This repository has been archived by the owner on Jan 18, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlib.rs
638 lines (570 loc) · 20.5 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
// Copyright 2016-2017 The Servo Project Developers.
//
// Licensed under the Apache License, Version 2.0
// <http://www.apache.org/licenses/LICENSE-2.0>.
// This file may not be copied, modified, or distributed
// except according to those terms.
//! A crate for measuring the heap usage of data structures in a way that
//! integrates with Firefox's memory reporting, particularly the use of
//! mozjemalloc and DMD. In particular, it has the following features.
//! - It isn't bound to a particular heap allocator.
//! - It provides traits for both "shallow" and "deep" measurement, which gives
//! flexibility in the cases where the traits can't be used.
//! - It allows for measuring blocks even when only an interior pointer can be
//! obtained for heap allocations, e.g. `HashSet` and `HashMap`. (This relies
//! on the heap allocator having suitable support, which mozjemalloc has.)
//! - It allows handling of types like `Rc` and `Arc` by providing traits that
//! are different to the ones for non-graph structures.
//!
//! Suggested uses are as follows.
//! - When possible, use the `MallocSizeOf` trait. (Deriving support is
//! provided by the `malloc_size_of_derive` crate.)
//! - If you need an additional synchronization argument, provide a function
//! that is like the standard trait method, but with the extra argument.
//! - If you need multiple measurements for a type, provide a function named
//! `add_size_of` that takes a mutable reference to a struct that contains
//! the multiple measurement fields.
//! - When deep measurement (via `MallocSizeOf`) cannot be implemented for a
//! type, shallow measurement (via `MallocShallowSizeOf`) in combination with
//! iteration can be a useful substitute.
//! - `Rc` and `Arc` are always tricky, which is why `MallocSizeOf` is not (and
//! should not be) implemented for them.
//! - If an `Rc` or `Arc` is known to be a "primary" reference and can always
//! be measured, it should be measured via the `MallocUnconditionalSizeOf`
//! trait.
//! - If an `Rc` or `Arc` should be measured only if it hasn't been seen
//! before, it should be measured via the `MallocConditionalSizeOf` trait.
//! - Using universal function call syntax is a good idea when measuring boxed
//! fields in structs, because it makes it clear that the Box is being
//! measured as well as the thing it points to. E.g.
//! `<Box<_> as MallocSizeOf>::size_of(field, ops)`.
#[cfg(feature = "app_units")]
extern crate app_units;
#[cfg(feature = "cssparser")]
extern crate cssparser;
#[cfg(feature = "serde")]
extern crate serde;
#[cfg(feature = "serde_bytes")]
extern crate serde_bytes;
#[cfg(feature = "smallbitvec")]
extern crate smallbitvec;
#[cfg(feature = "smallvec")]
extern crate smallvec;
#[cfg(feature = "string_cache")]
extern crate string_cache;
#[cfg(feature = "thin_slice")]
extern crate thin_slice;
#[cfg(feature = "url")]
extern crate url;
#[cfg(feature = "void")]
extern crate void;
#[cfg(feature = "xml5ever")]
extern crate xml5ever;
#[cfg(feature = "serde_bytes")]
use serde_bytes::ByteBuf;
use std::hash::{BuildHasher, Hash};
use std::mem::size_of;
use std::ops::Range;
use std::ops::{Deref, DerefMut};
use std::os::raw::c_void;
#[cfg(feature = "void")]
use void::Void;
/// A C function that takes a pointer to a heap allocation and returns its size.
type VoidPtrToSizeFn = unsafe extern "C" fn(ptr: *const c_void) -> usize;
/// A closure implementing a stateful predicate on pointers.
type VoidPtrToBoolFnMut = dyn FnMut(*const c_void) -> bool;
/// Operations used when measuring heap usage of data structures.
pub struct MallocSizeOfOps {
/// A function that returns the size of a heap allocation.
size_of_op: VoidPtrToSizeFn,
/// Like `size_of_op`, but can take an interior pointer. Optional because
/// not all allocators support this operation. If it's not provided, some
/// memory measurements will actually be computed estimates rather than
/// real and accurate measurements.
enclosing_size_of_op: Option<VoidPtrToSizeFn>,
/// Check if a pointer has been seen before, and remember it for next time.
/// Useful when measuring `Rc`s and `Arc`s. Optional, because many places
/// don't need it.
have_seen_ptr_op: Option<Box<VoidPtrToBoolFnMut>>,
}
impl MallocSizeOfOps {
pub fn new(
size_of: VoidPtrToSizeFn,
malloc_enclosing_size_of: Option<VoidPtrToSizeFn>,
have_seen_ptr: Option<Box<VoidPtrToBoolFnMut>>,
) -> Self {
MallocSizeOfOps {
size_of_op: size_of,
enclosing_size_of_op: malloc_enclosing_size_of,
have_seen_ptr_op: have_seen_ptr,
}
}
/// Check if an allocation is empty. This relies on knowledge of how Rust
/// handles empty allocations, which may change in the future.
fn is_empty<T: ?Sized>(ptr: *const T) -> bool {
// The correct condition is this:
// `ptr as usize <= ::std::mem::align_of::<T>()`
// But we can't call align_of() on a ?Sized T. So we approximate it
// with the following. 256 is large enough that it should always be
// larger than the required alignment, but small enough that it is
// always in the first page of memory and therefore not a legitimate
// address.
return ptr as *const usize as usize <= 256;
}
/// Call `size_of_op` on `ptr`, first checking that the allocation isn't
/// empty, because some types (such as `Vec`) utilize empty allocations.
pub unsafe fn malloc_size_of<T: ?Sized>(&self, ptr: *const T) -> usize {
if MallocSizeOfOps::is_empty(ptr) {
0
} else {
(self.size_of_op)(ptr as *const c_void)
}
}
/// Is an `enclosing_size_of_op` available?
pub fn has_malloc_enclosing_size_of(&self) -> bool {
self.enclosing_size_of_op.is_some()
}
/// Call `enclosing_size_of_op`, which must be available, on `ptr`, which
/// must not be empty.
pub unsafe fn malloc_enclosing_size_of<T>(&self, ptr: *const T) -> usize {
assert!(!MallocSizeOfOps::is_empty(ptr));
(self.enclosing_size_of_op.unwrap())(ptr as *const c_void)
}
/// Call `have_seen_ptr_op` on `ptr`.
pub fn have_seen_ptr<T>(&mut self, ptr: *const T) -> bool {
let have_seen_ptr_op = self
.have_seen_ptr_op
.as_mut()
.expect("missing have_seen_ptr_op");
have_seen_ptr_op(ptr as *const c_void)
}
}
/// Trait for measuring the "deep" heap usage of a data structure. This is the
/// most commonly-used of the traits.
pub trait MallocSizeOf {
/// Measure the heap usage of all descendant heap-allocated structures, but
/// not the space taken up by the value itself.
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize;
}
/// Trait for measuring the "shallow" heap usage of a container.
pub trait MallocShallowSizeOf {
/// Measure the heap usage of immediate heap-allocated descendant
/// structures, but not the space taken up by the value itself. Anything
/// beyond the immediate descendants must be measured separately, using
/// iteration.
fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize;
}
/// Like `MallocSizeOf`, but with a different name so it cannot be used
/// accidentally with derive(MallocSizeOf). For use with types like `Rc` and
/// `Arc` when appropriate (e.g. when measuring a "primary" reference).
pub trait MallocUnconditionalSizeOf {
/// Measure the heap usage of all heap-allocated descendant structures, but
/// not the space taken up by the value itself.
fn unconditional_size_of(&self, ops: &mut MallocSizeOfOps) -> usize;
}
/// `MallocUnconditionalSizeOf` combined with `MallocShallowSizeOf`.
pub trait MallocUnconditionalShallowSizeOf {
/// `unconditional_size_of` combined with `shallow_size_of`.
fn unconditional_shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize;
}
/// Like `MallocSizeOf`, but only measures if the value hasn't already been
/// measured. For use with types like `Rc` and `Arc` when appropriate (e.g.
/// when there is no "primary" reference).
pub trait MallocConditionalSizeOf {
/// Measure the heap usage of all heap-allocated descendant structures, but
/// not the space taken up by the value itself, and only if that heap usage
/// hasn't already been measured.
fn conditional_size_of(&self, ops: &mut MallocSizeOfOps) -> usize;
}
/// `MallocConditionalSizeOf` combined with `MallocShallowSizeOf`.
pub trait MallocConditionalShallowSizeOf {
/// `conditional_size_of` combined with `shallow_size_of`.
fn conditional_shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize;
}
impl MallocSizeOf for String {
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
unsafe { ops.malloc_size_of(self.as_ptr()) }
}
}
#[cfg(feature = "smartstring")]
impl MallocSizeOf for smartstring::alias::String {
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
if self.is_inline() {
return 0;
}
unsafe { ops.malloc_size_of(self.as_ptr()) }
}
}
impl<'a, T: ?Sized> MallocSizeOf for &'a T {
fn size_of(&self, _ops: &mut MallocSizeOfOps) -> usize {
// Zero makes sense for a non-owning reference.
0
}
}
impl<T: ?Sized> MallocShallowSizeOf for Box<T> {
fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
unsafe { ops.malloc_size_of(&**self) }
}
}
impl<T: MallocSizeOf + ?Sized> MallocSizeOf for Box<T> {
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
self.shallow_size_of(ops) + (**self).size_of(ops)
}
}
#[cfg(feature = "thin_slice")]
impl<T> MallocShallowSizeOf for thin_slice::ThinBoxedSlice<T> {
fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
let mut n = 0;
unsafe {
n += thin_slice::ThinBoxedSlice::spilled_storage(self)
.map_or(0, |ptr| ops.malloc_size_of(ptr));
n += ops.malloc_size_of(&**self);
}
n
}
}
#[cfg(feature = "thin_slice")]
impl<T: MallocSizeOf> MallocSizeOf for thin_slice::ThinBoxedSlice<T> {
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
self.shallow_size_of(ops) + (**self).size_of(ops)
}
}
impl MallocSizeOf for () {
fn size_of(&self, _ops: &mut MallocSizeOfOps) -> usize {
0
}
}
impl<T1, T2> MallocSizeOf for (T1, T2)
where
T1: MallocSizeOf,
T2: MallocSizeOf,
{
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
self.0.size_of(ops) + self.1.size_of(ops)
}
}
impl<T1, T2, T3> MallocSizeOf for (T1, T2, T3)
where
T1: MallocSizeOf,
T2: MallocSizeOf,
T3: MallocSizeOf,
{
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
self.0.size_of(ops) + self.1.size_of(ops) + self.2.size_of(ops)
}
}
impl<T1, T2, T3, T4> MallocSizeOf for (T1, T2, T3, T4)
where
T1: MallocSizeOf,
T2: MallocSizeOf,
T3: MallocSizeOf,
T4: MallocSizeOf,
{
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
self.0.size_of(ops) + self.1.size_of(ops) + self.2.size_of(ops) + self.3.size_of(ops)
}
}
impl<T: MallocSizeOf> MallocSizeOf for Option<T> {
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
if let Some(val) = self.as_ref() {
val.size_of(ops)
} else {
0
}
}
}
impl<T: MallocSizeOf, E: MallocSizeOf> MallocSizeOf for Result<T, E> {
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
match *self {
Ok(ref x) => x.size_of(ops),
Err(ref e) => e.size_of(ops),
}
}
}
impl<T: MallocSizeOf + Copy> MallocSizeOf for std::cell::Cell<T> {
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
self.get().size_of(ops)
}
}
impl<T: MallocSizeOf> MallocSizeOf for std::cell::RefCell<T> {
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
self.borrow().size_of(ops)
}
}
impl<'a, B: ?Sized + ToOwned> MallocSizeOf for std::borrow::Cow<'a, B>
where
B::Owned: MallocSizeOf,
{
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
match *self {
std::borrow::Cow::Borrowed(_) => 0,
std::borrow::Cow::Owned(ref b) => b.size_of(ops),
}
}
}
impl<T: MallocSizeOf> MallocSizeOf for [T] {
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
let mut n = 0;
for elem in self.iter() {
n += elem.size_of(ops);
}
n
}
}
#[cfg(feature = "serde_bytes")]
impl MallocShallowSizeOf for ByteBuf {
fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
unsafe { ops.malloc_size_of(self.as_ptr()) }
}
}
#[cfg(feature = "serde_bytes")]
impl MallocSizeOf for ByteBuf {
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
let mut n = self.shallow_size_of(ops);
for elem in self.iter() {
n += elem.size_of(ops);
}
n
}
}
impl<T> MallocShallowSizeOf for Vec<T> {
fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
unsafe { ops.malloc_size_of(self.as_ptr()) }
}
}
impl<T: MallocSizeOf> MallocSizeOf for Vec<T> {
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
let mut n = self.shallow_size_of(ops);
for elem in self.iter() {
n += elem.size_of(ops);
}
n
}
}
impl<T> MallocShallowSizeOf for std::collections::VecDeque<T> {
fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
if ops.has_malloc_enclosing_size_of() {
if let Some(front) = self.front() {
// The front element is an interior pointer.
unsafe { ops.malloc_enclosing_size_of(&*front) }
} else {
// This assumes that no memory is allocated when the VecDeque is empty.
0
}
} else {
// An estimate.
self.capacity() * size_of::<T>()
}
}
}
impl<T: MallocSizeOf> MallocSizeOf for std::collections::VecDeque<T> {
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
let mut n = self.shallow_size_of(ops);
for elem in self.iter() {
n += elem.size_of(ops);
}
n
}
}
#[cfg(feature = "smallvec")]
impl<A: smallvec::Array> MallocShallowSizeOf for smallvec::SmallVec<A> {
fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
if self.spilled() {
unsafe { ops.malloc_size_of(self.as_ptr()) }
} else {
0
}
}
}
#[cfg(feature = "smallvec")]
impl<A> MallocSizeOf for smallvec::SmallVec<A>
where
A: smallvec::Array,
A::Item: MallocSizeOf,
{
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
let mut n = self.shallow_size_of(ops);
for elem in self.iter() {
n += elem.size_of(ops);
}
n
}
}
impl<T, S> MallocShallowSizeOf for std::collections::HashSet<T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
if ops.has_malloc_enclosing_size_of() {
// The first value from the iterator gives us an interior pointer.
// `ops.malloc_enclosing_size_of()` then gives us the storage size.
// This assumes that the `HashSet`'s contents (values and hashes)
// are all stored in a single contiguous heap allocation.
self.iter()
.next()
.map_or(0, |t| unsafe { ops.malloc_enclosing_size_of(t) })
} else {
// An estimate.
self.capacity() * (size_of::<T>() + size_of::<usize>())
}
}
}
impl<T, S> MallocSizeOf for std::collections::HashSet<T, S>
where
T: Eq + Hash + MallocSizeOf,
S: BuildHasher,
{
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
let mut n = self.shallow_size_of(ops);
for t in self.iter() {
n += t.size_of(ops);
}
n
}
}
impl<K, V, S> MallocShallowSizeOf for std::collections::HashMap<K, V, S>
where
K: Eq + Hash,
S: BuildHasher,
{
fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
// See the implementation for std::collections::HashSet for details.
if ops.has_malloc_enclosing_size_of() {
self.values()
.next()
.map_or(0, |v| unsafe { ops.malloc_enclosing_size_of(v) })
} else {
self.capacity() * (size_of::<V>() + size_of::<K>() + size_of::<usize>())
}
}
}
impl<K, V, S> MallocSizeOf for std::collections::HashMap<K, V, S>
where
K: Eq + Hash + MallocSizeOf,
V: MallocSizeOf,
S: BuildHasher,
{
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
let mut n = self.shallow_size_of(ops);
for (k, v) in self.iter() {
n += k.size_of(ops);
n += v.size_of(ops);
}
n
}
}
// PhantomData is always 0.
impl<T> MallocSizeOf for std::marker::PhantomData<T> {
fn size_of(&self, _ops: &mut MallocSizeOfOps) -> usize {
0
}
}
// XXX: we don't want MallocSizeOf to be defined for Rc and Arc. If negative
// trait bounds are ever allowed, this code should be uncommented.
// (We do have a compile-fail test for this:
// rc_arc_must_not_derive_malloc_size_of.rs)
//impl<T> !MallocSizeOf for Arc<T> { }
//impl<T> !MallocShallowSizeOf for Arc<T> { }
/// If a mutex is stored directly as a member of a data type that is being measured,
/// it is the unique owner of its contents and deserves to be measured.
///
/// If a mutex is stored inside of an Arc value as a member of a data type that is being measured,
/// the Arc will not be automatically measured so there is no risk of overcounting the mutex's
/// contents.
impl<T: MallocSizeOf> MallocSizeOf for std::sync::Mutex<T> {
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
(*self.lock().unwrap()).size_of(ops)
}
}
#[cfg(feature = "smallbitvec")]
impl MallocSizeOf for smallbitvec::SmallBitVec {
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
if let Some(ptr) = self.heap_ptr() {
unsafe { ops.malloc_size_of(ptr) }
} else {
0
}
}
}
#[cfg(feature = "void")]
impl MallocSizeOf for Void {
#[inline]
fn size_of(&self, _ops: &mut MallocSizeOfOps) -> usize {
void::unreachable(*self)
}
}
#[cfg(feature = "string_cache")]
impl<Static: string_cache::StaticAtomSet> MallocSizeOf for string_cache::Atom<Static> {
fn size_of(&self, _ops: &mut MallocSizeOfOps) -> usize {
0
}
}
/// For use on types where size_of() returns 0.
#[macro_export]
macro_rules! malloc_size_of_is_0(
($($ty:ty),+) => (
$(
impl $crate::MallocSizeOf for $ty {
#[inline(always)]
fn size_of(&self, _: &mut $crate::MallocSizeOfOps) -> usize {
0
}
}
)+
);
($($ty:ident<$($gen:ident),+>),+) => (
$(
impl<$($gen: $crate::MallocSizeOf),+> $crate::MallocSizeOf for $ty<$($gen),+> {
#[inline(always)]
fn size_of(&self, _: &mut $crate::MallocSizeOfOps) -> usize {
0
}
}
)+
);
);
malloc_size_of_is_0!(bool, char, str);
malloc_size_of_is_0!(u8, u16, u32, u64, u128, usize);
malloc_size_of_is_0!(i8, i16, i32, i64, i128, isize);
malloc_size_of_is_0!(f32, f64);
malloc_size_of_is_0!(std::sync::atomic::AtomicBool);
malloc_size_of_is_0!(std::sync::atomic::AtomicIsize);
malloc_size_of_is_0!(std::sync::atomic::AtomicUsize);
malloc_size_of_is_0!(Range<u8>, Range<u16>, Range<u32>, Range<u64>, Range<usize>);
malloc_size_of_is_0!(Range<i8>, Range<i16>, Range<i32>, Range<i64>, Range<isize>);
malloc_size_of_is_0!(Range<f32>, Range<f64>);
#[cfg(feature = "app_units")]
malloc_size_of_is_0!(app_units::Au);
#[cfg(feature = "cssparser")]
malloc_size_of_is_0!(cssparser::RGBA, cssparser::TokenSerializationType);
#[cfg(feature = "url")]
impl MallocSizeOf for url::Host {
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
match *self {
url::Host::Domain(ref s) => s.size_of(ops),
_ => 0,
}
}
}
#[cfg(feature = "xml5ever")]
impl MallocSizeOf for xml5ever::QualName {
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
self.prefix.size_of(ops) + self.ns.size_of(ops) + self.local.size_of(ops)
}
}
/// Measurable that defers to inner value and used to verify MallocSizeOf implementation in a
/// struct.
#[derive(Clone)]
pub struct Measurable<T: MallocSizeOf>(pub T);
impl<T: MallocSizeOf> Deref for Measurable<T> {
type Target = T;
fn deref(&self) -> &T {
&self.0
}
}
impl<T: MallocSizeOf> DerefMut for Measurable<T> {
fn deref_mut(&mut self) -> &mut T {
&mut self.0
}
}