Skip to content

Commit

Permalink
improve knn performance of voxelmaps (#79)
Browse files Browse the repository at this point in the history
* improve knn performance of voxelmaps

* add voxel search patterns

* add (gicp|vgicp)_model_omp
  • Loading branch information
koide3 authored Jul 1, 2024
1 parent fccb619 commit 76b2f00
Show file tree
Hide file tree
Showing 7 changed files with 251 additions and 63 deletions.
2 changes: 2 additions & 0 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -187,7 +187,9 @@ if(BUILD_BENCHMARKS)
src/benchmark/odometry_benchmark_small_gicp_tbb.cpp
src/benchmark/odometry_benchmark_small_vgicp_tbb.cpp
src/benchmark/odometry_benchmark_small_gicp_model_tbb.cpp
src/benchmark/odometry_benchmark_small_gicp_model_omp.cpp
src/benchmark/odometry_benchmark_small_vgicp_model_tbb.cpp
src/benchmark/odometry_benchmark_small_vgicp_model_omp.cpp
src/benchmark/odometry_benchmark_small_gicp_tbb_flow.cpp
src/benchmark/odometry_benchmark.cpp
)
Expand Down
54 changes: 26 additions & 28 deletions include/small_gicp/ann/flat_container.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
#include <Eigen/Geometry>
#include <small_gicp/ann/traits.hpp>
#include <small_gicp/points/traits.hpp>
#include <small_gicp/ann/knn_result.hpp>

namespace small_gicp {

Expand Down Expand Up @@ -67,21 +68,25 @@ struct FlatContainer {
return 0;
}

size_t min_index = -1;
double min_sq_dist = std::numeric_limits<double>::max();
KnnResult<1> result(k_index, k_sq_dist);
knn_search(pt, result);
return result.num_found();
}

for (size_t i = 0; i < points.size(); i++) {
const double sq_dist = (points[i] - pt).squaredNorm();
if (sq_dist < min_sq_dist) {
min_index = i;
min_sq_dist = sq_dist;
}
/// @brief Find k nearest neighbors.
/// @param pt Query point
/// @param k Number of neighbors
/// @param k_index Indices of nearest neighbors
/// @param k_sq_dist Squared distances to nearest neighbors
/// @return Number of found points
size_t knn_search(const Eigen::Vector4d& pt, int k, size_t* k_indices, double* k_sq_dists) const {
if (points.empty()) {
return 0;
}

*k_index = min_index;
*k_sq_dist = min_sq_dist;

return 1;
KnnResult<-1> result(k_indices, k_sq_dists, k);
knn_search(pt, result);
return result.num_found();
}

/// @brief Find k nearest neighbors.
Expand All @@ -90,28 +95,16 @@ struct FlatContainer {
/// @param k_index Indices of nearest neighbors
/// @param k_sq_dist Squared distances to nearest neighbors
/// @return Number of found points
size_t knn_search(const Eigen::Vector4d& pt, int k, size_t* k_index, double* k_sq_dist) const {
template <typename Result>
void knn_search(const Eigen::Vector4d& pt, Result& result) const {
if (points.empty()) {
return 0;
return;
}

std::priority_queue<std::pair<size_t, double>> queue;
for (size_t i = 0; i < points.size(); i++) {
const double sq_dist = (points[i] - pt).squaredNorm();
queue.push({i, sq_dist});
if (queue.size() > k) {
queue.pop();
}
result.push(i, sq_dist);
}

const size_t n = queue.size();
while (!queue.empty()) {
k_index[queue.size() - 1] = queue.top().first;
k_sq_dist[queue.size() - 1] = queue.top().second;
queue.pop();
}

return n;
}

public:
Expand Down Expand Up @@ -151,6 +144,11 @@ struct Traits<FlatContainer<HasNormals, HasCovs>> {
static size_t knn_search(const FlatContainer<HasNormals, HasCovs>& container, const Eigen::Vector4d& pt, size_t k, size_t* k_index, double* k_sq_dist) {
return container.knn_search(pt, k, k_index, k_sq_dist);
}

template <typename Result>
static void knn_search(const FlatContainer<HasNormals, HasCovs>& container, const Eigen::Vector4d& pt, Result& result) {
container.knn_search(pt, result);
}
};

} // namespace traits
Expand Down
5 changes: 5 additions & 0 deletions include/small_gicp/ann/gaussian_voxelmap.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -79,6 +79,11 @@ struct Traits<GaussianVoxel> {
static size_t knn_search(const GaussianVoxel& voxel, const Eigen::Vector4d& pt, size_t k, size_t* k_index, double* k_sq_dist) {
return nearest_neighbor_search(voxel, pt, k_index, k_sq_dist);
}

template <typename Result>
static void knn_search(const GaussianVoxel& voxel, const Eigen::Vector4d& pt, Result& result) {
result.push(0, (voxel.mean - pt).squaredNorm());
}
};

} // namespace traits
Expand Down
94 changes: 67 additions & 27 deletions include/small_gicp/ann/incremental_voxelmap.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
#include <Eigen/Geometry>

#include <small_gicp/ann/traits.hpp>
#include <small_gicp/ann/knn_result.hpp>
#include <small_gicp/ann/flat_container.hpp>
#include <small_gicp/points/traits.hpp>
#include <small_gicp/util/fast_floor.hpp>
Expand Down Expand Up @@ -40,7 +41,7 @@ struct IncrementalVoxelMap {

/// @brief Constructor.
/// @param leaf_size Voxel size
explicit IncrementalVoxelMap(double leaf_size) : inv_leaf_size(1.0 / leaf_size), lru_horizon(100), lru_clear_cycle(10), lru_counter(0) {}
explicit IncrementalVoxelMap(double leaf_size) : inv_leaf_size(1.0 / leaf_size), lru_horizon(100), lru_clear_cycle(10), lru_counter(0) { set_search_offsets(1); }

/// @brief Number of points in the voxelmap.
size_t size() const { return flat_voxels.size(); }
Expand Down Expand Up @@ -94,22 +95,25 @@ struct IncrementalVoxelMap {
/// @param sq_dist Squared distance to the nearest neighbor
/// @return Number of found points (0 or 1)
size_t nearest_neighbor_search(const Eigen::Vector4d& pt, size_t* index, double* sq_dist) const {
const Eigen::Vector3i coord = fast_floor(pt * inv_leaf_size).template head<3>();
const auto found = voxels.find(coord);
if (found == voxels.end()) {
return 0;
}
const Eigen::Vector3i center = fast_floor(pt * inv_leaf_size).template head<3>();
size_t voxel_index = 0;
const auto index_transform = [&](size_t i) { return calc_index(voxel_index, i); };
KnnResult<1, decltype(index_transform)> result(index, sq_dist, -1, index_transform);

for (const auto& offset : search_offsets) {
const Eigen::Vector3i coord = center + offset;
const auto found = voxels.find(coord);
if (found == voxels.end()) {
continue;
}

const size_t voxel_index = found->second;
const auto& voxel = flat_voxels[voxel_index]->second;
voxel_index = found->second;
const auto& voxel = flat_voxels[voxel_index]->second;

size_t point_index;
if (traits::nearest_neighbor_search(voxel, pt, &point_index, sq_dist) == 0) {
return 0;
traits::Traits<VoxelContents>::knn_search(voxel, pt, result);
}

*index = calc_index(voxel_index, point_index);
return 1;
return result.num_found();
}

/// @brief Find k nearest neighbors
Expand All @@ -119,31 +123,65 @@ struct IncrementalVoxelMap {
/// @param k_sq_dists Squared distances to nearest neighbors
/// @return Number of found points
size_t knn_search(const Eigen::Vector4d& pt, size_t k, size_t* k_indices, double* k_sq_dists) const {
const Eigen::Vector3i coord = fast_floor(pt * inv_leaf_size).template head<3>();
const auto found = voxels.find(coord);
if (found == voxels.end()) {
return 0;
}
const Eigen::Vector3i center = fast_floor(pt * inv_leaf_size).template head<3>();

size_t voxel_index = 0;
const auto index_transform = [&](size_t i) { return calc_index(voxel_index, i); };
KnnResult<-1, decltype(index_transform)> result(k_indices, k_sq_dists, k, index_transform);

const size_t voxel_index = found->second;
const auto& voxel = flat_voxels[voxel_index]->second;
for (const auto& offset : search_offsets) {
const Eigen::Vector3i coord = center + offset;
const auto found = voxels.find(coord);
if (found == voxels.end()) {
continue;
}

std::vector<size_t> point_indices(k);
std::vector<double> sq_dists(k);
const size_t num_found = traits::knn_search(voxel, pt, k, point_indices.data(), sq_dists.data());
voxel_index = found->second;
const auto& voxel = flat_voxels[voxel_index]->second;

for (size_t i = 0; i < num_found; i++) {
k_indices[i] = calc_index(voxel_index, point_indices[i]);
k_sq_dists[i] = sq_dists[i];
traits::Traits<VoxelContents>::knn_search(voxel, pt, result);
}
return num_found;

return result.num_found();
}

/// @brief Calculate the global point index from the voxel index and the point index.
inline size_t calc_index(const size_t voxel_id, const size_t point_id) const { return (voxel_id << point_id_bits) | point_id; }
inline size_t voxel_id(const size_t i) const { return i >> point_id_bits; } ///< Extract the point ID from a global index.
inline size_t point_id(const size_t i) const { return i & ((1ull << point_id_bits) - 1); } ///< Extract the voxel ID from a global index.

/// @brief Set the pattern of the search offsets. (Must be 1, 7, or 27)
void set_search_offsets(int num_offsets) {
switch (num_offsets) {
default:
std::cerr << "warning: unsupported search_offsets=" << num_offsets << " (supported values: 1, 7, 27)" << std::endl;
std::cerr << " : using default search_offsets=1" << std::endl;
[[fallthrough]];
case 1:
search_offsets = {Eigen::Vector3i(0, 0, 0)};
break;
case 7:
search_offsets = {
Eigen::Vector3i(0, 0, 0),
Eigen::Vector3i(1, 0, 0),
Eigen::Vector3i(0, 1, 0),
Eigen::Vector3i(0, 0, 1),
Eigen::Vector3i(-1, 0, 0),
Eigen::Vector3i(0, -1, 0),
Eigen::Vector3i(0, 0, -1)};
break;
case 27:
for (int i = -1; i <= 1; i++) {
for (int j = -1; j <= 1; j++) {
for (int k = -1; k <= 1; k++) {
search_offsets.emplace_back(i, j, k);
}
}
}
break;
}
}

public:
static_assert(sizeof(size_t) == 8, "size_t must be 64-bit");
static constexpr int point_id_bits = 32; ///< Use the first 32 bits for point id
Expand All @@ -154,6 +192,8 @@ struct IncrementalVoxelMap {
size_t lru_clear_cycle; ///< LRU clear cycle. Voxel deletion is performed every lru_clear_cycle steps.
size_t lru_counter; ///< LRU counter. Incremented every step.

std::vector<Eigen::Vector3i> search_offsets; ///< Voxel search offsets.

typename VoxelContents::Setting voxel_setting; ///< Voxel setting.
std::vector<std::shared_ptr<std::pair<VoxelInfo, VoxelContents>>> flat_voxels; ///< Voxel contents.
std::unordered_map<Eigen::Vector3i, size_t, XORVector3iHash> voxels; ///< Voxel index map.
Expand Down
27 changes: 19 additions & 8 deletions include/small_gicp/ann/knn_result.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -22,9 +22,14 @@ struct KnnSetting {
double epsilon = 0.0; ///< Early termination threshold
};

/// @brief Identity transform (alternative to std::identity in C++20).
struct identity_transform {
size_t operator()(size_t i) const { return i; }
};

/// @brief K-nearest neighbor search result container.
/// @tparam N Number of neighbors to search. If N == -1, the number of neighbors is dynamicaly determined.
template <int N>
template <int N, typename IndexTransform = identity_transform>
struct KnnResult {
public:
static constexpr size_t INVALID = std::numeric_limits<size_t>::max();
Expand All @@ -33,7 +38,12 @@ struct KnnResult {
/// @param indices Buffer to store indices (must be larger than k=max(N, num_neighbors))
/// @param distances Buffer to store distances (must be larger than k=max(N, num_neighbors))
/// @param num_neighbors Number of neighbors to search (must be -1 for static case N > 0)
explicit KnnResult(size_t* indices, double* distances, int num_neighbors = -1) : capacity(num_neighbors), num_found_neighbors(0), indices(indices), distances(distances) {
explicit KnnResult(size_t* indices, double* distances, int num_neighbors = -1, const IndexTransform& index_transform = identity_transform())
: index_transform(index_transform),
capacity(num_neighbors),
num_found_neighbors(0),
indices(indices),
distances(distances) {
if constexpr (N > 0) {
if (num_neighbors >= 0) {
std::cerr << "warning: Specifying dynamic num_neighbors=" << num_neighbors << " for a static KNN result container (N=" << N << ")" << std::endl;
Expand Down Expand Up @@ -72,7 +82,7 @@ struct KnnResult {
}

if constexpr (N == 1) {
indices[0] = index;
indices[0] = index_transform(index);
distances[0] = distance;
} else {
int insert_loc = std::min<int>(num_found_neighbors, buffer_size() - 1);
Expand All @@ -81,18 +91,19 @@ struct KnnResult {
distances[insert_loc] = distances[insert_loc - 1];
}

indices[insert_loc] = index;
indices[insert_loc] = index_transform(index);
distances[insert_loc] = distance;
}

num_found_neighbors = std::min<int>(num_found_neighbors + 1, buffer_size());
}

public:
const int capacity; ///< Maximum number of neighbors to search
int num_found_neighbors; ///< Number of found neighbors
size_t* indices; ///< Indices of neighbors
double* distances; ///< Distances to neighbors
const IndexTransform index_transform; ///< Point index transformation (e.g., local point index to global point/voxel index)
const int capacity; ///< Maximum number of neighbors to search
int num_found_neighbors; ///< Number of found neighbors
size_t* indices; ///< Indices of neighbors
double* distances; ///< Distances to neighbors
};

} // namespace small_gicp
66 changes: 66 additions & 0 deletions src/benchmark/odometry_benchmark_small_gicp_model_omp.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
#include <small_gicp/benchmark/benchmark_odom.hpp>

#include <small_gicp/factors/gicp_factor.hpp>
#include <small_gicp/points/point_cloud.hpp>
#include <small_gicp/ann/gaussian_voxelmap.hpp>
#include <small_gicp/util/normal_estimation_omp.hpp>
#include <small_gicp/registration/reduction_omp.hpp>
#include <small_gicp/registration/registration.hpp>

namespace small_gicp {

class SmallGICPModelOnlineOdometryEstimationOMP : public OnlineOdometryEstimation {
public:
explicit SmallGICPModelOnlineOdometryEstimationOMP(const OdometryEstimationParams& params) : OnlineOdometryEstimation(params), T_world_lidar(Eigen::Isometry3d::Identity()) {}

Eigen::Isometry3d estimate(const PointCloud::Ptr& points) override {
Stopwatch sw;
sw.start();

// Note that input points here is already downsampled
// Estimate per-point covariances
estimate_covariances_omp(*points, params.num_neighbors, params.num_threads);

if (voxelmap == nullptr) {
// This is the very first frame
voxelmap = std::make_shared<IncrementalVoxelMap<FlatContainerCov>>(params.voxel_resolution);
voxelmap->insert(*points);
return T_world_lidar;
}

// Registration using GICP + OMP-based parallel reduction
Registration<GICPFactor, ParallelReductionOMP> registration;
registration.reduction.num_threads = params.num_threads;
auto result = registration.align(*voxelmap, *points, *voxelmap, T_world_lidar);

// Update T_world_lidar with the estimated transformation
T_world_lidar = result.T_target_source;

// Insert points to the target voxel map
voxelmap->insert(*points, T_world_lidar);

sw.stop();
reg_times.push(sw.msec());

if (params.visualize) {
update_model_points(T_world_lidar, traits::voxel_points(*voxelmap));
}

return T_world_lidar;
}

void report() override { //
std::cout << "registration_time_stats=" << reg_times.str() << " [msec/scan] total_throughput=" << total_times.str() << " [msec/scan]" << std::endl;
}

private:
Summarizer reg_times;

IncrementalVoxelMap<FlatContainerCov>::Ptr voxelmap; // Target voxel map that is an accumulation of past point clouds
Eigen::Isometry3d T_world_lidar; // Current world-to-lidar transformation
};

static auto small_gicp_model_omp_registry =
register_odometry("small_gicp_model_omp", [](const OdometryEstimationParams& params) { return std::make_shared<SmallGICPModelOnlineOdometryEstimationOMP>(params); });

} // namespace small_gicp
Loading

0 comments on commit 76b2f00

Please sign in to comment.