Skip to content

Latest commit

 

History

History

T210_findOrder

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

210. 课程表 II

题目描述

你这个学期必须选修 numCourse 门课程,记为 0 到 numCourse-1 。

在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们:[0,1]

给定课程总量以及它们的先决条件,请你判断是否可能完成所有课程的学习?

示例:

  	示例 1:

    输入: 2, [[1,0]] 
    输出: true
    解释: 总共有 2 门课程。学习课程 1 之前,你需要完成课程 0。所以这是可能的。
    示例 2:

    输入: 2, [[1,0],[0,1]]
    输出: false
    解释: 总共有 2 门课程。学习课程 1 之前,你需要先完成​课程 0;并且学习课程 0 之前,你还应先完成课程 1。这是不可能的。
     

    提示:

    输入的先决条件是由 边缘列表 表示的图形,而不是 邻接矩阵 。详情请参见图的表示法。
    你可以假定输入的先决条件中没有重复的边。
    1 <= numCourses <= 10^5

思路介绍

方法一 回溯法

基本介绍

我们可以将深度优先搜索的流程与拓扑排序的求解联系起来,用一个栈来存储所有已经搜索完成的节点。

对于一个节点 uu,如果它的所有相邻节点都已经搜索完成,那么在搜索回溯到 uu 的时候,uu 本身也会变成一个已经搜索完成的节点。这里的「相邻节点」指的是从 uu 出发通过一条有向边可以到达的所有节点。

假设我们当前搜索到了节点 uu,如果它的所有相邻节点都已经搜索完成,那么这些节点都已经在栈中了,此时我们就可以把 uu 入栈。可以发现,如果我们从栈顶往栈底的顺序看,由于 uu 处于栈顶的位置,那么 uu 出现在所有 uu 的相邻节点的前面。因此对于 uu 这个节点而言,它是满足拓扑排序的要求的。

这样以来,我们对图进行一遍深度优先搜索。当每个节点进行回溯的时候,我们把该节点放入栈中。最终从栈顶到栈底的序列就是一种拓扑排序。

思路

对于图中的任意一个节点,它在搜索的过程中有三种状态,即:

  • 「未搜索」:我们还没有搜索到这个节点;

  • 「搜索中」:我们搜索过这个节点,但还没有回溯到该节点,即该节点还没有入栈,还有相邻的节点没有搜索完成);

  • 「已完成」:我们搜索过并且回溯过这个节点,即该节点已经入栈,并且所有该节点的相邻节点都出现在栈的更底部的位置,满足拓扑排序的要求。

通过上述的三种状态,我们就可以给出使用深度优先搜索得到拓扑排序的算法流程,在每一轮的搜索搜索开始时,我们任取一个「未搜索」的节点开始进行深度优先搜索。

  • 我们将当前搜索的节点 u 标记为「搜索中」,遍历该节点的每一个相邻节点 v:

    • 如果 v 为「未搜索」,那么我们开始搜索 v,待搜索完成回溯到 u;

    • 如果 v 为「搜索中」,那么我们就找到了图中的一个环,因此是不存在拓扑排序的;

    • 如果 v 为「已完成」,那么说明 v 已经在栈中了,而 u 还不在栈中,因此 u 无论何时入栈都不会影响到 (u,v) 之前的拓扑关系,以及不用进行任何操作。

  • 当 u 的所有相邻节点都为「已完成」时,我们将 u 放入栈中,并将其标记为「已完成」。

在整个深度优先搜索的过程结束后,如果我们没有找到图中的环,那么栈中存储这所有的 n 个节点,从栈顶到栈底的顺序即为一种拓扑排序。

复杂度计算

时间复杂度:O(N+M)

空间复杂度:O(N+M)

方法二 广度优先法

基本介绍

方法一的深度优先搜索是一种「逆向思维」:最先被放入栈中的节点是在拓扑排序中最后面的节点。我们也可以使用正向思维,顺序地生成拓扑排序,这种方法也更加直观。

我们考虑拓扑排序中最前面的节点,该节点一定不会有任何入边,也就是它没有任何的先修课程要求。当我们将一个节点加入答案中后,我们就可以移除它的所有出边,代表着它的相邻节点少了一门先修课程的要求。如果某个相邻节点变成了「没有任何入边的节点」,那么就代表着这门课可以开始学习了。按照这样的流程,我们不断地将没有入边的节点加入答案,直到答案中包含所有的节点(得到了一种拓扑排序)或者不存在没有入边的节点(图中包含环)。

上面的想法类似于广度优先搜索,因此我们可以将广度优先搜索的流程与拓扑排序的求解联系起来。

思路

我们使用一个队列来进行广度优先搜索。初始时,所有入度为 0 的节点都被放入队列中,它们就是可以作为拓扑排序最前面的节点,并且它们之间的相对顺序是无关紧要的。

在广度优先搜索的每一步中,我们取出队首的节点 u:

  • 我们将 u 放入答案中;

  • 我们移除 u 的所有出边,也就是将 u 的所有相邻节点的入度减少 1。如果某个相邻节点 v 的入度变为 0,那么我们就将 v 放入队列中。

在广度优先搜索的过程结束后。如果答案中包含了这 n 个节点,那么我们就找到了一种拓扑排序,否则说明图中存在环,也就不存在拓扑排序了。

复杂度计算

时间复杂度:O(N+M)

空间复杂度:O(N+M)