Skip to content

Commit

Permalink
Format notebook
Browse files Browse the repository at this point in the history
  • Loading branch information
klane committed Oct 12, 2024
1 parent 9e26421 commit f9fef95
Show file tree
Hide file tree
Showing 3 changed files with 7 additions and 10 deletions.
1 change: 0 additions & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,6 @@ build-backend = "poetry.core.masonry.api"

[tool.ruff]
line-length = 88
exclude = ["*.ipynb"]

[tool.ruff.format]
docstring-code-format = true
Expand Down
9 changes: 4 additions & 5 deletions tests/assets/hello-world.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,6 @@
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"from IPython.display import HTML, display"
Expand All @@ -33,7 +32,7 @@
}
],
"source": [
"print('Hello World!')"
"print(\"Hello World!\")"
]
},
{
Expand Down Expand Up @@ -72,7 +71,7 @@
}
],
"source": [
"df = pd.DataFrame({'a': ['one', 'two'], 'b': [1, 2]})\n",
"df = pd.DataFrame({\"a\": [\"one\", \"two\"], \"b\": [1, 2]})\n",
"display(HTML(df.to_html(index=False)))"
]
},
Expand All @@ -83,7 +82,7 @@
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAD8CAYAAABthzNFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAEa9JREFUeJzt3X+sJWV9x/H3x2WrorZqWGTdH6w121ZqLNqVmGhbrb+QUJEmWEmjxKpbK1ZNbQLSRmwbEkkrtvYHFQMRLGixaKWKVaBWa1LExVJ+uFo3KuzdXWD9VbBYkeXbP85cvd08u3cu3jlzdvf9Sk7OzHNn5vmyWfZz55mZZ1JVSJK0t4eMXYAkaTYZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1HTZ2AT+OI444ojZs2DB2GZJ0QLnhhhu+UVWrFtvugA6IDRs2sGXLlrHLkKQDSpLb+mznEJMkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTYMFRJJ1ST6VZGuSW5O8sWt/W5IdSW7sPics2OctSbYl+XKSFw5VmyRpcUM+SX0/8Oaq+kKSRwE3JLm6+9k7q+rPFm6c5BjgZcDPA48HrknyM1W1Z8AadZBbvXY9d+zYPkrfR61Zx66520fpW1oOgwVEVe0CdnXL9yTZCqzZzy4nAR+oqu8DX0uyDTgO+PehatTB744d2zn6jI+O0vdt5544Sr/ScpnKNYgkG4CnAp/rml6f5KYkFyV5TNe2Blj4q94c+w8USdKABg+IJI8ErgDeVFV3A+cDTwSOZXKG8Y75TRu7V+N4m5NsSbJl9+7dA1UtSRo0IJKsZBIOl1bVhwCq6s6q2lNVDwDvYTKMBJMzhnULdl8L7Nz7mFV1QVVtqqpNq1YtOlutJOlBGvIupgAXAlur6rwF7asXbHYycEu3fCXwsiQPTfIEYCNw/VD1SZL2b8i7mJ4JvBy4OcmNXdtZwKlJjmUyfPR14LcBqurWJJcDX2RyB9Tp3sEkSeMZ8i6mz9K+rnDVfvY5BzhnqJokSf35JLUkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqSmISfrkw5tK1YymdR4unzVqZaLASENZc8PRnndqa861XJxiEmS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElS02ABkWRdkk8l2Zrk1iRv7Nofm+TqJF/pvh/TtSfJu5JsS3JTkqcNVZskaXFDnkHcD7y5qp4EPAM4PckxwJnAtVW1Ebi2Wwd4EbCx+2wGzh+wNknSIgYLiKraVVVf6JbvAbYCa4CTgIu7zS4GXtItnwRcUhPXAY9Osnqo+iRJ+zeVaxBJNgBPBT4HPK6qdsEkRIAju83WANsX7DbXtUmSRjB4QCR5JHAF8Kaqunt/mzbaqnG8zUm2JNmye/fu5SpTkrSXQQMiyUom4XBpVX2oa75zfuio+76ra58D1i3YfS2wc+9jVtUFVbWpqjatWrVquOIl6RA35F1MAS4EtlbVeQt+dCVwWrd8GvCRBe2v6O5megbw3/NDUZKk6TtswGM/E3g5cHOSG7u2s4C3A5cneRVwO3BK97OrgBOAbcC9wCsHrE2StIjBAqKqPkv7ugLAcxvbF3D6UPVIkpbGJ6klSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqOmzsAnRoWL12PXfs2D52GZKWoFdAJHlyVd0ydDE6eN2xYztHn/HRqfd727knTr1P6WDRd4jpb5Ncn+R1SR49aEWSpJnQKyCq6lnAbwLrgC1JLkvy/EErkySNqvdF6qr6CvCHwBnArwDvSvKlJL8+VHGSpPH0CogkT0nyTmAr8KvAr1XVk7rldw5YnyRpJH3vYvor4D3AWVX1vfnGqtqZ5A8HqUySNKq+AXEC8L2q2gOQ5CHAw6rq3qp632DVSZJG0/caxDXAwxesH9617VOSi5LcleSWBW1vS7IjyY3d54QFP3tLkm1JvpzkhUv5j5AkLb++AfGwqvru/Eq3fPgi+7wXOL7R/s6qOrb7XAWQ5BjgZcDPd/v8TZIVPWuTJA2gb0D8T5Knza8k+UXge/vZnqr6DPCtnsc/CfhAVX2/qr4GbAOO67mvJGkAfa9BvAn4YJKd3fpq4DceZJ+vT/IKYAvw5qr6NrAGuG7BNnNdmyRpJH0flPs88HPA7wCvA55UVTc8iP7OB54IHAvsAt7RtafVbesASTYn2ZJky+7dux9ECZKkPpYym+vTgacATwVO7c4ClqSq7qyqPVX1AJPbZueHkeaYPKU9by2wc+/9u2NcUFWbqmrTqlWrllqCJKmnvpP1vY/Jb/43Anu65gIuWUpnSVZX1a5u9WRg/g6nK4HLkpwHPB7YCFy/lGNLkpZX32sQm4Bjqqo57NOS5P3As4EjkswBZwPPTnIsk3D5OvDbAFV1a5LLgS8C9wOnzz9zIWmJVqwkaY3aDuuoNevYNXf71PvVcPoGxC3AUUyuG/RSVac2mi/cz/bnAOf0Pb6kfdjzA6dW17LoGxBHAF9Mcj3w/fnGqnrxIFVJkkbXNyDeNmQRkqTZ0ysgqurTSY4GNlbVNUkOB3zSWZIOYn2n+34N8A/Au7umNcA/DlWUJGl8fZ+DOB14JnA3/PDlQUcOVZQkaXx9A+L7VXXf/EqSw9jHk86SpIND34D4dJKzgId376L+IPBPw5UlSRpb34A4E9gN3Mzk4barmLyfWpJ0kOp7F9P83EnvGbYcSdKs6DsX09doXHOoqp9e9ookSTNhKXMxzXsYcArw2OUvR5I0K/q+D+KbCz47qurPgV8duDZJ0oj6DjE9bcHqQ5icUTxqkIokSTOh7xDTOxYs389kqu6XLns1kqSZ0fcupucMXYgkabb0HWL6vf39vKrOW55yJEmzYil3MT2dyatBAX4N+AywfYiiJEnjW8oLg55WVfcAJHkb8MGqevVQhUmSxtV3qo31wH0L1u8DNix7NZKkmdH3DOJ9wPVJPszkieqTgUsGq0qSNLq+dzGdk+TjwC91Ta+sqv8YrixJ0tj6DjEBHA7cXVV/AcwlecJANUmSZkDfV46eDZwBvKVrWgn83VBFSZLG1/cM4mTgxcD/AFTVTpxqQ5IOan0D4r6qKropv5M8YriSJEmzoG9AXJ7k3cCjk7wGuAZfHiRJB7W+dzH9Wfcu6ruBnwXeWlVXD1qZJGlUiwZEkhXAJ6rqeYChIEmHiEWHmKpqD3Bvkp+aQj2SpBnR90nq/wVuTnI13Z1MAFX1hkGqkiSNrm9AfKz7SJIOEfsNiCTrq+r2qrp4WgVJkmbDYtcg/nF+IckVSzlwkouS3JXklgVtj01ydZKvdN+P6dqT5F1JtiW5aa93YEuSRrBYQGTB8k8v8djvBY7fq+1M4Nqq2ghc260DvAjY2H02A+cvsS9J0jJbLCBqH8uLqqrPAN/aq/kkYH646mLgJQvaL6mJ65g8kLd6Kf1JkpbXYhepfyHJ3UzOJB7eLdOtV1X95BL7e1xV7WKy864kR3bta/j/ry+d69p27X2AJJuZnGWwfv36JXYvSeprvwFRVSumVEcabc0zlqq6ALgAYNOmTUs6q5Ek9beU90Eshzvnh46677u69jlg3YLt1gI7p1ybJGmBaQfElcBp3fJpwEcWtL+iu5vpGcB/zw9FSZLG0fdBuSVL8n7g2cARSeaAs4G3M5kZ9lXA7cAp3eZXAScA24B7gVcOVZckqZ/BAqKqTt3Hj57b2LaA04eqRZK0dNMeYpIkHSAMCElSkwEhSWoyICRJTQaEJKnJgJAkNQ12m6tmz+q167ljx/bFN5QkDIhDyh07tnP0GR8dpe/bzj1xlH4lPXgOMUmSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJ2VwlLY8VK0kyStdHrVnHrrnbR+n7YGZASFoee37gdPIHGYeYJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoa5UG5JF8H7gH2APdX1aYkjwX+HtgAfB14aVV9e4z6JEnjnkE8p6qOrapN3fqZwLVVtRG4tluXJI1kloaYTgIu7pYvBl4yYi2SdMgbKyAK+GSSG5Js7toeV1W7ALrvI0eqTZLEeJP1PbOqdiY5Erg6yZf67tgFymaA9evXD1WfJB3yRjmDqKqd3fddwIeB44A7k6wG6L7v2se+F1TVpqratGrVqmmVLEmHnKkHRJJHJHnU/DLwAuAW4ErgtG6z04CPTLs2SdKPjDHE9Djgw92LRQ4DLquqf07yeeDyJK8CbgdOGaE2SVJn6gFRVV8FfqHR/k3gudOuR5LUNku3uUqSZogBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkprGeKOcJC2vFSvp3lI5VUetWceuudun3u+0GBCSDnx7fsDRZ3x06t3edu6JU+9zmhxikiQ1eQYxgtVr13PHju1jlyFJ+2VAjOCOHds9HZY08xxikiQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1DRzAZHk+CRfTrItyZlD9bN67XqSjPKRpAPBTE3Wl2QF8NfA84E54PNJrqyqLy53X2NNmAdOmicdNEZ6URFM52VFMxUQwHHAtqr6KkCSDwAnAcseEJL0YxvpRUUwnV80Z22IaQ2w8EUJc12bJGnKUlVj1/BDSU4BXlhVr+7WXw4cV1W/u2CbzcDmbvVngS9PqbwjgG9Mqa/ldqDWbt3TZd3TNWbdR1fVqsU2mrUhpjlg3YL1tcDOhRtU1QXABdMsCiDJlqraNO1+l8OBWrt1T5d1T9eBUPesDTF9HtiY5AlJfgJ4GXDlyDVJ0iFpps4gqur+JK8HPgGsAC6qqltHLkuSDkkzFRAAVXUVcNXYdTRMfVhrGR2otVv3dFn3dM183TN1kVqSNDtm7RqEJGlGGBBLkORPktyU5MYkn0zy+LFr6iPJnyb5Ulf7h5M8euya+khySpJbkzyQZKbv9oDpTROz3JJclOSuJLeMXUtfSdYl+VSSrd3fkTeOXVMfSR6W5Pok/9nV/Udj17Q/DjEtQZKfrKq7u+U3AMdU1WtHLmtRSV4A/Et3E8C5AFV1xshlLSrJk4AHgHcDv19VW0YuaZ+6aWL+iwXTxACnDjFNzHJL8svAd4FLqurJY9fTR5LVwOqq+kKSRwE3AC+Z9T/vTObleERVfTfJSuCzwBur6rqRS2vyDGIJ5sOh8wjggEjXqvpkVd3frV7H5PmSmVdVW6tqWg9C/rh+OE1MVd0HzE8TM/Oq6jPAt8auYymqaldVfaFbvgfYygEw60JNfLdbXdl9ZvbfEQNiiZKck2Q78JvAW8eu50H4LeDjYxdxEHKamJEk2QA8FfjcuJX0k2RFkhuBu4Crq2pm6zYg9pLkmiS3ND4nAVTVH1TVOuBS4PXjVvsji9XdbfMHwP1Map8Jfeo+QLSm9JzZ3wwPFkkeCVwBvGmvM/yZVVV7qupYJmfyxyWZ2WG9mXsOYmxV9byem14GfAw4e8Byelus7iSnAScCz60ZuvC0hD/vWbfoNDFaXt0Y/hXApVX1obHrWaqq+k6SfwWOB2byBgHPIJYgycYFqy8GvjRWLUuR5HjgDODFVXXv2PUcpJwmZoq6i70XAlur6ryx6+kryar5uwiTPBx4HjP874h3MS1BkiuYzCD7AHAb8Nqq2jFuVYtLsg14KPDNrum6A+Tuq5OBvwRWAd8BbqyqF45b1b4lOQH4c340Tcw5I5fUS5L3A89mMrvoncDZVXXhqEUtIsmzgH8Dbmby/yPAWd1MDDMryVOAi5n8HXkIcHlV/fG4Ve2bASFJanKISZLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqSm/wP3StuwdyqnPQAAAABJRU5ErkJggg==\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAD8CAYAAABthzNFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAEa9JREFUeJzt3X+sJWV9x/H3x2WrorZqWGTdH6w121ZqLNqVmGhbrb+QUJEmWEmjxKpbK1ZNbQLSRmwbEkkrtvYHFQMRLGixaKWKVaBWa1LExVJ+uFo3KuzdXWD9VbBYkeXbP85cvd08u3cu3jlzdvf9Sk7OzHNn5vmyWfZz55mZZ1JVSJK0t4eMXYAkaTYZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1HTZ2AT+OI444ojZs2DB2GZJ0QLnhhhu+UVWrFtvugA6IDRs2sGXLlrHLkKQDSpLb+mznEJMkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTYMFRJJ1ST6VZGuSW5O8sWt/W5IdSW7sPics2OctSbYl+XKSFw5VmyRpcUM+SX0/8Oaq+kKSRwE3JLm6+9k7q+rPFm6c5BjgZcDPA48HrknyM1W1Z8AadZBbvXY9d+zYPkrfR61Zx66520fpW1oOgwVEVe0CdnXL9yTZCqzZzy4nAR+oqu8DX0uyDTgO+PehatTB744d2zn6jI+O0vdt5544Sr/ScpnKNYgkG4CnAp/rml6f5KYkFyV5TNe2Blj4q94c+w8USdKABg+IJI8ErgDeVFV3A+cDTwSOZXKG8Y75TRu7V+N4m5NsSbJl9+7dA1UtSRo0IJKsZBIOl1bVhwCq6s6q2lNVDwDvYTKMBJMzhnULdl8L7Nz7mFV1QVVtqqpNq1YtOlutJOlBGvIupgAXAlur6rwF7asXbHYycEu3fCXwsiQPTfIEYCNw/VD1SZL2b8i7mJ4JvBy4OcmNXdtZwKlJjmUyfPR14LcBqurWJJcDX2RyB9Tp3sEkSeMZ8i6mz9K+rnDVfvY5BzhnqJokSf35JLUkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqSmISfrkw5tK1YymdR4unzVqZaLASENZc8PRnndqa861XJxiEmS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElS02ABkWRdkk8l2Zrk1iRv7Nofm+TqJF/pvh/TtSfJu5JsS3JTkqcNVZskaXFDnkHcD7y5qp4EPAM4PckxwJnAtVW1Ebi2Wwd4EbCx+2wGzh+wNknSIgYLiKraVVVf6JbvAbYCa4CTgIu7zS4GXtItnwRcUhPXAY9Osnqo+iRJ+zeVaxBJNgBPBT4HPK6qdsEkRIAju83WANsX7DbXtUmSRjB4QCR5JHAF8Kaqunt/mzbaqnG8zUm2JNmye/fu5SpTkrSXQQMiyUom4XBpVX2oa75zfuio+76ra58D1i3YfS2wc+9jVtUFVbWpqjatWrVquOIl6RA35F1MAS4EtlbVeQt+dCVwWrd8GvCRBe2v6O5megbw3/NDUZKk6TtswGM/E3g5cHOSG7u2s4C3A5cneRVwO3BK97OrgBOAbcC9wCsHrE2StIjBAqKqPkv7ugLAcxvbF3D6UPVIkpbGJ6klSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqOmzsAnRoWL12PXfs2D52GZKWoFdAJHlyVd0ydDE6eN2xYztHn/HRqfd727knTr1P6WDRd4jpb5Ncn+R1SR49aEWSpJnQKyCq6lnAbwLrgC1JLkvy/EErkySNqvdF6qr6CvCHwBnArwDvSvKlJL8+VHGSpPH0CogkT0nyTmAr8KvAr1XVk7rldw5YnyRpJH3vYvor4D3AWVX1vfnGqtqZ5A8HqUySNKq+AXEC8L2q2gOQ5CHAw6rq3qp632DVSZJG0/caxDXAwxesH9617VOSi5LcleSWBW1vS7IjyY3d54QFP3tLkm1JvpzkhUv5j5AkLb++AfGwqvru/Eq3fPgi+7wXOL7R/s6qOrb7XAWQ5BjgZcDPd/v8TZIVPWuTJA2gb0D8T5Knza8k+UXge/vZnqr6DPCtnsc/CfhAVX2/qr4GbAOO67mvJGkAfa9BvAn4YJKd3fpq4DceZJ+vT/IKYAvw5qr6NrAGuG7BNnNdmyRpJH0flPs88HPA7wCvA55UVTc8iP7OB54IHAvsAt7RtafVbesASTYn2ZJky+7dux9ECZKkPpYym+vTgacATwVO7c4ClqSq7qyqPVX1AJPbZueHkeaYPKU9by2wc+/9u2NcUFWbqmrTqlWrllqCJKmnvpP1vY/Jb/43Anu65gIuWUpnSVZX1a5u9WRg/g6nK4HLkpwHPB7YCFy/lGNLkpZX32sQm4Bjqqo57NOS5P3As4EjkswBZwPPTnIsk3D5OvDbAFV1a5LLgS8C9wOnzz9zIWmJVqwkaY3aDuuoNevYNXf71PvVcPoGxC3AUUyuG/RSVac2mi/cz/bnAOf0Pb6kfdjzA6dW17LoGxBHAF9Mcj3w/fnGqnrxIFVJkkbXNyDeNmQRkqTZ0ysgqurTSY4GNlbVNUkOB3zSWZIOYn2n+34N8A/Au7umNcA/DlWUJGl8fZ+DOB14JnA3/PDlQUcOVZQkaXx9A+L7VXXf/EqSw9jHk86SpIND34D4dJKzgId376L+IPBPw5UlSRpb34A4E9gN3Mzk4barmLyfWpJ0kOp7F9P83EnvGbYcSdKs6DsX09doXHOoqp9e9ookSTNhKXMxzXsYcArw2OUvR5I0K/q+D+KbCz47qurPgV8duDZJ0oj6DjE9bcHqQ5icUTxqkIokSTOh7xDTOxYs389kqu6XLns1kqSZ0fcupucMXYgkabb0HWL6vf39vKrOW55yJEmzYil3MT2dyatBAX4N+AywfYiiJEnjW8oLg55WVfcAJHkb8MGqevVQhUmSxtV3qo31wH0L1u8DNix7NZKkmdH3DOJ9wPVJPszkieqTgUsGq0qSNLq+dzGdk+TjwC91Ta+sqv8YrixJ0tj6DjEBHA7cXVV/AcwlecJANUmSZkDfV46eDZwBvKVrWgn83VBFSZLG1/cM4mTgxcD/AFTVTpxqQ5IOan0D4r6qKropv5M8YriSJEmzoG9AXJ7k3cCjk7wGuAZfHiRJB7W+dzH9Wfcu6ruBnwXeWlVXD1qZJGlUiwZEkhXAJ6rqeYChIEmHiEWHmKpqD3Bvkp+aQj2SpBnR90nq/wVuTnI13Z1MAFX1hkGqkiSNrm9AfKz7SJIOEfsNiCTrq+r2qrp4WgVJkmbDYtcg/nF+IckVSzlwkouS3JXklgVtj01ydZKvdN+P6dqT5F1JtiW5aa93YEuSRrBYQGTB8k8v8djvBY7fq+1M4Nqq2ghc260DvAjY2H02A+cvsS9J0jJbLCBqH8uLqqrPAN/aq/kkYH646mLgJQvaL6mJ65g8kLd6Kf1JkpbXYhepfyHJ3UzOJB7eLdOtV1X95BL7e1xV7WKy864kR3bta/j/ry+d69p27X2AJJuZnGWwfv36JXYvSeprvwFRVSumVEcabc0zlqq6ALgAYNOmTUs6q5Ek9beU90Eshzvnh46677u69jlg3YLt1gI7p1ybJGmBaQfElcBp3fJpwEcWtL+iu5vpGcB/zw9FSZLG0fdBuSVL8n7g2cARSeaAs4G3M5kZ9lXA7cAp3eZXAScA24B7gVcOVZckqZ/BAqKqTt3Hj57b2LaA04eqRZK0dNMeYpIkHSAMCElSkwEhSWoyICRJTQaEJKnJgJAkNQ12m6tmz+q167ljx/bFN5QkDIhDyh07tnP0GR8dpe/bzj1xlH4lPXgOMUmSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJ2VwlLY8VK0kyStdHrVnHrrnbR+n7YGZASFoee37gdPIHGYeYJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoa5UG5JF8H7gH2APdX1aYkjwX+HtgAfB14aVV9e4z6JEnjnkE8p6qOrapN3fqZwLVVtRG4tluXJI1kloaYTgIu7pYvBl4yYi2SdMgbKyAK+GSSG5Js7toeV1W7ALrvI0eqTZLEeJP1PbOqdiY5Erg6yZf67tgFymaA9evXD1WfJB3yRjmDqKqd3fddwIeB44A7k6wG6L7v2se+F1TVpqratGrVqmmVLEmHnKkHRJJHJHnU/DLwAuAW4ErgtG6z04CPTLs2SdKPjDHE9Djgw92LRQ4DLquqf07yeeDyJK8CbgdOGaE2SVJn6gFRVV8FfqHR/k3gudOuR5LUNku3uUqSZogBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkprGeKOcJC2vFSvp3lI5VUetWceuudun3u+0GBCSDnx7fsDRZ3x06t3edu6JU+9zmhxikiQ1eQYxgtVr13PHju1jlyFJ+2VAjOCOHds9HZY08xxikiQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1DRzAZHk+CRfTrItyZlD9bN67XqSjPKRpAPBTE3Wl2QF8NfA84E54PNJrqyqLy53X2NNmAdOmicdNEZ6URFM52VFMxUQwHHAtqr6KkCSDwAnAcseEJL0YxvpRUUwnV80Z22IaQ2w8EUJc12bJGnKUlVj1/BDSU4BXlhVr+7WXw4cV1W/u2CbzcDmbvVngS9PqbwjgG9Mqa/ldqDWbt3TZd3TNWbdR1fVqsU2mrUhpjlg3YL1tcDOhRtU1QXABdMsCiDJlqraNO1+l8OBWrt1T5d1T9eBUPesDTF9HtiY5AlJfgJ4GXDlyDVJ0iFpps4gqur+JK8HPgGsAC6qqltHLkuSDkkzFRAAVXUVcNXYdTRMfVhrGR2otVv3dFn3dM183TN1kVqSNDtm7RqEJGlGGBBLkORPktyU5MYkn0zy+LFr6iPJnyb5Ulf7h5M8euya+khySpJbkzyQZKbv9oDpTROz3JJclOSuJLeMXUtfSdYl+VSSrd3fkTeOXVMfSR6W5Pok/9nV/Udj17Q/DjEtQZKfrKq7u+U3AMdU1WtHLmtRSV4A/Et3E8C5AFV1xshlLSrJk4AHgHcDv19VW0YuaZ+6aWL+iwXTxACnDjFNzHJL8svAd4FLqurJY9fTR5LVwOqq+kKSRwE3AC+Z9T/vTObleERVfTfJSuCzwBur6rqRS2vyDGIJ5sOh8wjggEjXqvpkVd3frV7H5PmSmVdVW6tqWg9C/rh+OE1MVd0HzE8TM/Oq6jPAt8auYymqaldVfaFbvgfYygEw60JNfLdbXdl9ZvbfEQNiiZKck2Q78JvAW8eu50H4LeDjYxdxEHKamJEk2QA8FfjcuJX0k2RFkhuBu4Crq2pm6zYg9pLkmiS3ND4nAVTVH1TVOuBS4PXjVvsji9XdbfMHwP1Map8Jfeo+QLSm9JzZ3wwPFkkeCVwBvGmvM/yZVVV7qupYJmfyxyWZ2WG9mXsOYmxV9byem14GfAw4e8Byelus7iSnAScCz60ZuvC0hD/vWbfoNDFaXt0Y/hXApVX1obHrWaqq+k6SfwWOB2byBgHPIJYgycYFqy8GvjRWLUuR5HjgDODFVXXv2PUcpJwmZoq6i70XAlur6ryx6+kryar5uwiTPBx4HjP874h3MS1BkiuYzCD7AHAb8Nqq2jFuVYtLsg14KPDNrum6A+Tuq5OBvwRWAd8BbqyqF45b1b4lOQH4c340Tcw5I5fUS5L3A89mMrvoncDZVXXhqEUtIsmzgH8Dbmby/yPAWd1MDDMryVOAi5n8HXkIcHlV/fG4Ve2bASFJanKISZLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqSm/wP3StuwdyqnPQAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
Expand All @@ -96,7 +95,7 @@
],
"source": [
"series = pd.Series(np.random.randn(1000))\n",
"series.plot.hist(edgecolor='black');"
"series.plot.hist(edgecolor=\"black\");"
]
},
{
Expand Down
7 changes: 3 additions & 4 deletions tests/assets/hello-world.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,20 +7,19 @@ permalink: /hello/world/
# Hello World!

```python
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from IPython.display import HTML, display
```

```python
print('Hello World!')
print("Hello World!")
```

Hello World!

```python
df = pd.DataFrame({'a': ['one', 'two'], 'b': [1, 2]})
df = pd.DataFrame({"a": ["one", "two"], "b": [1, 2]})
display(HTML(df.to_html(index=False)))
```

Expand All @@ -45,7 +44,7 @@ display(HTML(df.to_html(index=False)))

```python
series = pd.Series(np.random.randn(1000))
series.plot.hist(edgecolor='black');
series.plot.hist(edgecolor="black");
```

![png]({{ site.baseurl }}/assets/images/hello-world/hello-world_4_0.png){: .center-image }
Expand Down

0 comments on commit f9fef95

Please sign in to comment.