forked from luckycallor/InsightFace-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
finetune_softmax.py
234 lines (205 loc) · 12.5 KB
/
finetune_softmax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os
import time
import pickle
import argparse
import numpy as np
import io
import yaml
from scipy import misc
import tensorflow as tf
import tensorflow.contrib.slim as slim
from datetime import datetime
from losses.logit_loss import get_logits
from data.classificationDataTool import ClassificationImageData
from model import get_embd
from utils import average_gradients, check_folders, analyze_vars
from evaluate import load_bin, evaluate
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--config_path', type=str, help='path to config file', default='./configs/config_finetune.yaml')
return parser.parse_args()
def inference(images, labels, is_training_dropout, is_training_bn, config):
embds, end_points = get_embd(images, is_training_dropout, is_training_bn, config)
logits = get_logits(embds, labels, config)
end_points['logits'] = logits
return embds, logits, end_points
class Trainer:
def __init__(self, config):
self.config = config
subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
self.output_dir = os.path.join(config['output_dir'], subdir)
self.model_dir = os.path.join(self.output_dir, 'models')
self.log_dir = os.path.join(self.output_dir, 'log')
self.checkpoint_dir = os.path.join(self.output_dir, 'checkpoints')
self.debug_dir = os.path.join(self.output_dir, 'debug')
check_folders([self.output_dir, self.model_dir, self.log_dir, self.checkpoint_dir, self.debug_dir])
self.val_log = os.path.join(self.output_dir, 'val_log.txt')
self.batch_size = config['batch_size']
self.gpu_num = config['gpu_num']
if self.batch_size % self.gpu_num != 0:
raise ValueError('batch_size must be a multiple of gpu_num')
self.image_size = config['image_size']
self.epoch_num = config['epoch_num']
self.step_per_epoch = config['step_per_epoch']
self.val_freq = config['val_freq']
self.val_data = config['val_data']
self.val_bn_train = config['val_bn_train']
# for k, v in config['val_data'].items():
# self.val_data[k] = load_bin(v, self.image_size)
# imgs = self.val_data[k][0]
# np.save(os.path.join(self.debug_dir, k+'.npy'), imgs[:100])
with open(os.path.join(self.output_dir, 'config.yaml'), 'w') as f:
f.write(yaml.dump(self.config))
def build(self):
self.train_phase_dropout = tf.placeholder(dtype=tf.bool, shape=None, name='train_phase_dropout')
self.train_phase_bn = tf.placeholder(dtype=tf.bool, shape=None, name='train_phase_bn')
self.global_step = tf.Variable(name='global_step', initial_value=0, trainable=False)
self.inc_op = tf.assign_add(self.global_step, 1, name='increment_global_step')
scale = int(512.0/self.batch_size)
lr_steps = [scale*s for s in self.config['lr_steps']]
lr_values = [v/scale for v in self.config['lr_values']]
# lr_steps = self.config['lr_steps']
self.lr = tf.train.piecewise_constant(self.global_step, boundaries=lr_steps, values=lr_values, name='lr_schedule')
cid = ClassificationImageData(img_size=self.image_size, augment_flag=self.config['augment_flag'], augment_margin=self.config['augment_margin'])
train_dataset = cid.read_TFRecord(self.config['train_data']).shuffle(10000).repeat().batch(self.batch_size)
train_iterator = train_dataset.make_one_shot_iterator()
self.train_images, self.train_labels = train_iterator.get_next()
self.train_images = tf.identity(self.train_images, 'input_images')
self.train_labels = tf.identity(self.train_labels, 'labels')
if self.gpu_num <= 1:
self.embds, self.logits, self.end_points = inference(self.train_images, self.train_labels, self.train_phase_dropout, self.train_phase_bn, self.config)
self.embds = tf.identity(self.embds, 'embeddings')
self.inference_loss = slim.losses.sparse_softmax_cross_entropy(logits=self.logits, labels=self.train_labels)
self.wd_loss = tf.add_n(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
self.train_loss = self.inference_loss+self.wd_loss
pred = tf.arg_max(tf.nn.softmax(self.logits), dimension=-1, output_type=tf.int64)
self.train_acc = tf.reduce_mean(tf.cast(tf.equal(pred, self.train_labels), tf.float32))
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
vars_softmax = [v for v in tf.trainable_variables() if 'embd_extractor' not in v.name]
with tf.control_dependencies(update_ops):
self.train_op = tf.train.MomentumOptimizer(learning_rate=self.lr, momentum=self.config['momentum']).minimize(self.train_loss)
self.train_op_softmax = tf.train.MomentumOptimizer(learning_rate=self.lr, momentum=self.config['momentum']).minimize(self.train_loss, var_list=vars_softmax)
else:
self.embds = []
self.logits = []
self.inference_loss = []
self.wd_loss = []
self.train_loss = []
pred = []
tower_grads = []
tower_grads_softmax = []
update_ops = []
opt = tf.train.MomentumOptimizer(learning_rate=self.lr, momentum=self.config['momentum'])
train_images = tf.split(self.train_images, self.gpu_num)
train_labels = tf.split(self.train_labels, self.gpu_num)
for i in range(self.gpu_num):
sub_train_images = train_images[i]
sub_train_labels = train_labels[i]
with tf.device('/gpu:%d' % i):
with tf.variable_scope(tf.get_variable_scope(), reuse=(i > 0)):
embds, logits, end_points = inference(sub_train_images, sub_train_labels, self.train_phase_dropout, self.train_phase_bn, self.config)
inference_loss = slim.losses.sparse_softmax_cross_entropy(logits=logits, labels=sub_train_labels)
wd_loss = tf.add_n(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
train_loss = inference_loss+wd_loss
pred.append(tf.arg_max(tf.nn.softmax(logits), dimension=-1, output_type=tf.int64))
vars_softmax = [v for v in tf.trainable_variables() if 'embd_extractor' not in v.name]
tower_grads.append(opt.compute_gradients(train_loss))
tower_grads_softmax.append(opt.compute_gradients(train_loss, var_list=vars_softmax))
update_ops.append(tf.get_collection(tf.GraphKeys.UPDATE_OPS))
self.embds.append(embds)
self.logits.append(logits)
self.inference_loss.append(inference_loss)
self.wd_loss.append(wd_loss)
self.train_loss.append(train_loss)
self.embds = tf.concat(self.embds, axis=0)
self.logits = tf.concat(self.logits, axis=0)
self.inference_loss = tf.add_n(self.inference_loss)/self.gpu_num
self.wd_loss = tf.add_n(self.wd_loss)/self.gpu_num
self.train_loss = tf.add_n(self.train_loss)/self.gpu_num
pred = tf.concat(pred, axis=0)
self.train_acc = tf.reduce_mean(tf.cast(tf.equal(pred, self.train_labels), tf.float32))
train_ops = [opt.apply_gradients(average_gradients(tower_grads))]
train_ops_softmax = [opt.apply_gradients(average_gradients(tower_grads_softmax))]
train_ops.extend(update_ops)
train_ops_softmax.extend(update_ops)
self.train_op = tf.group(*train_ops)
self.train_op_softmax = tf.group(*train_ops_softmax)
self.train_summary = tf.summary.merge([
tf.summary.scalar('inference_loss', self.inference_loss),
tf.summary.scalar('wd_loss', self.wd_loss),
tf.summary.scalar('train_loss', self.train_loss),
tf.summary.scalar('train_acc', self.train_acc)
])
def run_embds(self, sess, images):
batch_num = len(images)//self.batch_size
left = len(images)%self.batch_size
embds = []
for i in range(batch_num):
cur_embd = sess.run(self.embds, feed_dict={self.train_images: images[i*self.batch_size: (i+1)*self.batch_size], self.train_phase_dropout: False, self.train_phase_bn: self.val_bn_train})
embds += list(cur_embd)
if left > 0:
image_batch = np.zeros([self.batch_size, self.image_size, self.image_size, 3])
image_batch[:left, :, :, :] = images[-left:]
cur_embd = sess.run(self.embds, feed_dict={self.train_images: image_batch, self.train_phase_dropout: False, self.train_phase_bn: self.val_bn_train})
embds += list(cur_embd)[:left]
return np.array(embds)
def save_image_label(self, images, labels, step):
save_dir = os.path.join(self.debug_dir, 'image_by_label')
for i in range(len(labels)):
if(labels[i] < 10):
cur_save_dir = os.path.join(save_dir, str(labels[i]))
check_folders(cur_save_dir)
misc.imsave(os.path.join(cur_save_dir, '%d_%d.jpg' % (step, i)), images[i])
def train(self):
self.build()
analyze_vars(tf.trainable_variables(), os.path.join(self.output_dir, 'model_vars.txt'))
with open(os.path.join(self.output_dir, 'regularizers.txt'), 'w') as f:
for v in tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES):
f.write(v.name+'\n')
# exit(-1)
tf_config = tf.ConfigProto(allow_soft_placement=True)
tf_config.gpu_options.allow_growth = True
with tf.Session(config=tf_config) as sess:
tf.global_variables_initializer().run()
saver_ckpt = tf.train.Saver()
saver_best = tf.train.Saver()
saver_embd = tf.train.Saver(var_list=[v for v in tf.trainable_variables() if 'embd_extractor' in v.name])
if config['pretrained_model'] != '':
saver_embd.restore(sess, config['pretrained_model'])
summary_writer = tf.summary.FileWriter(self.log_dir, sess.graph)
start_time = time.time()
best_acc = 0
counter = 0
debug = True
for i in range(self.epoch_num):
if i < config['fixed_epoch_num']:
cur_train_op = self.train_op_softmax
else:
cur_train_op = self.train_op
for j in range(self.step_per_epoch):
_, l, l_wd, l_inf, acc, s, _ = sess.run([cur_train_op, self.train_loss, self.wd_loss, self.inference_loss, self.train_acc, self.train_summary, self.inc_op], feed_dict={self.train_phase_dropout: True, self.train_phase_bn: True})
counter += 1
print("Epoch: [%2d/%2d] [%6d/%6d] time: %.2f, loss: %.3f (inference: %.3f, wd: %.3f), acc: %.3f" % (i, self.epoch_num, j, self.step_per_epoch, time.time() - start_time, l, l_inf, l_wd, acc))
start_time = time.time()
if counter % self.val_freq == 0:
saver_ckpt.save(sess, os.path.join(self.checkpoint_dir, 'ckpt-m'), global_step=counter)
acc = []
with open(self.val_log, 'a') as f:
f.write('step: %d\n' % counter)
for k, v in self.val_data.items():
imgs, imgs_f, issame = load_bin(v, self.image_size)
embds = self.run_embds(sess, imgs)
embds_f = self.run_embds(sess, imgs_f)
embds = embds/np.linalg.norm(embds, axis=1, keepdims=True)+embds_f/np.linalg.norm(embds_f, axis=1, keepdims=True)
tpr, fpr, acc_mean, acc_std, tar, tar_std, far = evaluate(embds, issame, far_target=1e-3, distance_metric=0)
f.write('eval on %s: acc--%1.5f+-%1.5f, tar--%1.5f+-%1.5f@far=%1.5f\n' % (k, acc_mean, acc_std, tar, tar_std, far))
acc.append(acc_mean)
acc = np.mean(np.array(acc))
if acc > best_acc:
saver_best.save(sess, os.path.join(self.model_dir, 'best-m'), global_step=counter)
best_acc = acc
if __name__ == '__main__':
args = parse_args()
config = yaml.load(open(args.config_path))
trainer = Trainer(config)
trainer.train()