Skip to content
This repository has been archived by the owner on Jun 11, 2019. It is now read-only.

Latest commit

 

History

History
32 lines (22 loc) · 852 Bytes

README.md

File metadata and controls

32 lines (22 loc) · 852 Bytes

ucrdtw

Python extension for UCR Suite highly optimized subsequence search using Dynamic Time Warping (DTW)

Based on the paper Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping

More info on the UCR Suite web page http://www.cs.ucr.edu/~eamonn/UCRsuite.html

Requirements

Python 2.7+, numpy 1.8+

Installation

python setup.py build && python setup.py install

Usage

import _ucrdtw
import numpy as np
import matplotlib.pyplot as plt

data = np.cumsum(np.random.uniform(-0.5, 0.5, 1000000))
query = np.cumsum(np.random.uniform(-0.5, 0.5, 100))
loc, dist = _ucrdtw.ucrdtw(data, query, 0.05, True)
query = np.concatenate((np.linspace(0.0, 0.0, loc), query)) + (data[loc] - query[0])

plt.figure()
plt.plot(data)
plt.plot(query)
plt.show()