
embedding_dim=embedding_dim,
ffn_embedding_dim=ffn_embedding_dim,
num_attention_heads=num_attention_heads,
dropout=dropout,
attention_dropout=attention_dropout,
activation_dropout=activation_dropout,
activation_fn=activation_fn,
export=export,
q_noise=q_noise,
qn_block_size=qn_block_size,
quant_mode=quant_mode,
force_dequant=force_dequant
)
def prepare_for_tpu_(self, **kwargs):
self.tpu = True
def forward(
self,
tokens: torch.Tensor,
segment_labels: torch.Tensor = None,
last_state_only: bool = False,
positions: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
# compute padding mask. This is needed for multi-head attention
padding_mask = tokens.eq(self.padding_idx)
if not self.traceable and not self.tpu and not padding_mask.any():
padding_mask = None
x, x_scaling_factor = self.embed_tokens(tokens)
if self.embed_scale is not None:
x *= self.embed_scale #scaling
x_scaling_factor *= self.embed_scale
if self.embed_positions is not None:
y, y_scaling_factor = self.embed_positions(tokens, positions=positions)
x, x_scaling_factor = self.embed_positions_act(
x, x_scaling_factor,
identity=y,
identity_scaling_factor=y_scaling_factor
)
if self.segment_embeddings is not None and segment_labels is not None:
y, y_scaling_factor= self.segment_embeddings(segment_labels)
x, x_scaling_factor = self.segment_embeddings_act(
x, x_scaling_factor,
identity=y,
identity_scaling_factor=y_scaling_factor
)
if self.quant_noise is not None:
x = self.quant_noise(x)
if self.emb_layer_norm is not None:
x, x_scaling_factor = self.emb_layer_norm(x, x_scaling_factor)
x = self.dropout_module(x)
# account for padding while computing the representation
if padding_mask is not None:
x *= 1 - padding_mask.unsqueeze(-1).type_as(x) # 0 or 1, int-mul
# B x T x C -> T x B x C
x = x.transpose(0, 1)
inner_states = []
if not last_state_only:
inner_states.append(x)
for layer in self.layers:
x, scaling_factor, _ = layer(x, x_scaling_factor, self_attn_padding_mask=padding_mask)
if not last_state_only:
inner_states.append(x)
sentence_rep = x[0, :, :]
if last_state_only:
inner_states = [x]
if self.traceable:
return torch.stack(inner_states), sentence_rep
else:
return inner_states, sentence_rep