Skip to content

Latest commit

 

History

History
265 lines (219 loc) · 9.39 KB

README.MD

File metadata and controls

265 lines (219 loc) · 9.39 KB

kda-flink-demo

Hands-on guide to use Apache Flink app in Kinesis Data Analytics to aggregate time-series data with tumbling & sliding window in real-time.

What is the architecture of Kinesis Data Analytics with Apache Flink?

Tumbling Windows

What is a 'Tumbling Window'?

A tumbling windows assigner assigns each element to a window of a specified window size. Tumbling windows have a fixed size and do not overlap. For example, if you specify a tumbling window with a size of 5 minutes, the current window will be evaluated and a new window will be started every five minutes as illustrated by the following figure.

Tumbling Windows

What does the incoming streaming data look like?

Will be generated by the send.py and sent to Kinesis Data Stream.

[
    {
      "type": "Feature",
      "properties": {
        "RECEIVED_ON": "2020-09-14T09:20:22.385",
        "N02_001": "14",
        "N02_002": "5",
        "N02_003": "北海道新幹線",
        "N02_004": "西日本旅客鉄道",
        "ID": "5_14",
        "COUNT": 20
      }
    },
    {
      "type": "Feature",
      "properties": {
        "RECEIVED_ON": "2020-09-14T09:22:25.325",
        "N02_001": "14",
        "N02_002": "5",
        "N02_003": "北海道新幹線",
        "N02_004": "西日本旅客鉄道",
        "ID": "5_14",
        "COUNT": 30
      }
    }
    ...
]

What does the aggregated output tumbling data look like?

RAILWAY_CLASS RAILWAY_CLASS_COUNT WINDOW_START WINDOW_END
12 10 2020-09-14T09:22:00Z 2020-09-14T09:23:00Z
12 11 2020-09-14T09:23:00Z 2020-09-14T09:24:00Z
14 20 2020-09-14T09:22:00Z 2020-09-14T09:23:00Z
15 13 2020-09-14T09:23:00Z 2020-09-14T09:24:00Z

Hands-on Steps:

1. Create Aurora PostgreSQL Serverless Cluster

1-1. Create DB Subnet Group and Cluster

aws rds create-db-subnet-group \
--db-subnet-group-name database-vpc-subnet-group \
--db-subnet-group-description database_vpc_subnet_group \
--subnet-ids <subnet_id_1> <subnet_id_2> <subnet_id_3>

aws rds create-db-cluster --db-cluster-identifier sls-postgres \
--engine aurora-postgresql --engine-version 10.7 --engine-mode serverless \
--scaling-configuration MinCapacity=2,MaxCapacity=4 \
--enable-http-endpoint \
--master-username <username> --master-user-password <password> \
--enable-http-endpoint \
--db-subnet-group-name database-vpc-subnet-group \
--vpc-security-group-ids <security-group-id>

1-2. Create secret

aws secretsmanager create-secret --name sls-postgres-secret --secret-string "file://creds-sls-postgres.json"

1-3. Create Database 'monitoring'

$ aws rds-data execute-statement --resource-arn "<cluster-arn>" --secret-arn "<secret-arn>" --sql "SELECT datname FROM pg_database" --database "postgres"

$ aws rds-data execute-statement --resource-arn "<cluster-arn>" --secret-arn "<secret-arn>" --sql "CREATE DATABASE monitoring" --database "postgres"

1-4. Create Table 'Tumbling'

$ aws rds-data execute-statement --resource-arn "<cluster-arn>" --secret-arn "<secret-arn>" --sql "create table tumbling(RAILWAY_CLASS varchar(20), RAILWAY_CLASS_COUNT bigint, WINDOW_START timestamp, WINDOW_END timestamp, RECEIVED_ON timestamp, PRIMARY KEY(RAILWAY_CLASS, WINDOW_START, WINDOW_END))" --database "monitoring"

2. Create local flink-connector-kinesis repo

2-1. Download and Build Flink 1.8.2

curl -LJO https://github.com/apache/flink/archive/release-1.8.2.zip && unzip flink-release-1.8.2.zip && cd flink-release-1.8.2

mvn clean install -Pinclude-kinesis -DskipTests -pl flink-connectors/flink-connector-kinesis

2-2. Build this repo

  • The built shaded jar file is under the target folder.
mvn package -Dflink.version=1.8.2

3. Create and run the KDA application

Follow the AWS official document Create and Run the Application (Console)

3-1. Application Properties Groups

3-1-1. Group ID: JobConfigProperties

  • Key: "JOB_CLASS_NAME", Value: "StreamJobSqlTumbling"

3-1-2. Group ID: SourceConfigProperties

  • Key: "AWS_REGION", Value: "< your-aws-region >"
  • Key: "INPUT_STREAM_NAME", Value: "kda_geojson"
  • Key: "STREAM_INITIAL_POSITION", Value: "LATEST"

3-1-3. Group ID: SinkConfigProperties

  • Key: "DATABASE", Value: The database name set as 'monitoring' from 1-6
  • Key: "RESOURCE_ARN", Value: The datbase cluster ARN from 1-1
  • Key: "SECRET_ARN", Value: The secret ARN from 1-2
  • Key: "THRESHOLD", Value: 4

3-1-4. Group ID: ProcessorConfigProperties

  • Key: "CHECKPOINT_INTERVAL", Value: 30000
  • Key: "INTERVAL_AMOUNT", Value: 1
  • Key: "INTERVAL_UOM", Value: "MINUTE(2)"

3-2. Update Service execution IAM role

Default role name kinesis-analytics-flink-analytics-monitoring-< your-region >

3-2-1. Add inline policy 'read-all-secret' to read secrets

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Action": [
                "secretsmanager:GetSecretValue"
            ],
            "Resource": [
                "*"
            ],
            "Effect": "Allow"
        }
    ]
}

3-2-2. Add inline policy 'read-all-stream' to read streams

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "ReadInputStream",
            "Effect": "Allow",
            "Action": "kinesis:*",
            "Resource": "*"
        }
    ]
}

3-2-3. Add inline policy 'use-all-dataapi' to access Data API of Aurora Serverless

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Action": [
                "rds-data:BatchExecuteStatement",
                "rds-data:BeginTransaction",
                "rds-data:CommitTransaction",
                "rds-data:ExecuteStatement",
                "rds-data:RollbackTransaction",
                "rds-data:DeleteItems",
                "rds-data:ExecuteSql",
                "rds-data:GetItems",
                "rds-data:InsertItems",
                "rds-data:UpdateItems"
            ],
            "Resource": [
                "*"
            ],
            "Effect": "Allow"
        }
    ]
}

3-3. Run and test

3-3-1. Start the flink application

3-3-2. Create a new Kinesis Data Stream called 'kda_geojson'

3-3-3. Check the aggregated data in real-time

select * from tumbling

4. References

4-1. AWS Official KDA Examples

Example: Using a Custom Sink to Write to CloudWatch Logs

https://docs.aws.amazon.com/en_pv/kinesisanalytics/latest/java/examples-cloudwatch.html

Example: Sliding Window

https://docs.aws.amazon.com/en_pv/kinesisanalytics/latest/java/examples-sliding.html

4-2. DataStream API Examples

Java Code Examples for org.apache.flink.streaming.api.functions.sink.SinkFunction

https://www.programcreek.com/java-api-examples/?api=org.apache.flink.streaming.api.functions.sink.SinkFunction

Amazon Kinesis Data Analytics Java Examples

https://github.com/aws-samples/amazon-kinesis-data-analytics-java-examples

Build and run streaming applications with Apache Flink and Amazon Kinesis Data Analytics for Java Applications

https://github.com/aws-samples/amazon-kinesis-analytics-taxi-consumer https://aws.amazon.com/blogs/big-data/build-and-run-streaming-applications-with-apache-flink-and-amazon-kinesis-data-analytics-for-java-applications/

4-3. DataStream API Examples - Custom Aggregate Function

Apache FlinkとJava 8でセンサーデータをウィンドウ集計をする

https://qiita.com/masato/items/32d84f117152ea0fdb0b

Hands-on with Event Stream Processing Frameworks

https://medium.com/@cjolif/hands-on-with-event-stream-processing-frameworks-8be69101a1c8 https://github.com/cjolif/streaming-examples/blob/master/flink/src/main/java/Example.java

4-4. Table/SQL API Examples

Amazon Kinesis Data Analytics for Java - Leveraging the Apache Flink Table Api

https://github.com/aws-samples/amazon-kinesis-data-analytics-flinktableapi

Simple aggregation from a CSV

https://riptutorial.com/apache-flink/example/27901/simple-aggregation-from-a-csv

4-5. Custom Sink Examples

Writing to PostgreSQL from Apache Flink

https://tech.signavio.com/2017/postgres-flink-sink

4-6. Tools

Amazon Kinesis Data Generator

https://awslabs.github.io/amazon-kinesis-data-generator/web/help.html

Importing Flink into an IDE

https://ci.apache.org/projects/flink/flink-docs-stable/flinkDev/ide_setup.html

4-7. Flink Official Doc

DataStream API

https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/stream/operators/ https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/stream/operators/windows.html

Table/SQL API

https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/table/tableApi.html https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/table/sql.html

4-8. Flink Overview

flink-api-table-api-and-sql

https://www.infoq.cn/article/flink-api-table-api-and-sql

Java Doc

https://ci.apache.org/projects/flink/flink-docs-release-1.8/api/java/org/apache/flink/streaming/api/datastream/DataStream.html https://ci.apache.org/projects/flink/flink-docs-release-1.8/api/java/org/apache/flink/streaming/api/datastream/KeyedStream.html https://ci.apache.org/projects/flink/flink-docs-release-1.8/api/java/org/apache/flink/streaming/api/datastream/WindowedStream.html