\ No newline at end of file
diff --git a/API/index.html b/API/index.html
index 0b9cec663..c6c997983 100644
--- a/API/index.html
+++ b/API/index.html
@@ -1,4 +1,4 @@
- API - Mycodo
An API is an application programming interface - in short, it’s a set of rules that lets programs talk to each other, exposing data and functionality across the internet in a consistent format.
REST stands for Representational State Transfer. This is an architectural pattern that describes how distributed systems can expose a consistent interface. When people use the term ‘REST API,’ they are generally referring to an API accessed via HTTP protocol at a predefined set of URLs. These URLs represent various resources - any information or content accessed at that location, which can be returned as JSON, HTML, audio files, or images. Often, resources have one or more methods that can be performed on them over HTTP, like GET, POST, PUT and DELETE.
An API Key can be generated from the User Settings page ([Gear Icon] -> Configure -> Users). This is stored as a 128-bit bytes object in the database, but will be presented to the user as a base64-encoded string. This can be used to access HTTPS endpoints.
Mycodo supports several authentication methods. All API requests must be made over HTTPS. Calls made over plain HTTP will fail. API requests without authentication will fail.
An API is an application programming interface - in short, it’s a set of rules that lets programs talk to each other, exposing data and functionality across the internet in a consistent format.
REST stands for Representational State Transfer. This is an architectural pattern that describes how distributed systems can expose a consistent interface. When people use the term ‘REST API,’ they are generally referring to an API accessed via HTTP protocol at a predefined set of URLs. These URLs represent various resources - any information or content accessed at that location, which can be returned as JSON, HTML, audio files, or images. Often, resources have one or more methods that can be performed on them over HTTP, like GET, POST, PUT and DELETE.
An API Key can be generated from the User Settings page ([Gear Icon] -> Configure -> Users). This is stored as a 128-bit bytes object in the database, but will be presented to the user as a base64-encoded string. This can be used to access HTTPS endpoints.
Mycodo supports several authentication methods. All API requests must be made over HTTPS. Calls made over plain HTTP will fail. API requests without authentication will fail.
Mycodo uses conventional HTTP response codes to indicate the success or failure of an API request. In general: Codes in the 2xx range indicate success. Codes in the 4xx range indicate an error that failed given the information provided (e.g., a required parameter was omitted, a charge failed, etc.). Codes in the 5xx range indicate an error with Mycodo's servers (these are rare).
Some 4xx errors that could be handled programmatically (e.g., a card is declined) include an error code that briefly explains the error reported.
A vendor-specific content type header must be included to determine which API version to use. For version 1, this is "application/vnd.mycodo.v1+json", as can be seen in the examples, above.
Visit https://{RASPBERRY_PI_IP_ADDRESS}/api for documentation of the current API endpoints of your Mycodo install.
Documentation for the latest API version is also available in HTML format: Mycodo API Docs <https://kizniche.github.io/Mycodo/mycodo-api.html>__
Instruct all Function Actions of a Function Controller to be executed sequentially.
Parameters:
function_id - The unique ID of the controller.
message - A message to send with the action that may be used by the action.
debug - Whether to show debug logging messages.
\ No newline at end of file
diff --git a/About.de/index.html b/About.de/index.html
index 30f472fb0..6c0f316fc 100644
--- a/About.de/index.html
+++ b/About.de/index.html
@@ -1 +1 @@
- About - Mycodo
Mycodo ist ein quelloffenes Umweltüberwachungs- und -regulierungssystem, das für den Betrieb auf Einplatinencomputern, insbesondere dem Raspberry Pi, entwickelt wurde.
Ursprünglich für die Zucht von Speisepilzen entwickelt, kann Mycodo inzwischen viel mehr. Das System besteht aus zwei Teilen, einem Backend (Daemon) und einem Frontend (Webserver). Das Backend übernimmt Aufgaben wie die Erfassung von Messwerten von Sensoren und Geräten und koordiniert eine Reihe von Reaktionen auf diese Messwerte, einschließlich der Fähigkeit, Ausgänge zu modulieren (Relais schalten, PWM-Signale erzeugen, Pumpen betreiben, drahtlose Ausgänge schalten, MQTT veröffentlichen/abonnieren usw.), Umgebungsbedingungen mit PID-Steuerung zu regulieren, Zeitpläne zu erstellen, Fotos aufzunehmen und Videos zu streamen, Aktionen auszulösen, wenn Messwerte bestimmte Bedingungen erfüllen, und vieles mehr. Das Frontend beherbergt eine Weboberfläche, die Anzeige und Konfiguration von jedem Browser-fähigen Gerät aus ermöglicht.
Für Mycodo gibt es eine Reihe von unterschiedlichen Verwendungszwecken. Einige Nutzer speichern einfach Sensormessungen, um die Bedingungen aus der Ferne zu überwachen, andere regulieren die Umgebungsbedingungen eines physischen Raums, während andere unter anderem bewegungsaktivierte oder Zeitrafferaufnahmen machen.
Input-Controller erfassen Messwerte und speichern sie in der InfluxDB-Zeitreihendatenbank. Die Messungen stammen in der Regel von Sensoren, können aber auch so konfiguriert werden, dass sie den Rückgabewert von Linux-Bash- oder Python-Befehlen oder mathematische Gleichungen verwenden, was dieses System zu einem sehr dynamischen System für die Erfassung und Erzeugung von Daten macht.
Ausgangssteuerungen erzeugen Änderungen an den GPIO-Pins (GPIO = General Input/Output) oder können so konfiguriert werden, dass sie Linux-Bash- oder Python-Befehle ausführen, was eine Vielzahl von Verwendungsmöglichkeiten bietet. Es gibt einige verschiedene Arten von Ausgängen: einfaches Schalten von GPIO-Pins (HIGH/LOW), Erzeugen von pulsweitenmodulierten (PWM) Signalen, Steuern von Schlauchpumpen, MQTT-Veröffentlichung und mehr.
Wenn Eingänge und Ausgänge kombiniert werden, können Funktionsregler verwendet werden, um Rückkopplungsschleifen zu erstellen, die das Ausgangsgerät verwenden, um einen Umgebungszustand zu modulieren, den der Eingang misst. Bestimmte Eingänge können mit bestimmten Ausgängen gekoppelt werden, um eine Vielzahl verschiedener Steuerungs- und Regelungsanwendungen zu schaffen. Über die einfache Regelung hinaus können Methoden verwendet werden, um einen sich im Laufe der Zeit ändernden Sollwert zu erzeugen, was z. B. Thermocycler, Reflow-Öfen, Umweltsimulationen für Terrarien, Fermentierung oder Reifung von Lebensmitteln und Getränken sowie das Garen von Lebensmitteln (Sous-vide) ermöglicht, um nur einige Beispiele zu nennen.
Auslöser können so eingestellt werden, dass sie Ereignisse auf der Grundlage bestimmter Daten und Uhrzeiten, Zeitspannen oder des Sonnenaufgangs/Sonnenuntergangs an einem bestimmten Breiten- und Längengrad aktivieren.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
Mycodo ist ein quelloffenes Umweltüberwachungs- und -regulierungssystem, das für den Betrieb auf Einplatinencomputern, insbesondere dem Raspberry Pi, entwickelt wurde.
Ursprünglich für die Zucht von Speisepilzen entwickelt, kann Mycodo inzwischen viel mehr. Das System besteht aus zwei Teilen, einem Backend (Daemon) und einem Frontend (Webserver). Das Backend übernimmt Aufgaben wie die Erfassung von Messwerten von Sensoren und Geräten und koordiniert eine Reihe von Reaktionen auf diese Messwerte, einschließlich der Fähigkeit, Ausgänge zu modulieren (Relais schalten, PWM-Signale erzeugen, Pumpen betreiben, drahtlose Ausgänge schalten, MQTT veröffentlichen/abonnieren usw.), Umgebungsbedingungen mit PID-Steuerung zu regulieren, Zeitpläne zu erstellen, Fotos aufzunehmen und Videos zu streamen, Aktionen auszulösen, wenn Messwerte bestimmte Bedingungen erfüllen, und vieles mehr. Das Frontend beherbergt eine Weboberfläche, die Anzeige und Konfiguration von jedem Browser-fähigen Gerät aus ermöglicht.
Für Mycodo gibt es eine Reihe von unterschiedlichen Verwendungszwecken. Einige Nutzer speichern einfach Sensormessungen, um die Bedingungen aus der Ferne zu überwachen, andere regulieren die Umgebungsbedingungen eines physischen Raums, während andere unter anderem bewegungsaktivierte oder Zeitrafferaufnahmen machen.
Input-Controller erfassen Messwerte und speichern sie in der InfluxDB-Zeitreihendatenbank. Die Messungen stammen in der Regel von Sensoren, können aber auch so konfiguriert werden, dass sie den Rückgabewert von Linux-Bash- oder Python-Befehlen oder mathematische Gleichungen verwenden, was dieses System zu einem sehr dynamischen System für die Erfassung und Erzeugung von Daten macht.
Ausgangssteuerungen erzeugen Änderungen an den GPIO-Pins (GPIO = General Input/Output) oder können so konfiguriert werden, dass sie Linux-Bash- oder Python-Befehle ausführen, was eine Vielzahl von Verwendungsmöglichkeiten bietet. Es gibt einige verschiedene Arten von Ausgängen: einfaches Schalten von GPIO-Pins (HIGH/LOW), Erzeugen von pulsweitenmodulierten (PWM) Signalen, Steuern von Schlauchpumpen, MQTT-Veröffentlichung und mehr.
Wenn Eingänge und Ausgänge kombiniert werden, können Funktionsregler verwendet werden, um Rückkopplungsschleifen zu erstellen, die das Ausgangsgerät verwenden, um einen Umgebungszustand zu modulieren, den der Eingang misst. Bestimmte Eingänge können mit bestimmten Ausgängen gekoppelt werden, um eine Vielzahl verschiedener Steuerungs- und Regelungsanwendungen zu schaffen. Über die einfache Regelung hinaus können Methoden verwendet werden, um einen sich im Laufe der Zeit ändernden Sollwert zu erzeugen, was z. B. Thermocycler, Reflow-Öfen, Umweltsimulationen für Terrarien, Fermentierung oder Reifung von Lebensmitteln und Getränken sowie das Garen von Lebensmitteln (Sous-vide) ermöglicht, um nur einige Beispiele zu nennen.
Auslöser können so eingestellt werden, dass sie Ereignisse auf der Grundlage bestimmter Daten und Uhrzeiten, Zeitspannen oder des Sonnenaufgangs/Sonnenuntergangs an einem bestimmten Breiten- und Längengrad aktivieren.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
\ No newline at end of file
diff --git a/About.es/index.html b/About.es/index.html
index 9ae5b6884..837a32a7f 100644
--- a/About.es/index.html
+++ b/About.es/index.html
@@ -1 +1 @@
- Sobre - Mycodo
Mycodo es un sistema de supervisión y regulación medioambiental de código abierto que se ha creado para funcionar en ordenadores de placa única, concretamente en la Raspberry Pi.
Desarrollado originalmente para el cultivo de setas comestibles, Mycodo ha crecido para hacer mucho más. El sistema consta de dos partes, un backend (demonio) y un frontend (servidor web). El backend realiza tareas como la adquisición de mediciones de sensores y dispositivos y la coordinación de un conjunto diverso de respuestas a esas mediciones, incluida la capacidad de modular las salidas (conmutar relés, generar señales PWM, operar bombas, conmutar salidas inalámbricas, publicar/suscribirse a MQTT, entre otras), regular las condiciones ambientales con control PID, programar temporizadores, capturar fotos y transmitir vídeo, desencadenar acciones cuando las mediciones cumplen ciertas condiciones, y más. El frontend alberga una interfaz web que permite la visualización y configuración desde cualquier dispositivo con navegador.
Los usos de Mycodo son muy variados. Algunos usuarios simplemente almacenan las mediciones de los sensores para supervisar las condiciones a distancia, otros regulan las condiciones ambientales de un espacio físico, mientras que otros capturan fotografías activadas por el movimiento o por el tiempo, entre otros usos.
Los controladores de entrada adquieren mediciones y las almacenan en la base de datos de series temporales InfluxDB. Las mediciones suelen proceder de los sensores, pero también pueden configurarse para utilizar el valor de retorno de los comandos de Linux Bash o Python, o las ecuaciones matemáticas, lo que hace que sea un sistema muy dinámico para adquirir y generar datos.
Los controladores de salida producen cambios en los pines generales de entrada/salida (GPIO) o pueden ser configurados para ejecutar comandos de Linux Bash o Python, permitiendo una variedad de usos potenciales. Existen varios tipos de salidas: la simple conmutación de los pines GPIO (HIGH/LOW), la generación de señales de ancho de pulso modulado (PWM), el control de bombas peristálticas, la publicación de MQTT, etc.
Cuando se combinan las Entradas y las Salidas, los controladores de funciones pueden utilizarse para crear bucles de retroalimentación que utilizan el dispositivo de Salida para modular una condición ambiental que la Entrada mide. Ciertas Entradas pueden ser acopladas con ciertas Salidas para crear una variedad de diferentes aplicaciones de control y regulación. Más allá de la simple regulación, los Métodos pueden ser utilizados para crear un punto de ajuste cambiante en el tiempo, permitiendo cosas como cicladores térmicos, hornos de reflujo, simulación ambiental para terrarios, fermentación o curado de alimentos y bebidas, y cocción de alimentos (sous-vide), por nombrar algunos.
Los disparadores se pueden configurar para activar eventos basados en fechas y horas específicas, según duraciones de tiempo, o la salida/puesta del sol en una latitud y longitud específicas.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
Mycodo es un sistema de supervisión y regulación medioambiental de código abierto que se ha creado para funcionar en ordenadores de placa única, concretamente en la Raspberry Pi.
Desarrollado originalmente para el cultivo de setas comestibles, Mycodo ha crecido para hacer mucho más. El sistema consta de dos partes, un backend (demonio) y un frontend (servidor web). El backend realiza tareas como la adquisición de mediciones de sensores y dispositivos y la coordinación de un conjunto diverso de respuestas a esas mediciones, incluida la capacidad de modular las salidas (conmutar relés, generar señales PWM, operar bombas, conmutar salidas inalámbricas, publicar/suscribirse a MQTT, entre otras), regular las condiciones ambientales con control PID, programar temporizadores, capturar fotos y transmitir vídeo, desencadenar acciones cuando las mediciones cumplen ciertas condiciones, y más. El frontend alberga una interfaz web que permite la visualización y configuración desde cualquier dispositivo con navegador.
Los usos de Mycodo son muy variados. Algunos usuarios simplemente almacenan las mediciones de los sensores para supervisar las condiciones a distancia, otros regulan las condiciones ambientales de un espacio físico, mientras que otros capturan fotografías activadas por el movimiento o por el tiempo, entre otros usos.
Los controladores de entrada adquieren mediciones y las almacenan en la base de datos de series temporales InfluxDB. Las mediciones suelen proceder de los sensores, pero también pueden configurarse para utilizar el valor de retorno de los comandos de Linux Bash o Python, o las ecuaciones matemáticas, lo que hace que sea un sistema muy dinámico para adquirir y generar datos.
Los controladores de salida producen cambios en los pines generales de entrada/salida (GPIO) o pueden ser configurados para ejecutar comandos de Linux Bash o Python, permitiendo una variedad de usos potenciales. Existen varios tipos de salidas: la simple conmutación de los pines GPIO (HIGH/LOW), la generación de señales de ancho de pulso modulado (PWM), el control de bombas peristálticas, la publicación de MQTT, etc.
Cuando se combinan las Entradas y las Salidas, los controladores de funciones pueden utilizarse para crear bucles de retroalimentación que utilizan el dispositivo de Salida para modular una condición ambiental que la Entrada mide. Ciertas Entradas pueden ser acopladas con ciertas Salidas para crear una variedad de diferentes aplicaciones de control y regulación. Más allá de la simple regulación, los Métodos pueden ser utilizados para crear un punto de ajuste cambiante en el tiempo, permitiendo cosas como cicladores térmicos, hornos de reflujo, simulación ambiental para terrarios, fermentación o curado de alimentos y bebidas, y cocción de alimentos (sous-vide), por nombrar algunos.
Los disparadores se pueden configurar para activar eventos basados en fechas y horas específicas, según duraciones de tiempo, o la salida/puesta del sol en una latitud y longitud específicas.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
\ No newline at end of file
diff --git a/About.fr/index.html b/About.fr/index.html
index 680fceef9..fa33cd41b 100644
--- a/About.fr/index.html
+++ b/About.fr/index.html
@@ -1 +1 @@
- About - Mycodo
Mycodo est un système open-source de surveillance et de régulation de l'environnement conçu pour fonctionner sur des ordinateurs monocartes, notamment le Raspberry Pi.
Développé à l'origine pour la culture de champignons comestibles, Mycodo s'est développé pour faire beaucoup plus. Le système se compose de deux parties, un backend (démon) et un frontend (serveur web). Le backend effectue des tâches telles que l'acquisition de mesures à partir de capteurs et de dispositifs et la coordination d'un ensemble diversifié de réponses à ces mesures, y compris la capacité de moduler les sorties (commutation de relais, génération de signaux PWM, fonctionnement de pompes, commutation de prises sans fil, publication/abonnement à MQTT, entre autres), de réguler les conditions environnementales avec un contrôle PID, de programmer des minuteries, de capturer des photos et de diffuser des vidéos, de déclencher des actions lorsque les mesures répondent à certaines conditions, etc. Le frontal héberge une interface web qui permet de visualiser et de configurer les appareils à partir de n'importe quel navigateur.
Il existe un certain nombre d'utilisations différentes de Mycodo. Certains utilisateurs stockent simplement les mesures des capteurs pour surveiller les conditions à distance, d'autres régulent les conditions environnementales d'un espace physique, tandis que d'autres capturent des photographies activées par le mouvement ou en time-lapse, entre autres utilisations.
Les contrôleurs d'entrée acquièrent des mesures et les stockent dans la base de données de séries temporelles InfluxDB. Les mesures proviennent généralement de capteurs, mais peuvent également être configurées pour utiliser la valeur de retour de commandes Linux Bash ou Python, ou d'équations mathématiques, ce qui en fait un système très dynamique d'acquisition et de génération de données.
Les contrôleurs de sortie produisent des changements sur les broches d'entrée/sortie générales (GPIO) ou peuvent être configurés pour exécuter des commandes Linux Bash ou Python, ce qui permet une variété d'utilisations potentielles. Il existe différents types de sorties : la simple commutation des broches GPIO (HAUT/BAS), la génération de signaux modulés en largeur d'impulsion (PWM), le contrôle de pompes péristaltiques, la publication MQTT, etc.
Lorsque les entrées et les sorties sont combinées, les contrôleurs de fonction peuvent être utilisés pour créer des boucles de rétroaction qui utilisent le dispositif de sortie pour moduler une condition environnementale mesurée par l'entrée. Certaines entrées peuvent être couplées à certaines sorties pour créer une variété d'applications de contrôle et de régulation différentes. Au-delà de la simple régulation, les méthodes peuvent être utilisées pour créer un point de consigne changeant au fil du temps, permettant des choses telles que les thermocycleurs, les fours de refusion, la simulation environnementale pour les terrariums, la fermentation ou le séchage des aliments et des boissons, et la cuisson des aliments (sous-vide), pour n'en citer que quelques-unes.
Les déclencheurs peuvent être configurés pour activer des événements en fonction de dates et d'heures spécifiques, en fonction de durées, ou du lever/coucher du soleil à une latitude et une longitude spécifiques.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
Mycodo est un système open-source de surveillance et de régulation de l'environnement conçu pour fonctionner sur des ordinateurs monocartes, notamment le Raspberry Pi.
Développé à l'origine pour la culture de champignons comestibles, Mycodo s'est développé pour faire beaucoup plus. Le système se compose de deux parties, un backend (démon) et un frontend (serveur web). Le backend effectue des tâches telles que l'acquisition de mesures à partir de capteurs et de dispositifs et la coordination d'un ensemble diversifié de réponses à ces mesures, y compris la capacité de moduler les sorties (commutation de relais, génération de signaux PWM, fonctionnement de pompes, commutation de prises sans fil, publication/abonnement à MQTT, entre autres), de réguler les conditions environnementales avec un contrôle PID, de programmer des minuteries, de capturer des photos et de diffuser des vidéos, de déclencher des actions lorsque les mesures répondent à certaines conditions, etc. Le frontal héberge une interface web qui permet de visualiser et de configurer les appareils à partir de n'importe quel navigateur.
Il existe un certain nombre d'utilisations différentes de Mycodo. Certains utilisateurs stockent simplement les mesures des capteurs pour surveiller les conditions à distance, d'autres régulent les conditions environnementales d'un espace physique, tandis que d'autres capturent des photographies activées par le mouvement ou en time-lapse, entre autres utilisations.
Les contrôleurs d'entrée acquièrent des mesures et les stockent dans la base de données de séries temporelles InfluxDB. Les mesures proviennent généralement de capteurs, mais peuvent également être configurées pour utiliser la valeur de retour de commandes Linux Bash ou Python, ou d'équations mathématiques, ce qui en fait un système très dynamique d'acquisition et de génération de données.
Les contrôleurs de sortie produisent des changements sur les broches d'entrée/sortie générales (GPIO) ou peuvent être configurés pour exécuter des commandes Linux Bash ou Python, ce qui permet une variété d'utilisations potentielles. Il existe différents types de sorties : la simple commutation des broches GPIO (HAUT/BAS), la génération de signaux modulés en largeur d'impulsion (PWM), le contrôle de pompes péristaltiques, la publication MQTT, etc.
Lorsque les entrées et les sorties sont combinées, les contrôleurs de fonction peuvent être utilisés pour créer des boucles de rétroaction qui utilisent le dispositif de sortie pour moduler une condition environnementale mesurée par l'entrée. Certaines entrées peuvent être couplées à certaines sorties pour créer une variété d'applications de contrôle et de régulation différentes. Au-delà de la simple régulation, les méthodes peuvent être utilisées pour créer un point de consigne changeant au fil du temps, permettant des choses telles que les thermocycleurs, les fours de refusion, la simulation environnementale pour les terrariums, la fermentation ou le séchage des aliments et des boissons, et la cuisson des aliments (sous-vide), pour n'en citer que quelques-unes.
Les déclencheurs peuvent être configurés pour activer des événements en fonction de dates et d'heures spécifiques, en fonction de durées, ou du lever/coucher du soleil à une latitude et une longitude spécifiques.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
\ No newline at end of file
diff --git a/About.id/index.html b/About.id/index.html
index 86c79cc6a..f0cf344e0 100644
--- a/About.id/index.html
+++ b/About.id/index.html
@@ -1 +1 @@
- About - Mycodo
Mycodo adalah sistem pemantauan dan pengaturan lingkungan bersumber terbuka yang dibangun untuk dijalankan pada komputer papan tunggal, khususnya Raspberry Pi.
Awalnya dikembangkan untuk membudidayakan jamur yang dapat dimakan, Mycodo telah berkembang untuk melakukan lebih banyak lagi. Sistem ini terdiri atas dua bagian, backend (daemon) dan frontend (server web). Backend melakukan tugas-tugas seperti memperoleh pengukuran dari sensor dan perangkat dan mengoordinasikan beragam respons terhadap pengukuran tersebut, termasuk kemampuan untuk memodulasi output (mengganti relay, menghasilkan sinyal PWM, mengoperasikan pompa, mengganti outlet nirkabel, menerbitkan / berlangganan MQTT, antara lain), mengatur kondisi lingkungan dengan kontrol PID, menjadwalkan pengatur waktu, mengambil foto dan streaming video, memicu tindakan ketika pengukuran memenuhi kondisi tertentu, dan banyak lagi. Frontend menjadi tuan rumah antarmuka web yang memungkinkan tampilan dan konfigurasi dari perangkat berkemampuan browser apa pun.
Ada sejumlah kegunaan berbeda untuk Mycodo. Beberapa pengguna hanya menyimpan pengukuran sensor untuk memantau kondisi dari jarak jauh, yang lain mengatur kondisi lingkungan ruang fisik, sementara yang lain menangkap fotografi yang diaktifkan gerakan atau selang waktu, di antara kegunaan lainnya.
Pengontrol input memperoleh pengukuran dan menyimpannya dalam basis data deret waktu InfluxDB. Pengukuran biasanya berasal dari sensor, tetapi juga dapat dikonfigurasi untuk menggunakan nilai balik dari perintah Linux Bash atau Python, atau persamaan matematika, menjadikannya sistem yang sangat dinamis untuk memperoleh dan menghasilkan data.
Pengontrol output menghasilkan perubahan pada pin input/output umum (GPIO) atau dapat dikonfigurasi untuk menjalankan perintah Linux Bash atau Python, memungkinkan berbagai potensi penggunaan. Ada beberapa jenis output yang berbeda: peralihan sederhana pin GPIO (HIGH/LOW), menghasilkan sinyal pulse-width modulated (PWM), mengendalikan pompa peristaltik, penerbitan MQTT, dan banyak lagi.
Ketika Input dan Output digabungkan, Pengontrol fungsi dapat digunakan untuk membuat loop umpan balik yang menggunakan perangkat Output untuk memodulasi kondisi lingkungan yang diukur Input. Input tertentu dapat digabungkan dengan Output tertentu untuk membuat berbagai aplikasi kontrol dan regulasi yang berbeda. Di luar regulasi sederhana, Metode dapat digunakan untuk membuat setpoint yang berubah dari waktu ke waktu, memungkinkan hal-hal seperti thermal cyclers, oven reflow, simulasi lingkungan untuk terarium, fermentasi atau pengawetan makanan dan minuman, dan memasak makanan (sous-vide), untuk beberapa nama.
Pemicu bisa ditetapkan untuk mengaktifkan peristiwa berdasarkan tanggal dan waktu tertentu, menurut durasi waktu, atau matahari terbit/terbenam pada garis lintang dan garis bujur tertentu.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
Mycodo adalah sistem pemantauan dan pengaturan lingkungan bersumber terbuka yang dibangun untuk dijalankan pada komputer papan tunggal, khususnya Raspberry Pi.
Awalnya dikembangkan untuk membudidayakan jamur yang dapat dimakan, Mycodo telah berkembang untuk melakukan lebih banyak lagi. Sistem ini terdiri atas dua bagian, backend (daemon) dan frontend (server web). Backend melakukan tugas-tugas seperti memperoleh pengukuran dari sensor dan perangkat dan mengoordinasikan beragam respons terhadap pengukuran tersebut, termasuk kemampuan untuk memodulasi output (mengganti relay, menghasilkan sinyal PWM, mengoperasikan pompa, mengganti outlet nirkabel, menerbitkan / berlangganan MQTT, antara lain), mengatur kondisi lingkungan dengan kontrol PID, menjadwalkan pengatur waktu, mengambil foto dan streaming video, memicu tindakan ketika pengukuran memenuhi kondisi tertentu, dan banyak lagi. Frontend menjadi tuan rumah antarmuka web yang memungkinkan tampilan dan konfigurasi dari perangkat berkemampuan browser apa pun.
Ada sejumlah kegunaan berbeda untuk Mycodo. Beberapa pengguna hanya menyimpan pengukuran sensor untuk memantau kondisi dari jarak jauh, yang lain mengatur kondisi lingkungan ruang fisik, sementara yang lain menangkap fotografi yang diaktifkan gerakan atau selang waktu, di antara kegunaan lainnya.
Pengontrol input memperoleh pengukuran dan menyimpannya dalam basis data deret waktu InfluxDB. Pengukuran biasanya berasal dari sensor, tetapi juga dapat dikonfigurasi untuk menggunakan nilai balik dari perintah Linux Bash atau Python, atau persamaan matematika, menjadikannya sistem yang sangat dinamis untuk memperoleh dan menghasilkan data.
Pengontrol output menghasilkan perubahan pada pin input/output umum (GPIO) atau dapat dikonfigurasi untuk menjalankan perintah Linux Bash atau Python, memungkinkan berbagai potensi penggunaan. Ada beberapa jenis output yang berbeda: peralihan sederhana pin GPIO (HIGH/LOW), menghasilkan sinyal pulse-width modulated (PWM), mengendalikan pompa peristaltik, penerbitan MQTT, dan banyak lagi.
Ketika Input dan Output digabungkan, Pengontrol fungsi dapat digunakan untuk membuat loop umpan balik yang menggunakan perangkat Output untuk memodulasi kondisi lingkungan yang diukur Input. Input tertentu dapat digabungkan dengan Output tertentu untuk membuat berbagai aplikasi kontrol dan regulasi yang berbeda. Di luar regulasi sederhana, Metode dapat digunakan untuk membuat setpoint yang berubah dari waktu ke waktu, memungkinkan hal-hal seperti thermal cyclers, oven reflow, simulasi lingkungan untuk terarium, fermentasi atau pengawetan makanan dan minuman, dan memasak makanan (sous-vide), untuk beberapa nama.
Pemicu bisa ditetapkan untuk mengaktifkan peristiwa berdasarkan tanggal dan waktu tertentu, menurut durasi waktu, atau matahari terbit/terbenam pada garis lintang dan garis bujur tertentu.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
\ No newline at end of file
diff --git a/About.it/index.html b/About.it/index.html
index 125f51e83..f57ba2a86 100644
--- a/About.it/index.html
+++ b/About.it/index.html
@@ -1 +1 @@
- About - Mycodo
Mycodo è un sistema open-source di monitoraggio e regolazione ambientale costruito per funzionare su computer a scheda singola, in particolare il Raspberry Pi.
Originariamente sviluppato per la coltivazione di funghi commestibili, Mycodo è cresciuto per fare molto di più. Il sistema è composto da due parti, un backend (demone) e un frontend (server web). Il backend esegue compiti quali l'acquisizione di misure da sensori e dispositivi e il coordinamento di una serie di risposte a tali misure, tra cui la capacità di modulare le uscite (commutare relè, generare segnali PWM, azionare pompe, commutare prese wireless, pubblicare/sottoscrivere a MQTT, tra le altre cose), regolare le condizioni ambientali con il controllo PID, programmare timer, catturare foto e trasmettere video, attivare azioni quando le misure soddisfano determinate condizioni e altro ancora. Il frontend ospita un'interfaccia web che consente la visualizzazione e la configurazione da qualsiasi dispositivo abilitato al browser.
Mycodo può essere utilizzato in diversi modi. Alcuni utenti si limitano a memorizzare le misure dei sensori per monitorare le condizioni a distanza, altri regolano le condizioni ambientali di uno spazio fisico, altri ancora scattano fotografie in movimento o in time-lapse, tra gli altri usi.
I controllori di ingresso acquisiscono le misure e le memorizzano nel database delle serie temporali InfluxDB. Le misure provengono in genere da sensori, ma possono anche essere configurate per utilizzare il valore di ritorno di comandi Linux Bash o Python, o equazioni matematiche, rendendo questo sistema molto dinamico per l'acquisizione e la generazione di dati.
I controllori di uscita producono modifiche ai pin di ingresso/uscita generale (GPIO) o possono essere configurati per eseguire comandi Linux Bash o Python, consentendo una varietà di usi potenziali. Esistono diversi tipi di uscite: semplice commutazione dei pin GPIO (ALTO/BASSO), generazione di segnali modulati a larghezza di impulso (PWM), controllo di pompe peristaltiche, pubblicazione MQTT e altro ancora.
Quando gli ingressi e le uscite sono combinati, i controllori di funzione possono essere utilizzati per creare anelli di retroazione che utilizzano il dispositivo di uscita per modulare una condizione ambientale misurata dall'ingresso. Alcuni ingressi possono essere abbinati a determinate uscite per creare una serie di applicazioni di controllo e regolazione diverse. Oltre alla semplice regolazione, i metodi possono essere utilizzati per creare un setpoint variabile nel tempo, consentendo di realizzare applicazioni come i termociclatori, i forni a rifusione, la simulazione ambientale per i terrari, la fermentazione o la stagionatura di alimenti e bevande e la cottura di cibi (sous-vide), per citarne alcune.
I trigger possono essere impostati per attivare eventi in base a date e orari specifici, in base alla durata del tempo o all'alba/tramonto a una specifica latitudine e longitudine.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
Mycodo è un sistema open-source di monitoraggio e regolazione ambientale costruito per funzionare su computer a scheda singola, in particolare il Raspberry Pi.
Originariamente sviluppato per la coltivazione di funghi commestibili, Mycodo è cresciuto per fare molto di più. Il sistema è composto da due parti, un backend (demone) e un frontend (server web). Il backend esegue compiti quali l'acquisizione di misure da sensori e dispositivi e il coordinamento di una serie di risposte a tali misure, tra cui la capacità di modulare le uscite (commutare relè, generare segnali PWM, azionare pompe, commutare prese wireless, pubblicare/sottoscrivere a MQTT, tra le altre cose), regolare le condizioni ambientali con il controllo PID, programmare timer, catturare foto e trasmettere video, attivare azioni quando le misure soddisfano determinate condizioni e altro ancora. Il frontend ospita un'interfaccia web che consente la visualizzazione e la configurazione da qualsiasi dispositivo abilitato al browser.
Mycodo può essere utilizzato in diversi modi. Alcuni utenti si limitano a memorizzare le misure dei sensori per monitorare le condizioni a distanza, altri regolano le condizioni ambientali di uno spazio fisico, altri ancora scattano fotografie in movimento o in time-lapse, tra gli altri usi.
I controllori di ingresso acquisiscono le misure e le memorizzano nel database delle serie temporali InfluxDB. Le misure provengono in genere da sensori, ma possono anche essere configurate per utilizzare il valore di ritorno di comandi Linux Bash o Python, o equazioni matematiche, rendendo questo sistema molto dinamico per l'acquisizione e la generazione di dati.
I controllori di uscita producono modifiche ai pin di ingresso/uscita generale (GPIO) o possono essere configurati per eseguire comandi Linux Bash o Python, consentendo una varietà di usi potenziali. Esistono diversi tipi di uscite: semplice commutazione dei pin GPIO (ALTO/BASSO), generazione di segnali modulati a larghezza di impulso (PWM), controllo di pompe peristaltiche, pubblicazione MQTT e altro ancora.
Quando gli ingressi e le uscite sono combinati, i controllori di funzione possono essere utilizzati per creare anelli di retroazione che utilizzano il dispositivo di uscita per modulare una condizione ambientale misurata dall'ingresso. Alcuni ingressi possono essere abbinati a determinate uscite per creare una serie di applicazioni di controllo e regolazione diverse. Oltre alla semplice regolazione, i metodi possono essere utilizzati per creare un setpoint variabile nel tempo, consentendo di realizzare applicazioni come i termociclatori, i forni a rifusione, la simulazione ambientale per i terrari, la fermentazione o la stagionatura di alimenti e bevande e la cottura di cibi (sous-vide), per citarne alcune.
I trigger possono essere impostati per attivare eventi in base a date e orari specifici, in base alla durata del tempo o all'alba/tramonto a una specifica latitudine e longitudine.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
\ No newline at end of file
diff --git a/About.nl/index.html b/About.nl/index.html
index 42a07d32a..18b08b1d9 100644
--- a/About.nl/index.html
+++ b/About.nl/index.html
@@ -1 +1 @@
- About - Mycodo
Mycodo is een open-source milieubewakings- en regelsysteem dat is gebouwd om te draaien op single-board computers, met name de Raspberry Pi.
Mycodo is oorspronkelijk ontwikkeld voor het kweken van eetbare paddenstoelen, maar is uitgegroeid tot veel meer. Het systeem bestaat uit twee delen, een backend (daemon) en een frontend (webserver). De backend voert taken uit zoals het verzamelen van metingen van sensoren en apparaten en het coördineren van een diverse reeks reacties op die metingen, waaronder de mogelijkheid om uitgangen te moduleren (relais schakelen, PWM-signalen genereren, pompen bedienen, draadloze stopcontacten schakelen, publiceren/aanmelden voor MQTT, enzovoort), omgevingscondities regelen met PID-regeling, timers plannen, foto's en video's vastleggen, acties activeren wanneer metingen aan bepaalde voorwaarden voldoen, en nog veel meer. De frontend bevat een webinterface die weergave en configuratie vanaf elk apparaat met een browser mogelijk maakt.
Mycodo wordt op verschillende manieren gebruikt. Sommige gebruikers slaan gewoon sensormetingen op om de omstandigheden op afstand te controleren, anderen regelen de omgevingscondities van een fysieke ruimte, en weer anderen leggen onder meer bewegingsgeactiveerde of time-lapse fotografie vast.
Input controllers verwerven metingen en slaan deze op in de InfluxDB tijdreeksdatabase. Metingen komen meestal van sensoren, maar kunnen ook worden geconfigureerd om de retourwaarde van Linux Bash of Python commando's, of wiskundige vergelijkingen te gebruiken, waardoor dit een zeer dynamisch systeem is voor het verwerven en genereren van gegevens.
Output controllers produceren veranderingen aan de algemene input/output (GPIO) pinnen of kunnen worden geconfigureerd om Linux Bash of Python commando's uit te voeren, waardoor een verscheidenheid aan mogelijke toepassingen mogelijk is. Er zijn een paar verschillende soorten uitgangen: eenvoudig schakelen van GPIO-pinnen (HIGH/LOW), genereren van pulsbreedtegemoduleerde (PWM) signalen, aansturen van slangenpompen, MQTT-publicatie, en meer.
Wanneer ingangen en uitgangen worden gecombineerd, kunnen functieregelaars worden gebruikt om terugkoppellussen te creëren die de uitgang gebruiken om een door de ingang gemeten omgevingsconditie te moduleren. Bepaalde ingangen kunnen aan bepaalde uitgangen worden gekoppeld om een verscheidenheid van verschillende regel- en toezichttoepassingen te creëren. Naast eenvoudige regeling kunnen methoden worden gebruikt om een in de tijd veranderend instelpunt te creëren, waardoor bijvoorbeeld thermische cyclers, reflow-ovens, omgevingssimulatie voor terraria, fermentatie of uitharding van voedsel en dranken, en het koken van voedsel (sous-vide) mogelijk worden.
Triggers kunnen worden ingesteld om gebeurtenissen te activeren op basis van specifieke data en tijden, volgens tijdsduur, of de zonsopgang/ondergang op een specifieke breedte- en lengtegraad.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
Mycodo is een open-source milieubewakings- en regelsysteem dat is gebouwd om te draaien op single-board computers, met name de Raspberry Pi.
Mycodo is oorspronkelijk ontwikkeld voor het kweken van eetbare paddenstoelen, maar is uitgegroeid tot veel meer. Het systeem bestaat uit twee delen, een backend (daemon) en een frontend (webserver). De backend voert taken uit zoals het verzamelen van metingen van sensoren en apparaten en het coördineren van een diverse reeks reacties op die metingen, waaronder de mogelijkheid om uitgangen te moduleren (relais schakelen, PWM-signalen genereren, pompen bedienen, draadloze stopcontacten schakelen, publiceren/aanmelden voor MQTT, enzovoort), omgevingscondities regelen met PID-regeling, timers plannen, foto's en video's vastleggen, acties activeren wanneer metingen aan bepaalde voorwaarden voldoen, en nog veel meer. De frontend bevat een webinterface die weergave en configuratie vanaf elk apparaat met een browser mogelijk maakt.
Mycodo wordt op verschillende manieren gebruikt. Sommige gebruikers slaan gewoon sensormetingen op om de omstandigheden op afstand te controleren, anderen regelen de omgevingscondities van een fysieke ruimte, en weer anderen leggen onder meer bewegingsgeactiveerde of time-lapse fotografie vast.
Input controllers verwerven metingen en slaan deze op in de InfluxDB tijdreeksdatabase. Metingen komen meestal van sensoren, maar kunnen ook worden geconfigureerd om de retourwaarde van Linux Bash of Python commando's, of wiskundige vergelijkingen te gebruiken, waardoor dit een zeer dynamisch systeem is voor het verwerven en genereren van gegevens.
Output controllers produceren veranderingen aan de algemene input/output (GPIO) pinnen of kunnen worden geconfigureerd om Linux Bash of Python commando's uit te voeren, waardoor een verscheidenheid aan mogelijke toepassingen mogelijk is. Er zijn een paar verschillende soorten uitgangen: eenvoudig schakelen van GPIO-pinnen (HIGH/LOW), genereren van pulsbreedtegemoduleerde (PWM) signalen, aansturen van slangenpompen, MQTT-publicatie, en meer.
Wanneer ingangen en uitgangen worden gecombineerd, kunnen functieregelaars worden gebruikt om terugkoppellussen te creëren die de uitgang gebruiken om een door de ingang gemeten omgevingsconditie te moduleren. Bepaalde ingangen kunnen aan bepaalde uitgangen worden gekoppeld om een verscheidenheid van verschillende regel- en toezichttoepassingen te creëren. Naast eenvoudige regeling kunnen methoden worden gebruikt om een in de tijd veranderend instelpunt te creëren, waardoor bijvoorbeeld thermische cyclers, reflow-ovens, omgevingssimulatie voor terraria, fermentatie of uitharding van voedsel en dranken, en het koken van voedsel (sous-vide) mogelijk worden.
Triggers kunnen worden ingesteld om gebeurtenissen te activeren op basis van specifieke data en tijden, volgens tijdsduur, of de zonsopgang/ondergang op een specifieke breedte- en lengtegraad.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
\ No newline at end of file
diff --git a/About.nn/index.html b/About.nn/index.html
index 8c9bfd86c..e593744a0 100644
--- a/About.nn/index.html
+++ b/About.nn/index.html
@@ -1 +1 @@
- About - Mycodo
Mycodo is an open-source environmental monitoring and regulation system that was built to run on single-board computers, specifically the Raspberry Pi.
Originally developed for cultivating edible mushrooms, Mycodo has grown to do much more. The system consists of two parts, a backend (daemon) and a frontend (web server). The backend performs tasks such as acquiring measurements from sensors and devices and coordinating a diverse set of responses to those measurements, including the ability to modulate outputs (switch relays, generate PWM signals, operate pumps, switch wireless outlets, publish/subscribe to MQTT, among others), regulate environmental conditions with PID control, schedule timers, capture photos and stream video, trigger actions when measurements meet certain conditions, and more. The frontend hosts a web interface that enables viewing and configuration from any browser-enabled device.
There are a number of different uses for Mycodo. Some users simply store sensor measurements to monitor conditions remotely, others regulate the environmental conditions of a physical space, while others capture motion-activated or time-lapse photography, among other uses.
Input controllers acquire measurements and store them in the InfluxDB time series database. Measurements typically come from sensors, but may also be configured to use the return value of Linux Bash or Python commands, or math equations, making this a very dynamic system for acquiring and generating data.
Output controllers produce changes to the general input/output (GPIO) pins or may be configured to execute Linux Bash or Python commands, enabling a variety of potential uses. There are a few different types of outputs: simple switching of GPIO pins (HIGH/LOW), generating pulse-width modulated (PWM) signals, controlling peristaltic pumps, MQTT publishing, and more.
When Inputs and Outputs are combined, Function controllers may be used to create feedback loops that uses the Output device to modulate an environmental condition the Input measures. Certain Inputs may be coupled with certain Outputs to create a variety of different control and regulation applications. Beyond simple regulation, Methods may be used to create a changing setpoint over time, enabling such things as thermal cyclers, reflow ovens, environmental simulation for terrariums, food and beverage fermentation or curing, and cooking food (sous-vide), to name a few.
Triggers can be set to activate events based on specific dates and times, according to durations of time, or the sunrise/sunset at a specific latitude and longitude.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
Mycodo is an open-source environmental monitoring and regulation system that was built to run on single-board computers, specifically the Raspberry Pi.
Originally developed for cultivating edible mushrooms, Mycodo has grown to do much more. The system consists of two parts, a backend (daemon) and a frontend (web server). The backend performs tasks such as acquiring measurements from sensors and devices and coordinating a diverse set of responses to those measurements, including the ability to modulate outputs (switch relays, generate PWM signals, operate pumps, switch wireless outlets, publish/subscribe to MQTT, among others), regulate environmental conditions with PID control, schedule timers, capture photos and stream video, trigger actions when measurements meet certain conditions, and more. The frontend hosts a web interface that enables viewing and configuration from any browser-enabled device.
There are a number of different uses for Mycodo. Some users simply store sensor measurements to monitor conditions remotely, others regulate the environmental conditions of a physical space, while others capture motion-activated or time-lapse photography, among other uses.
Input controllers acquire measurements and store them in the InfluxDB time series database. Measurements typically come from sensors, but may also be configured to use the return value of Linux Bash or Python commands, or math equations, making this a very dynamic system for acquiring and generating data.
Output controllers produce changes to the general input/output (GPIO) pins or may be configured to execute Linux Bash or Python commands, enabling a variety of potential uses. There are a few different types of outputs: simple switching of GPIO pins (HIGH/LOW), generating pulse-width modulated (PWM) signals, controlling peristaltic pumps, MQTT publishing, and more.
When Inputs and Outputs are combined, Function controllers may be used to create feedback loops that uses the Output device to modulate an environmental condition the Input measures. Certain Inputs may be coupled with certain Outputs to create a variety of different control and regulation applications. Beyond simple regulation, Methods may be used to create a changing setpoint over time, enabling such things as thermal cyclers, reflow ovens, environmental simulation for terrariums, food and beverage fermentation or curing, and cooking food (sous-vide), to name a few.
Triggers can be set to activate events based on specific dates and times, according to durations of time, or the sunrise/sunset at a specific latitude and longitude.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
\ No newline at end of file
diff --git a/About.pl/index.html b/About.pl/index.html
index ed79713b7..5a66263dc 100644
--- a/About.pl/index.html
+++ b/About.pl/index.html
@@ -1 +1 @@
- About - Mycodo
Mycodo to open-source'owy system monitorowania i regulacji środowiska, który został zbudowany do działania na komputerach jednopłytkowych, a konkretnie na Raspberry Pi.
Pierwotnie opracowany do uprawy grzybów jadalnych, Mycodo rozwinął się do znacznie większych możliwości. System składa się z dwóch części, backendu (demona) i frontu (serwera internetowego). Backend wykonuje takie zadania, jak pobieranie pomiarów z czujników i urządzeń oraz koordynacja różnorodnych reakcji na te pomiary, w tym możliwość modulowania wyjść (przełączanie przekaźników, generowanie sygnałów PWM, obsługa pomp, przełączanie gniazdek bezprzewodowych, publikowanie/podpisywanie się do MQTT, między innymi), regulowanie warunków środowiskowych za pomocą kontroli PID, harmonogramy, przechwytywanie zdjęć i strumieniowanie wideo, wyzwalanie działań, gdy pomiary spełniają określone warunki, i wiele innych. Frontend hostuje interfejs webowy, który umożliwia podgląd i konfigurację z dowolnego urządzenia obsługującego przeglądarkę.
Istnieje wiele różnych zastosowań dla Mycodo. Niektórzy użytkownicy po prostu przechowują pomiary czujników, aby zdalnie monitorować warunki, inni regulują warunki środowiskowe w przestrzeni fizycznej, a jeszcze inni rejestrują fotografię aktywowaną ruchem lub poklatkową, wśród innych zastosowań.
Kontrolery wejściowe pozyskują pomiary i przechowują je w bazie danych serii czasowych InfluxDB. Pomiary pochodzą zazwyczaj z czujników, ale mogą być również skonfigurowane tak, aby używać wartości zwrotnej poleceń Linux Bash lub Python, lub równań matematycznych, co sprawia, że jest to bardzo dynamiczny system pozyskiwania i generowania danych.
Kontrolery wyjść wytwarzają zmiany na pinach ogólnego wejścia/wyjścia (GPIO) lub mogą być skonfigurowane do wykonywania poleceń Linux Bash lub Python, umożliwiając wiele potencjalnych zastosowań. Istnieje kilka różnych typów wyjść: proste przełączanie pinów GPIO (HIGH/LOW), generowanie sygnałów modulowanych w szerokości impulsu (PWM), sterowanie pompami perystaltycznymi, publikowanie MQTT i inne.
Gdy wejścia i wyjścia są połączone, sterowniki funkcyjne mogą być używane do tworzenia pętli sprzężenia zwrotnego, które wykorzystuje urządzenie wyjściowe do modulowania warunków środowiskowych mierzonych przez wejście. Niektóre wejścia mogą być połączone z niektórymi wyjściami, aby stworzyć wiele różnych zastosowań w zakresie sterowania i regulacji. Poza prostą regulacją, Metody mogą być używane do tworzenia zmieniających się w czasie wartości zadanych, umożliwiając takie rzeczy jak termocyklery, piece rozpływowe, symulację środowiska dla terrariów, fermentację żywności i napojów lub utwardzanie, oraz gotowanie żywności (sous-vide), aby wymienić tylko kilka.
Wyzwalacze można ustawić tak, aby aktywowały zdarzenia w oparciu o określone daty i godziny, według czasu trwania lub wschodu/zachodu słońca na określonej szerokości i długości geograficznej.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
Mycodo to open-source'owy system monitorowania i regulacji środowiska, który został zbudowany do działania na komputerach jednopłytkowych, a konkretnie na Raspberry Pi.
Pierwotnie opracowany do uprawy grzybów jadalnych, Mycodo rozwinął się do znacznie większych możliwości. System składa się z dwóch części, backendu (demona) i frontu (serwera internetowego). Backend wykonuje takie zadania, jak pobieranie pomiarów z czujników i urządzeń oraz koordynacja różnorodnych reakcji na te pomiary, w tym możliwość modulowania wyjść (przełączanie przekaźników, generowanie sygnałów PWM, obsługa pomp, przełączanie gniazdek bezprzewodowych, publikowanie/podpisywanie się do MQTT, między innymi), regulowanie warunków środowiskowych za pomocą kontroli PID, harmonogramy, przechwytywanie zdjęć i strumieniowanie wideo, wyzwalanie działań, gdy pomiary spełniają określone warunki, i wiele innych. Frontend hostuje interfejs webowy, który umożliwia podgląd i konfigurację z dowolnego urządzenia obsługującego przeglądarkę.
Istnieje wiele różnych zastosowań dla Mycodo. Niektórzy użytkownicy po prostu przechowują pomiary czujników, aby zdalnie monitorować warunki, inni regulują warunki środowiskowe w przestrzeni fizycznej, a jeszcze inni rejestrują fotografię aktywowaną ruchem lub poklatkową, wśród innych zastosowań.
Kontrolery wejściowe pozyskują pomiary i przechowują je w bazie danych serii czasowych InfluxDB. Pomiary pochodzą zazwyczaj z czujników, ale mogą być również skonfigurowane tak, aby używać wartości zwrotnej poleceń Linux Bash lub Python, lub równań matematycznych, co sprawia, że jest to bardzo dynamiczny system pozyskiwania i generowania danych.
Kontrolery wyjść wytwarzają zmiany na pinach ogólnego wejścia/wyjścia (GPIO) lub mogą być skonfigurowane do wykonywania poleceń Linux Bash lub Python, umożliwiając wiele potencjalnych zastosowań. Istnieje kilka różnych typów wyjść: proste przełączanie pinów GPIO (HIGH/LOW), generowanie sygnałów modulowanych w szerokości impulsu (PWM), sterowanie pompami perystaltycznymi, publikowanie MQTT i inne.
Gdy wejścia i wyjścia są połączone, sterowniki funkcyjne mogą być używane do tworzenia pętli sprzężenia zwrotnego, które wykorzystuje urządzenie wyjściowe do modulowania warunków środowiskowych mierzonych przez wejście. Niektóre wejścia mogą być połączone z niektórymi wyjściami, aby stworzyć wiele różnych zastosowań w zakresie sterowania i regulacji. Poza prostą regulacją, Metody mogą być używane do tworzenia zmieniających się w czasie wartości zadanych, umożliwiając takie rzeczy jak termocyklery, piece rozpływowe, symulację środowiska dla terrariów, fermentację żywności i napojów lub utwardzanie, oraz gotowanie żywności (sous-vide), aby wymienić tylko kilka.
Wyzwalacze można ustawić tak, aby aktywowały zdarzenia w oparciu o określone daty i godziny, według czasu trwania lub wschodu/zachodu słońca na określonej szerokości i długości geograficznej.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
\ No newline at end of file
diff --git a/About.pt/index.html b/About.pt/index.html
index 7ecf0288a..f24071818 100644
--- a/About.pt/index.html
+++ b/About.pt/index.html
@@ -1 +1 @@
- About - Mycodo
Mycodo é um sistema de monitorização e regulação ambiental de código aberto que foi construído para funcionar em computadores de placa única, especificamente o Raspberry Pi.
Originalmente desenvolvido para o cultivo de cogumelos comestíveis, Mycodo tem crescido para fazer muito mais. O sistema consiste em duas partes, um backend (daemon) e um frontend (servidor web). O backend executa tarefas tais como adquirir medições de sensores e dispositivos e coordenar um conjunto diversificado de respostas a essas medições, incluindo a capacidade de modular saídas (comutar relés, gerar sinais PWM, operar bombas, mudar saídas sem fios, publicar/assinar ao MQTT, entre outros), regular as condições ambientais com controlo PID, programar temporizadores, capturar fotos e transmitir vídeo, desencadear acções quando as medições satisfazem determinadas condições, e muito mais. O frontend aloja uma interface web que permite a visualização e configuração a partir de qualquer dispositivo activado por browser.
Existem várias utilizações diferentes para Mycodo. Alguns utilizadores simplesmente armazenam medições de sensores para monitorizar as condições à distância, outros regulam as condições ambientais de um espaço físico, enquanto outros captam fotografia activada por movimento ou time-lapse, entre outras utilizações.
Os controladores de entrada adquirem medidas e armazenam-nas na base de dados de séries temporais InfluxDB. As medições vêm tipicamente de sensores, mas também podem ser configuradas para utilizar o valor de retorno dos comandos Linux Bash ou Python, ou equações matemáticas, tornando-o um sistema muito dinâmico para a aquisição e geração de dados.
Os controladores de saída produzem alterações nos pinos de entrada/saída geral (GPIO) ou podem ser configurados para executar comandos Linux Bash ou Python, permitindo uma variedade de usos potenciais. Existem alguns tipos diferentes de saídas: simples comutação de pinos GPIO (HIGH/LOW), geração de sinais de largura de pulso modulada (PWM), controlo de bombas peristálticas, publicação de MQTT, e muito mais.
Quando as Entradas e Saídas são combinadas, os controladores de funções podem ser utilizados para criar laços de feedback que utilizam o dispositivo de Saída para modular uma condição ambiental as medidas de Entrada. Certas Entradas podem ser acopladas a certas Saídas para criar uma variedade de diferentes aplicações de controlo e regulação. Para além da regulação simples, podem ser utilizados métodos para criar um ponto de ajuste variável ao longo do tempo, permitindo coisas como termocicladores, fornos de refluxo, simulação ambiental para terrários, fermentação ou cura de alimentos e bebidas, e cozinhar alimentos (sous-vide), para citar alguns.
Os gatilhos podem ser definidos para activar eventos com base em datas e horas específicas, de acordo com durações de tempo, ou o nascer/pôr-do-sol a uma latitude e longitude específicas.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
Mycodo é um sistema de monitorização e regulação ambiental de código aberto que foi construído para funcionar em computadores de placa única, especificamente o Raspberry Pi.
Originalmente desenvolvido para o cultivo de cogumelos comestíveis, Mycodo tem crescido para fazer muito mais. O sistema consiste em duas partes, um backend (daemon) e um frontend (servidor web). O backend executa tarefas tais como adquirir medições de sensores e dispositivos e coordenar um conjunto diversificado de respostas a essas medições, incluindo a capacidade de modular saídas (comutar relés, gerar sinais PWM, operar bombas, mudar saídas sem fios, publicar/assinar ao MQTT, entre outros), regular as condições ambientais com controlo PID, programar temporizadores, capturar fotos e transmitir vídeo, desencadear acções quando as medições satisfazem determinadas condições, e muito mais. O frontend aloja uma interface web que permite a visualização e configuração a partir de qualquer dispositivo activado por browser.
Existem várias utilizações diferentes para Mycodo. Alguns utilizadores simplesmente armazenam medições de sensores para monitorizar as condições à distância, outros regulam as condições ambientais de um espaço físico, enquanto outros captam fotografia activada por movimento ou time-lapse, entre outras utilizações.
Os controladores de entrada adquirem medidas e armazenam-nas na base de dados de séries temporais InfluxDB. As medições vêm tipicamente de sensores, mas também podem ser configuradas para utilizar o valor de retorno dos comandos Linux Bash ou Python, ou equações matemáticas, tornando-o um sistema muito dinâmico para a aquisição e geração de dados.
Os controladores de saída produzem alterações nos pinos de entrada/saída geral (GPIO) ou podem ser configurados para executar comandos Linux Bash ou Python, permitindo uma variedade de usos potenciais. Existem alguns tipos diferentes de saídas: simples comutação de pinos GPIO (HIGH/LOW), geração de sinais de largura de pulso modulada (PWM), controlo de bombas peristálticas, publicação de MQTT, e muito mais.
Quando as Entradas e Saídas são combinadas, os controladores de funções podem ser utilizados para criar laços de feedback que utilizam o dispositivo de Saída para modular uma condição ambiental as medidas de Entrada. Certas Entradas podem ser acopladas a certas Saídas para criar uma variedade de diferentes aplicações de controlo e regulação. Para além da regulação simples, podem ser utilizados métodos para criar um ponto de ajuste variável ao longo do tempo, permitindo coisas como termocicladores, fornos de refluxo, simulação ambiental para terrários, fermentação ou cura de alimentos e bebidas, e cozinhar alimentos (sous-vide), para citar alguns.
Os gatilhos podem ser definidos para activar eventos com base em datas e horas específicas, de acordo com durações de tempo, ou o nascer/pôr-do-sol a uma latitude e longitude específicas.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
\ No newline at end of file
diff --git a/About.ru/index.html b/About.ru/index.html
index 77eb91f57..3ef70aec2 100644
--- a/About.ru/index.html
+++ b/About.ru/index.html
@@ -1 +1 @@
- About - Mycodo
Mycodo - это система мониторинга и регулирования окружающей среды с открытым исходным кодом, созданная для работы на одноплатных компьютерах, в частности Raspberry Pi.
Первоначально разработанная для выращивания съедобных грибов, Mycodo стала делать гораздо больше. Система состоит из двух частей: бэкэнд (демон) и фронтэнд (веб-сервер). Бэкэнд выполняет такие задачи, как получение измерений от датчиков и устройств и координация различных реакций на эти измерения, включая возможность модулировать выходы (переключать реле, генерировать ШИМ-сигналы, управлять насосами, переключать беспроводные розетки, публиковать/подписываться на MQTT и т.д.), регулировать условия окружающей среды с помощью ПИД-регулирования, планировать таймеры, делать фотографии и транслировать видео, запускать действия, когда измерения соответствуют определенным условиям, и многое другое. На передней панели расположен веб-интерфейс, который позволяет просматривать и настраивать систему с любого устройства, поддерживающего браузер.
Mycodo можно использовать по-разному. Некоторые пользователи просто хранят результаты измерений датчиков для удаленного мониторинга условий, другие регулируют условия окружающей среды в физическом пространстве, третьи делают фотографии, активированные движением, или фотографии с временной задержкой.
Входные контроллеры получают измерения и сохраняют их в базе данных временных рядов InfluxDB. Измерения обычно поступают от датчиков, но также могут быть настроены на использование возвращаемых значений команд Linux Bash или Python, или математических уравнений, что делает эту систему очень динамичной для получения и генерации данных.
Контроллеры выходов производят изменения на общих контактах ввода/вывода (GPIO) или могут быть настроены на выполнение команд Linux Bash или Python, что позволяет использовать их в самых разных целях. Существует несколько различных типов выходов: простое переключение контактов GPIO (HIGH/LOW), генерация сигналов с широтно-импульсной модуляцией (PWM), управление перистальтическими насосами, публикация MQTT и многое другое.
Когда входы и выходы объединены, функциональные контроллеры могут использоваться для создания контуров обратной связи, которые используют выходное устройство для изменения условий окружающей среды, измеряемых входом. Определенные входы могут быть соединены с определенными выходами для создания множества различных приложений управления и регулирования. Помимо простого регулирования, методы могут быть использованы для создания изменяющегося во времени заданного значения, что позволяет использовать их в термоциклерах, печах доводки, моделировании окружающей среды для террариумов, ферментации продуктов питания и напитков, приготовления пищи (sous-vide) и т.д., и т.п.
Триггеры могут быть установлены для активации событий на основе определенных дат и времени, в соответствии с продолжительностью времени или восходом/закатом солнца на определенной широте и долготе.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
Mycodo - это система мониторинга и регулирования окружающей среды с открытым исходным кодом, созданная для работы на одноплатных компьютерах, в частности Raspberry Pi.
Первоначально разработанная для выращивания съедобных грибов, Mycodo стала делать гораздо больше. Система состоит из двух частей: бэкэнд (демон) и фронтэнд (веб-сервер). Бэкэнд выполняет такие задачи, как получение измерений от датчиков и устройств и координация различных реакций на эти измерения, включая возможность модулировать выходы (переключать реле, генерировать ШИМ-сигналы, управлять насосами, переключать беспроводные розетки, публиковать/подписываться на MQTT и т.д.), регулировать условия окружающей среды с помощью ПИД-регулирования, планировать таймеры, делать фотографии и транслировать видео, запускать действия, когда измерения соответствуют определенным условиям, и многое другое. На передней панели расположен веб-интерфейс, который позволяет просматривать и настраивать систему с любого устройства, поддерживающего браузер.
Mycodo можно использовать по-разному. Некоторые пользователи просто хранят результаты измерений датчиков для удаленного мониторинга условий, другие регулируют условия окружающей среды в физическом пространстве, третьи делают фотографии, активированные движением, или фотографии с временной задержкой.
Входные контроллеры получают измерения и сохраняют их в базе данных временных рядов InfluxDB. Измерения обычно поступают от датчиков, но также могут быть настроены на использование возвращаемых значений команд Linux Bash или Python, или математических уравнений, что делает эту систему очень динамичной для получения и генерации данных.
Контроллеры выходов производят изменения на общих контактах ввода/вывода (GPIO) или могут быть настроены на выполнение команд Linux Bash или Python, что позволяет использовать их в самых разных целях. Существует несколько различных типов выходов: простое переключение контактов GPIO (HIGH/LOW), генерация сигналов с широтно-импульсной модуляцией (PWM), управление перистальтическими насосами, публикация MQTT и многое другое.
Когда входы и выходы объединены, функциональные контроллеры могут использоваться для создания контуров обратной связи, которые используют выходное устройство для изменения условий окружающей среды, измеряемых входом. Определенные входы могут быть соединены с определенными выходами для создания множества различных приложений управления и регулирования. Помимо простого регулирования, методы могут быть использованы для создания изменяющегося во времени заданного значения, что позволяет использовать их в термоциклерах, печах доводки, моделировании окружающей среды для террариумов, ферментации продуктов питания и напитков, приготовления пищи (sous-vide) и т.д., и т.п.
Триггеры могут быть установлены для активации событий на основе определенных дат и времени, в соответствии с продолжительностью времени или восходом/закатом солнца на определенной широте и долготе.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
\ No newline at end of file
diff --git a/About.sr/index.html b/About.sr/index.html
index 7e52c9197..8c9799705 100644
--- a/About.sr/index.html
+++ b/About.sr/index.html
@@ -1 +1 @@
- About - Mycodo
Mycodo is an open-source environmental monitoring and regulation system that was built to run on single-board computers, specifically the Raspberry Pi.
Originally developed for cultivating edible mushrooms, Mycodo has grown to do much more. The system consists of two parts, a backend (daemon) and a frontend (web server). The backend performs tasks such as acquiring measurements from sensors and devices and coordinating a diverse set of responses to those measurements, including the ability to modulate outputs (switch relays, generate PWM signals, operate pumps, switch wireless outlets, publish/subscribe to MQTT, among others), regulate environmental conditions with PID control, schedule timers, capture photos and stream video, trigger actions when measurements meet certain conditions, and more. The frontend hosts a web interface that enables viewing and configuration from any browser-enabled device.
There are a number of different uses for Mycodo. Some users simply store sensor measurements to monitor conditions remotely, others regulate the environmental conditions of a physical space, while others capture motion-activated or time-lapse photography, among other uses.
Input controllers acquire measurements and store them in the InfluxDB time series database. Measurements typically come from sensors, but may also be configured to use the return value of Linux Bash or Python commands, or math equations, making this a very dynamic system for acquiring and generating data.
Output controllers produce changes to the general input/output (GPIO) pins or may be configured to execute Linux Bash or Python commands, enabling a variety of potential uses. There are a few different types of outputs: simple switching of GPIO pins (HIGH/LOW), generating pulse-width modulated (PWM) signals, controlling peristaltic pumps, MQTT publishing, and more.
When Inputs and Outputs are combined, Function controllers may be used to create feedback loops that uses the Output device to modulate an environmental condition the Input measures. Certain Inputs may be coupled with certain Outputs to create a variety of different control and regulation applications. Beyond simple regulation, Methods may be used to create a changing setpoint over time, enabling such things as thermal cyclers, reflow ovens, environmental simulation for terrariums, food and beverage fermentation or curing, and cooking food (sous-vide), to name a few.
Triggers can be set to activate events based on specific dates and times, according to durations of time, or the sunrise/sunset at a specific latitude and longitude.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
Mycodo is an open-source environmental monitoring and regulation system that was built to run on single-board computers, specifically the Raspberry Pi.
Originally developed for cultivating edible mushrooms, Mycodo has grown to do much more. The system consists of two parts, a backend (daemon) and a frontend (web server). The backend performs tasks such as acquiring measurements from sensors and devices and coordinating a diverse set of responses to those measurements, including the ability to modulate outputs (switch relays, generate PWM signals, operate pumps, switch wireless outlets, publish/subscribe to MQTT, among others), regulate environmental conditions with PID control, schedule timers, capture photos and stream video, trigger actions when measurements meet certain conditions, and more. The frontend hosts a web interface that enables viewing and configuration from any browser-enabled device.
There are a number of different uses for Mycodo. Some users simply store sensor measurements to monitor conditions remotely, others regulate the environmental conditions of a physical space, while others capture motion-activated or time-lapse photography, among other uses.
Input controllers acquire measurements and store them in the InfluxDB time series database. Measurements typically come from sensors, but may also be configured to use the return value of Linux Bash or Python commands, or math equations, making this a very dynamic system for acquiring and generating data.
Output controllers produce changes to the general input/output (GPIO) pins or may be configured to execute Linux Bash or Python commands, enabling a variety of potential uses. There are a few different types of outputs: simple switching of GPIO pins (HIGH/LOW), generating pulse-width modulated (PWM) signals, controlling peristaltic pumps, MQTT publishing, and more.
When Inputs and Outputs are combined, Function controllers may be used to create feedback loops that uses the Output device to modulate an environmental condition the Input measures. Certain Inputs may be coupled with certain Outputs to create a variety of different control and regulation applications. Beyond simple regulation, Methods may be used to create a changing setpoint over time, enabling such things as thermal cyclers, reflow ovens, environmental simulation for terrariums, food and beverage fermentation or curing, and cooking food (sous-vide), to name a few.
Triggers can be set to activate events based on specific dates and times, according to durations of time, or the sunrise/sunset at a specific latitude and longitude.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
\ No newline at end of file
diff --git a/About.sv/index.html b/About.sv/index.html
index 6061c8966..92c35fe9e 100644
--- a/About.sv/index.html
+++ b/About.sv/index.html
@@ -1 +1 @@
- About - Mycodo
Mycodo är ett miljöövervaknings- och regleringssystem med öppen källkod som byggdes för att köras på enbordsdatorer, särskilt Raspberry Pi.
Mycodo utvecklades ursprungligen för att odla ätliga svampar, men har vuxit till att göra mycket mer. Systemet består av två delar, en backend (daemon) och en frontend (webbserver). Baksidan utför uppgifter som att samla in mätningar från sensorer och enheter och samordna en mängd olika svar på dessa mätningar, inklusive förmågan att modulera utgångar (koppla om reläer, generera PWM-signaler, driva pumpar, koppla om trådlösa uttag, publicera/skriva på MQTT, med mera), reglera miljöförhållanden med PID-kontroll, schemalägga timers, ta foton och strömma video, utlösa åtgärder när mätningar uppfyller vissa villkor, med mera. Frontenden är värd för ett webbgränssnitt som gör det möjligt att visa och konfigurera från alla enheter med webbläsare.
Mycodo kan användas på många olika sätt. Vissa användare lagrar helt enkelt sensormätningar för att övervaka förhållandena på distans, andra reglerar miljöförhållandena i ett fysiskt utrymme, medan andra bland annat tar rörelsestyrd eller tidsförloppsfotografering.
Ingångskontrollanter samlar in mätningar och lagrar dem i InfluxDB:s tidsseriedatabas. Mätningarna kommer vanligtvis från sensorer, men kan också konfigureras för att använda returvärdet av Linux Bash- eller Pythonkommandon eller matematiska ekvationer, vilket gör detta till ett mycket dynamiskt system för att samla in och generera data.
Utgångskontroller producerar ändringar på GPIO-stift (general input/output) eller kan konfigureras för att utföra Linux Bash- eller Python-kommandon, vilket möjliggör en mängd olika användningsområden. Det finns några olika typer av utgångar: enkel omkoppling av GPIO-stift (HIGH/LOW), generering av PWM-signaler (pulsbreddsmodulerade signaler), styrning av peristaltiska pumpar, MQTT-publicering med mera.
När ingångar och utgångar kombineras kan funktionskontroller användas för att skapa återkopplingsslingor som använder utgångsenheten för att modulera ett miljötillstånd som ingången mäter. Vissa ingångar kan kombineras med vissa utgångar för att skapa en mängd olika styr- och reglertillämpningar. Utöver enkel reglering kan metoderna användas för att skapa ett förändrat börvärde över tiden, vilket möjliggör t.ex. termiska cyklare, reflow-ugnar, miljösimulering för terrarier, jäsning eller härdning av livsmedel och drycker och tillagning av mat (sous-vide), för att nämna några exempel.
Utlösare kan ställas in för att aktivera händelser baserat på specifika datum och tider, enligt tidsperioder eller vid soluppgång/solnedgång på en specifik latitud och longitud.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
Mycodo är ett miljöövervaknings- och regleringssystem med öppen källkod som byggdes för att köras på enbordsdatorer, särskilt Raspberry Pi.
Mycodo utvecklades ursprungligen för att odla ätliga svampar, men har vuxit till att göra mycket mer. Systemet består av två delar, en backend (daemon) och en frontend (webbserver). Baksidan utför uppgifter som att samla in mätningar från sensorer och enheter och samordna en mängd olika svar på dessa mätningar, inklusive förmågan att modulera utgångar (koppla om reläer, generera PWM-signaler, driva pumpar, koppla om trådlösa uttag, publicera/skriva på MQTT, med mera), reglera miljöförhållanden med PID-kontroll, schemalägga timers, ta foton och strömma video, utlösa åtgärder när mätningar uppfyller vissa villkor, med mera. Frontenden är värd för ett webbgränssnitt som gör det möjligt att visa och konfigurera från alla enheter med webbläsare.
Mycodo kan användas på många olika sätt. Vissa användare lagrar helt enkelt sensormätningar för att övervaka förhållandena på distans, andra reglerar miljöförhållandena i ett fysiskt utrymme, medan andra bland annat tar rörelsestyrd eller tidsförloppsfotografering.
Ingångskontrollanter samlar in mätningar och lagrar dem i InfluxDB:s tidsseriedatabas. Mätningarna kommer vanligtvis från sensorer, men kan också konfigureras för att använda returvärdet av Linux Bash- eller Pythonkommandon eller matematiska ekvationer, vilket gör detta till ett mycket dynamiskt system för att samla in och generera data.
Utgångskontroller producerar ändringar på GPIO-stift (general input/output) eller kan konfigureras för att utföra Linux Bash- eller Python-kommandon, vilket möjliggör en mängd olika användningsområden. Det finns några olika typer av utgångar: enkel omkoppling av GPIO-stift (HIGH/LOW), generering av PWM-signaler (pulsbreddsmodulerade signaler), styrning av peristaltiska pumpar, MQTT-publicering med mera.
När ingångar och utgångar kombineras kan funktionskontroller användas för att skapa återkopplingsslingor som använder utgångsenheten för att modulera ett miljötillstånd som ingången mäter. Vissa ingångar kan kombineras med vissa utgångar för att skapa en mängd olika styr- och reglertillämpningar. Utöver enkel reglering kan metoderna användas för att skapa ett förändrat börvärde över tiden, vilket möjliggör t.ex. termiska cyklare, reflow-ugnar, miljösimulering för terrarier, jäsning eller härdning av livsmedel och drycker och tillagning av mat (sous-vide), för att nämna några exempel.
Utlösare kan ställas in för att aktivera händelser baserat på specifika datum och tider, enligt tidsperioder eller vid soluppgång/solnedgång på en specifik latitud och longitud.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
\ No newline at end of file
diff --git a/About.tr/index.html b/About.tr/index.html
index 930d1a128..2f775d436 100644
--- a/About.tr/index.html
+++ b/About.tr/index.html
@@ -1 +1 @@
- About - Mycodo
Mycodo, tek kartlı bilgisayarlarda, özellikle de Raspberry Pi üzerinde çalışmak üzere inşa edilmiş açık kaynaklı bir çevresel izleme ve düzenleme sistemidir.
Başlangıçta yenilebilir mantar yetiştirmek için geliştirilen Mycodo, çok daha fazlasını yapmak için büyüdü. Sistem, bir arka uç (daemon) ve bir ön uç (web sunucusu) olmak üzere iki bölümden oluşmaktadır. Arka uç, sensörlerden ve cihazlardan ölçümler almak ve bu ölçümlere verilen, çıkışları modüle etme (röleleri değiştirme, PWM sinyalleri üretme, pompaları çalıştırma, kablosuz çıkışları değiştirme, MQTT'ye yayınlama/abone olma ve diğerleri), PID kontrolü ile çevresel koşulları düzenleme, zamanlayıcıları zamanlama, fotoğraf çekme ve video akışı, ölçümler belirli koşulları karşıladığında eylemleri tetikleme ve daha fazlası dahil olmak üzere çeşitli yanıtları koordine etme gibi görevleri yerine getirir. Ön uç, tarayıcı özellikli herhangi bir cihazdan görüntüleme ve yapılandırma sağlayan bir web arayüzü barındırır.
Mycodo'nun çok sayıda farklı kullanım alanı vardır. Bazı kullanıcılar koşulları uzaktan izlemek için sensör ölçümlerini depolarken, diğerleri fiziksel bir alanın çevresel koşullarını düzenliyor, diğerleri ise diğer kullanımların yanı sıra hareketle etkinleştirilen veya hızlandırılmış fotoğraf çekiyor.
Giriş denetleyicileri ölçümleri alır ve bunları InfluxDB zaman serisi veritabanında depolar. Ölçümler genellikle sensörlerden gelir, ancak Linux Bash veya Python komutlarının veya matematik denklemlerinin dönüş değerini kullanmak üzere de yapılandırılabilir, bu da bunu veri elde etmek ve üretmek için çok dinamik bir sistem haline getirir.
Çıkış denetleyicileri genel giriş/çıkış (GPIO) pinlerinde değişiklikler üretir veya Linux Bash veya Python komutlarını yürütecek şekilde yapılandırılarak çeşitli potansiyel kullanımlara olanak sağlar. Birkaç farklı çıkış türü vardır: GPIO pinlerinin basit anahtarlanması (YÜKSEK/DÜŞÜK), darbe genişliği modülasyonlu (PWM) sinyaller üretme, peristaltik pompaları kontrol etme, MQTT yayınlama ve daha fazlası.
Girişler ve Çıkışlar birleştirildiğinde, Fonksiyon kontrolörleri, Girişin ölçtüğü bir çevresel koşulu modüle etmek için Çıkış cihazını kullanan geri besleme döngüleri oluşturmak için kullanılabilir. Çeşitli farklı kontrol ve düzenleme uygulamaları oluşturmak için belirli Girişler belirli Çıkışlarla birleştirilebilir. Basit düzenlemenin ötesinde, Yöntemler zaman içinde değişen bir ayar noktası oluşturmak için kullanılabilir, bu da termal döngüler, yeniden akış fırınları, teraryumlar için çevresel simülasyon, yiyecek ve içecek fermantasyonu veya kürleme ve yiyecek pişirme (sous-vide) gibi şeyleri mümkün kılar.
Tetikleyiciler, belirli tarih ve saatlere, zaman sürelerine veya belirli bir enlem ve boylamda güneşin doğuşuna/ batışına göre olayları etkinleştirmek üzere ayarlanabilir.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
Mycodo, tek kartlı bilgisayarlarda, özellikle de Raspberry Pi üzerinde çalışmak üzere inşa edilmiş açık kaynaklı bir çevresel izleme ve düzenleme sistemidir.
Başlangıçta yenilebilir mantar yetiştirmek için geliştirilen Mycodo, çok daha fazlasını yapmak için büyüdü. Sistem, bir arka uç (daemon) ve bir ön uç (web sunucusu) olmak üzere iki bölümden oluşmaktadır. Arka uç, sensörlerden ve cihazlardan ölçümler almak ve bu ölçümlere verilen, çıkışları modüle etme (röleleri değiştirme, PWM sinyalleri üretme, pompaları çalıştırma, kablosuz çıkışları değiştirme, MQTT'ye yayınlama/abone olma ve diğerleri), PID kontrolü ile çevresel koşulları düzenleme, zamanlayıcıları zamanlama, fotoğraf çekme ve video akışı, ölçümler belirli koşulları karşıladığında eylemleri tetikleme ve daha fazlası dahil olmak üzere çeşitli yanıtları koordine etme gibi görevleri yerine getirir. Ön uç, tarayıcı özellikli herhangi bir cihazdan görüntüleme ve yapılandırma sağlayan bir web arayüzü barındırır.
Mycodo'nun çok sayıda farklı kullanım alanı vardır. Bazı kullanıcılar koşulları uzaktan izlemek için sensör ölçümlerini depolarken, diğerleri fiziksel bir alanın çevresel koşullarını düzenliyor, diğerleri ise diğer kullanımların yanı sıra hareketle etkinleştirilen veya hızlandırılmış fotoğraf çekiyor.
Giriş denetleyicileri ölçümleri alır ve bunları InfluxDB zaman serisi veritabanında depolar. Ölçümler genellikle sensörlerden gelir, ancak Linux Bash veya Python komutlarının veya matematik denklemlerinin dönüş değerini kullanmak üzere de yapılandırılabilir, bu da bunu veri elde etmek ve üretmek için çok dinamik bir sistem haline getirir.
Çıkış denetleyicileri genel giriş/çıkış (GPIO) pinlerinde değişiklikler üretir veya Linux Bash veya Python komutlarını yürütecek şekilde yapılandırılarak çeşitli potansiyel kullanımlara olanak sağlar. Birkaç farklı çıkış türü vardır: GPIO pinlerinin basit anahtarlanması (YÜKSEK/DÜŞÜK), darbe genişliği modülasyonlu (PWM) sinyaller üretme, peristaltik pompaları kontrol etme, MQTT yayınlama ve daha fazlası.
Girişler ve Çıkışlar birleştirildiğinde, Fonksiyon kontrolörleri, Girişin ölçtüğü bir çevresel koşulu modüle etmek için Çıkış cihazını kullanan geri besleme döngüleri oluşturmak için kullanılabilir. Çeşitli farklı kontrol ve düzenleme uygulamaları oluşturmak için belirli Girişler belirli Çıkışlarla birleştirilebilir. Basit düzenlemenin ötesinde, Yöntemler zaman içinde değişen bir ayar noktası oluşturmak için kullanılabilir, bu da termal döngüler, yeniden akış fırınları, teraryumlar için çevresel simülasyon, yiyecek ve içecek fermantasyonu veya kürleme ve yiyecek pişirme (sous-vide) gibi şeyleri mümkün kılar.
Tetikleyiciler, belirli tarih ve saatlere, zaman sürelerine veya belirli bir enlem ve boylamda güneşin doğuşuna/ batışına göre olayları etkinleştirmek üzere ayarlanabilir.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
\ No newline at end of file
diff --git a/About.zh/index.html b/About.zh/index.html
index 4c5c8581e..cb9f23b08 100644
--- a/About.zh/index.html
+++ b/About.zh/index.html
@@ -1 +1 @@
- About - Mycodo
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
\ No newline at end of file
diff --git a/About/index.html b/About/index.html
index 37b42837a..a62063d88 100644
--- a/About/index.html
+++ b/About/index.html
@@ -1 +1 @@
- About - Mycodo
Mycodo is an open-source environmental monitoring and regulation system that was built to run on single-board computers, specifically the Raspberry Pi.
Originally developed for cultivating edible mushrooms, Mycodo has grown to do much more. The system consists of two parts, a backend (daemon) and a frontend (web server). The backend performs tasks such as acquiring measurements from sensors and devices and coordinating a diverse set of responses to those measurements, including the ability to modulate outputs (switch relays, generate PWM signals, operate pumps, switch wireless outlets, publish/subscribe to MQTT, among others), regulate environmental conditions with PID control, schedule timers, capture photos and stream video, trigger actions when measurements meet certain conditions, and more. The frontend hosts a web interface that enables viewing and configuration from any browser-enabled device.
There are a number of different uses for Mycodo. Some users simply store sensor measurements to monitor conditions remotely, others regulate the environmental conditions of a physical space, while others capture motion-activated or time-lapse photography, among other uses.
Input controllers acquire measurements and store them in the InfluxDB time series database. Measurements typically come from sensors, but may also be configured to use the return value of Linux Bash or Python commands, or math equations, making this a very dynamic system for acquiring and generating data.
Output controllers produce changes to the general input/output (GPIO) pins or may be configured to execute Linux Bash or Python commands, enabling a variety of potential uses. There are a few different types of outputs: simple switching of GPIO pins (HIGH/LOW), generating pulse-width modulated (PWM) signals, controlling peristaltic pumps, MQTT publishing, and more.
When Inputs and Outputs are combined, Function controllers may be used to create feedback loops that uses the Output device to modulate an environmental condition the Input measures. Certain Inputs may be coupled with certain Outputs to create a variety of different control and regulation applications. Beyond simple regulation, Methods may be used to create a changing setpoint over time, enabling such things as thermal cyclers, reflow ovens, environmental simulation for terrariums, food and beverage fermentation or curing, and cooking food (sous-vide), to name a few.
Triggers can be set to activate events based on specific dates and times, according to durations of time, or the sunrise/sunset at a specific latitude and longitude.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
Mycodo is an open-source environmental monitoring and regulation system that was built to run on single-board computers, specifically the Raspberry Pi.
Originally developed for cultivating edible mushrooms, Mycodo has grown to do much more. The system consists of two parts, a backend (daemon) and a frontend (web server). The backend performs tasks such as acquiring measurements from sensors and devices and coordinating a diverse set of responses to those measurements, including the ability to modulate outputs (switch relays, generate PWM signals, operate pumps, switch wireless outlets, publish/subscribe to MQTT, among others), regulate environmental conditions with PID control, schedule timers, capture photos and stream video, trigger actions when measurements meet certain conditions, and more. The frontend hosts a web interface that enables viewing and configuration from any browser-enabled device.
There are a number of different uses for Mycodo. Some users simply store sensor measurements to monitor conditions remotely, others regulate the environmental conditions of a physical space, while others capture motion-activated or time-lapse photography, among other uses.
Input controllers acquire measurements and store them in the InfluxDB time series database. Measurements typically come from sensors, but may also be configured to use the return value of Linux Bash or Python commands, or math equations, making this a very dynamic system for acquiring and generating data.
Output controllers produce changes to the general input/output (GPIO) pins or may be configured to execute Linux Bash or Python commands, enabling a variety of potential uses. There are a few different types of outputs: simple switching of GPIO pins (HIGH/LOW), generating pulse-width modulated (PWM) signals, controlling peristaltic pumps, MQTT publishing, and more.
When Inputs and Outputs are combined, Function controllers may be used to create feedback loops that uses the Output device to modulate an environmental condition the Input measures. Certain Inputs may be coupled with certain Outputs to create a variety of different control and regulation applications. Beyond simple regulation, Methods may be used to create a changing setpoint over time, enabling such things as thermal cyclers, reflow ovens, environmental simulation for terrariums, food and beverage fermentation or curing, and cooking food (sous-vide), to name a few.
Triggers can be set to activate events based on specific dates and times, according to durations of time, or the sunrise/sunset at a specific latitude and longitude.
Mycodo has been translated to several languages. By default, the language of the browser will determine which language is used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.
\ No newline at end of file
diff --git a/Actions/index.html b/Actions/index.html
index 608b2de14..9c4f0612e 100644
--- a/Actions/index.html
+++ b/Actions/index.html
@@ -1 +1 @@
- Actions - Mycodo
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
These are the actions that can be added to Controllers (i.e. Input, Conditional, and Trigger Controllers) to provide a way to add additional functionality or interact with other parts of Mycodo. Actions may work with one or more controller type, depending on how the Action has been designed.
There is a Custom Action import system in Mycodo that allows user-created Actions to be used in the Mycodo system. Custom Actions can be uploaded on the [Gear Icon] -> Configure -> Custom Actions page. After import, they will be available to use on the Setup -> Function page.
If you develop a working Action module, please consider creating a new GitHub issue or pull request, and it may be included in the built-in set.
Open any of the built-in modules located in the directory Mycodo/mycodo/actions for examples of the proper formatting.
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
These are the actions that can be added to Controllers (i.e. Input, Conditional, and Trigger Controllers) to provide a way to add additional functionality or interact with other parts of Mycodo. Actions may work with one or more controller type, depending on how the Action has been designed.
There is a Custom Action import system in Mycodo that allows user-created Actions to be used in the Mycodo system. Custom Actions can be uploaded on the [Gear Icon] -> Configure -> Custom Actions page. After import, they will be available to use on the Setup -> Function page.
If you develop a working Action module, please consider creating a new GitHub issue or pull request, and it may be included in the built-in set.
Open any of the built-in modules located in the directory Mycodo/mycodo/actions for examples of the proper formatting.
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
Alerts can be used to notify users about the state of the system. For things like sensor monitoring, this could be a threshold that indicates something needs attention. E-Mail notifications are built-in to Mycodo in a number of places, however there are several places (Inputs, Outputs, Controllers) that allow custom Python code to be used, enabling many other notification options to be built.
See Alert Settings for more information about setting up Alerts.
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
Alerts can be used to notify users about the state of the system. For things like sensor monitoring, this could be a threshold that indicates something needs attention. E-Mail notifications are built-in to Mycodo in a number of places, however there are several places (Inputs, Outputs, Controllers) that allow custom Python code to be used, enabling many other notification options to be built.
See Alert Settings for more information about setting up Alerts.
\ No newline at end of file
diff --git a/Analog-To-Digital-Converters/index.html b/Analog-To-Digital-Converters/index.html
index 7b971fa56..05b34da8a 100644
--- a/Analog-To-Digital-Converters/index.html
+++ b/Analog-To-Digital-Converters/index.html
@@ -1 +1 @@
- Analog-To-Digital Converters - Mycodo
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
Calibration can be performed for any Input, Output, or Function if that functionality has been built in to the module. Some common modules that have calibration are several of the Atlas Scientific, MH-Z19, and DS-type Inputs and many of the peristaltic pump Outputs. Calibration actions can be found on the options page for the particular device. Refer to the calibration instructions at this location for how to perform a successful calibration.
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
Calibration can be performed for any Input, Output, or Function if that functionality has been built in to the module. Some common modules that have calibration are several of the Atlas Scientific, MH-Z19, and DS-type Inputs and many of the peristaltic pump Outputs. Calibration actions can be found on the options page for the particular device. Refer to the calibration instructions at this location for how to perform a successful calibration.
\ No newline at end of file
diff --git a/Camera/index.html b/Camera/index.html
index 36150c33b..c6b0601f7 100644
--- a/Camera/index.html
+++ b/Camera/index.html
@@ -1 +1 @@
- Camera - Mycodo
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
Page: More -> Camera
Cameras can be used to capture still images, create time-lapses, and stream video. Cameras may also be used by Functions to trigger a camera image or video capture.
There are several libraries that may be used to access your camera, which includes picamera (Raspberry Pi Camera), fswebcam, opencv, urllib, and requests (among potentially others). These libraries enable images to be acquired from the Raspberry Pi camera, USB cameras and webcams, and IP cameras that are accessible by a URL. Furthermore, using the urllib and request libraries, any image URL can be used to acquire images.
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
Page: More -> Camera
Cameras can be used to capture still images, create time-lapses, and stream video. Cameras may also be used by Functions to trigger a camera image or video capture.
There are several libraries that may be used to access your camera, which includes picamera (Raspberry Pi Camera), fswebcam, opencv, urllib, and requests (among potentially others). These libraries enable images to be acquired from the Raspberry Pi camera, USB cameras and webcams, and IP cameras that are accessible by a URL. Furthermore, using the urllib and request libraries, any image URL can be used to acquire images.
\ No newline at end of file
diff --git a/Configuration-Settings/index.html b/Configuration-Settings/index.html
index d745820ae..2d0f7d542 100644
--- a/Configuration-Settings/index.html
+++ b/Configuration-Settings/index.html
@@ -1 +1 @@
- System Configuration - Mycodo
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
Page: [Gear Icon] -> Configure
The settings menu, accessed by selecting the gear icon in the top-right, then the Configure link, is a general area for various system-wide configuration options.
Measurements are stored in a time-series database. There are currently two options that can be used with Mycodo, InfluxDB 1.x and InfluxDB 2.x. InfluxDB 1.x works on both 32-bit and 64-bit operating systems, but 2.x only works on 64-bit operating systems. Therefore, if you are using a 32-bit operating system, you will need to use InfluxDB 1.x. During the Mycodo install, you can select to install influxDB 1.x, 2.x, or neither. If you don't install InfluxDB, you will need to specify the host and credentials to an alternate install for Mycodo to be able to store and query measurements.
If you are installing via Docker, you will need to change the hostname to "mycodo_influxdb" after the Mycodo install to be able to connect to the InfluxDB Docker container.
Setting
Description
Database
Select the influxdb version to use.
Retention Policy
Select the retention policy. Default is "autogen" for v1.x and "infinite" for v2.x.
Hostname
The hostname to connect to the time-series server. Default is "localhost".
Port
The time-series database port. Default is 8086.
Database Name
The name of the database (v1.x) or bucket (v2.x) for Mycodo to store to and query from. Default is "mycodo_db".
Username
The username to access the database (if credentials are required). Default is "mycodo".
Password
The password to access the database (if credentials are required).
The IP address to use to test for an active internet connection.
Internet Test Port
The port to use to test for an active internet connection.
Internet Test Timeout
The timeout period for testing for an active internet connection.
Check for Updates
Automatically check for updates every 2 days and notify through the web interface. If there is a new update, the Configure (Gear Icon) as well as the Upgrade menu will turn the color red.
In order to calculate accurate energy usage statistics, a few characteristics of your electrical system needs to be know. These variables should describe the characteristics of the electrical system being used by the relays to operate electrical devices.
Note
If not using a current sensor, proper energy usage calculations will rely on the correct current draw to be set for each output (see Output Settings).
Setting
Description
Max Amps
Set the maximum allowed amperage to be switched on at any given time. If a output that's instructed to turn on will cause the sum of active devices to exceed this amount, the output will not be allowed to turn on, to prevent any damage that may result from exceeding current limits.
Voltage
Alternating current (AC) voltage that is switched by the outputs. This is usually 120 or 240.
Cost per kWh
This is how much you pay per kWh.
Currency Unit
This is the unit used for the currency that pays for electricity.
Day of Month
This is the day of the month (1-30) that the electricity meter is read (which will correspond to the electrical bill).
Generate Usage/Cost Report
These options define when an Energy Usage Report will be generated. Currently, these Only support the Output Duration calculation method.
Time Span to Generate
How often to automatically generate a usage/cost report.
Day of Week/Month to Generate
On which day of the week to generate the report. Daily: 1-7 (Monday = 1), Monthly: 1-28.
Hour of Day to Generate
On which hour of the day to generate the report (0-23).
Each controller for Inputs, Outputs, and Functions operate periodically. The fastest these controllers can respond is determined by the sample rate of each. The looping function of each controller is paused for the specific duration. For instance, the Output controller can only have a resolution of 1 second if the sample rate is set to 1 second, meaning if you instruct an output to turn on or off, it will take a maximum of 1 second to respond to that request.
Setting
Description
Max Amps
Set the maximum allowed amperage to be switched on at any given time. If a output that's instructed to turn on will cause the sum of active devices to exceed this amount, the output will not be allowed to turn on, to prevent any damage that may result from exceeding current limits.
Voltage
Alternating current (AC) voltage that is switched by the outputs. This is usually 120 or 240.
Cost per kWh
This is how much you pay per kWh.
Currency Unit
This is the unit used for the currency that pays for electricity.
Day of Month
This is the day of the month (1-30) that the electricity meter is read (which will correspond to the electrical bill).
Generate Usage/Cost Report
These options define when an Energy Usage Report will be generated. Currently, these Only support the Output Duration calculation method.
New measurements, units, and conversions can be created that can extend functionality of Mycodo beyond the built-in types and equations. Be sure to create units before measurements, as units need to be selected when creating a measurement. A measurement can be created that already exists, allowing additional units to be added to a pre-existing measurement. For example, the measurement 'altitude' already exists, however if you wanted to add the unit 'fathom', first create the unit 'fathom', then create the measurement 'altitude' with the 'fathom' unit selected. It is okay to create a custom measurement for a measurement that already exist (this is how new units for a currently-installed measurement is added).
Setting
Description
Measurement ID
ID for the measurement to use in the measurements_dict of input modules (e.g. "length", "width", "speed").
Measurement Name
Common name for the measurement (e.g. "Length", "Weight", "Speed").
Measurement Units
Select all the units that are associated with the measurement.
Unit ID
ID for the unit to use in the measurements_dict of input modules (e.g. "K", "g", "m").
Unit Name
Common name for the unit (e.g. "Kilogram", "Meter").
Unit Abbreviation
Abbreviation for the unit (e.g. "kg", "m").
Convert From Unit
The unit that will be converted from.
Convert To Unit
The unit that will be converted to.
Equation
The equation used to convert one unit to another. The lowercase letter "x" must be included in the equation (e.g. "x/1000+20", "250*(x/3)"). This "x" will be replaced with the actual measurement being converted.
Mycodo requires at least one Admin user for the login system to be enabled. If there isn't an Admin user, the web server will redirect to an Admin Creation Form. This is the first page you see when starting Mycodo for the first time. After an Admin user has been created, additional users may be created from the User Settings page.
Setting
Description
Username
Choose a user name that is between 2 and 64 characters. The user name is case insensitive (all user names are converted to lower-case).
Email
The email associated with the new account.
Password/Repeat
Choose a password that is between 6 and 64 characters and only contains letters, numbers, and symbols.
Keypad Code
Set an optional numeric code that is at least 4 digits for logging in using a keypad.
Role
Roles are a way of imposing access restrictions on users, to either allow or deny actions. See the table below for explanations of the four default Roles.
Theme
The web user interface theme to apply, including colors, themes, and other design elements.
Roles define the permissions of each user. There are 4 default roles that determine if a user can view or edit particular areas of Mycodo. Four roles are provided by default, but custom roles may be created.
Role
Admin
Editor
Monitor
Guest
Edit Users
X
Edit Controllers
X
X
Edit Settings
X
X
View Settings
X
X
X
View Camera
X
X
X
View Stats
X
X
X
View Logs
X
X
X
The Edit Controllers permission protects the editing of Conditionals, Graphs, LCDs, Methods, PIDs, Outputs, and Inputs.
The View Stats permission protects the viewing of usage statistics and the System Information and Energy Usage pages.
Pi settings configure parts of the linux system that Mycodo runs on.
pigpiod is required if you wish to use PWM Outputs, as well as PWM, RPM, DHT22, DHT11, HTU21D Inputs.
Setting
Description
Enable/Disable Feature
These are system interfaces that can be enabled and disabled from the web UI via the raspi-config command.
pigpiod Sample Rate
This is the sample rate the pigpiod service will operate at. The lower number enables faster PWM frequencies, but may significantly increase processor load on the Pi Zeros. pigpiod may als be disabled completely if it's not required (see note, above).
Alert settings set up the credentials for sending email notifications.
Setting
Description
SMTP Host
The SMTP server to use to send emails from.
SMTP Port
Port to communicate with the SMTP server (465 for SSL, 587 for TSL).
Enable SSL
Check to enable SSL, uncheck to enable TSL.
SMTP User
The user name to send the email from. This can be just a name or the entire email address.
SMTP Password
The password for the user.
From Email
What the from email address be set as. This should be the actual email address for this user.
Max emails (per hour)
Set the maximum number of emails that can be sent per hour. If more notifications are triggered within the hour and this number has been reached, the notifications will be discarded.
Send Test Email
Test the email configuration by sending a test email.
Many cameras can be used simultaneously with Mycodo. Each camera needs to be set up in the camera settings, then may be used throughout the software.
Note
Not every option (such as Hue or White Balance) may be able to be used with your particular camera, due to manufacturer differences in hardware and software.
Setting
Description
Type
Select whether the camera is a Raspberry Pi Camera or a USB camera.
Library
Select which library to use to communicate with the camera. The Raspberry Pi Camera uses picamera, and USB cameras should be set to fswebcam.
Device
The device to use to connect to the camera. fswebcam is the only library that uses this option.
Output
This output will turn on during the capture of any still image (which includes timelapses).
Output Duration
Turn output on for this duration of time before the image is captured.
Rotate Image
The number of degrees to rotate the image.
...
Image Width, Image Height, Brightness, Contrast, Exposure, Gain, Hue, Saturation, White Balance. These options are self-explanatory. Not all options will work with all cameras.
Pre Command
A command to execute (as user 'root') before a still image is captured.
Post Command
A command to execute (as user 'root') after a still image is captured.
Sometimes issues arise in the system as a result of incompatible configurations, either the result of a misconfigured part of the system (Input, Output, etc.) or an update that didn't properly handle a database upgrade, or other unforeseen issue. Sometimes it is necessary to perform diagnostic actions that can determine the cause of the issue or fix the issue itself. The options below are meant to alleviate issues, such as a misconfigured dashboard element causing an error on the Data -> Dashboard page, which may cause an inability to access the Data -> Dashboard page to correct the issue. Deleting all Dashboard Elements may be the most economical method to enable access to the Data -> Dashboard page again, at the cost of having to readd all the Dashboard Elements that were once there.
Setting
Description
Delete All Dashboards
Delete all saved Dashboards on the Data - Dashboard page.
Delete All Inputs
Delete all Inputs on the Setup -> Input page.
Delete all Note and Note Tags
Delete all notes and tags from the More -> Note page.
Delete all Outputs
Delete all Outputs from the Setup -> Output page.
Delete Settings Database
Delete the mycodo.db settings database (WARNING: This will delete all settings and users).
Delete File: .dependency
Delete the .dependency file. If you are having an issue accessing the dependency install page, try this.
Delete File: .upgrade
Delete the .upgrade file. If you are having an issue accessing the upgrade page or running an upgrade, try this.
Recreate Influxdb 1.x database
Delete the InfluxDB 1.x measurement database, then recreate it. This deletes all measurement data!
Recreate Influxdb 2.x database
Delete the InfluxDB 2.x measurement database, then recreate it. This deletes all measurement data!
Reset Email Counter
Reset the email/hour email counter.
Install Dependencies
Start the dependency install script that will install all needed dependencies for the entire Mycodo system.
Set to Upgrade to Master
This will change FORCE_UPGRADE_MASTER to True in config.py. This is a way to instruct the upgrade system to upgrade to the master branch on GitHub without having to log in and manually edit the config.py file.
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
Page: [Gear Icon] -> Configure
The settings menu, accessed by selecting the gear icon in the top-right, then the Configure link, is a general area for various system-wide configuration options.
Measurements are stored in a time-series database. There are currently two options that can be used with Mycodo, InfluxDB 1.x and InfluxDB 2.x. InfluxDB 1.x works on both 32-bit and 64-bit operating systems, but 2.x only works on 64-bit operating systems. Therefore, if you are using a 32-bit operating system, you will need to use InfluxDB 1.x. During the Mycodo install, you can select to install influxDB 1.x, 2.x, or neither. If you don't install InfluxDB, you will need to specify the host and credentials to an alternate install for Mycodo to be able to store and query measurements.
If you are installing via Docker, you will need to change the hostname to "mycodo_influxdb" after the Mycodo install to be able to connect to the InfluxDB Docker container.
Setting
Description
Database
Select the influxdb version to use.
Retention Policy
Select the retention policy. Default is "autogen" for v1.x and "infinite" for v2.x.
Hostname
The hostname to connect to the time-series server. Default is "localhost".
Port
The time-series database port. Default is 8086.
Database Name
The name of the database (v1.x) or bucket (v2.x) for Mycodo to store to and query from. Default is "mycodo_db".
Username
The username to access the database (if credentials are required). Default is "mycodo".
Password
The password to access the database (if credentials are required).
The IP address to use to test for an active internet connection.
Internet Test Port
The port to use to test for an active internet connection.
Internet Test Timeout
The timeout period for testing for an active internet connection.
Check for Updates
Automatically check for updates every 2 days and notify through the web interface. If there is a new update, the Configure (Gear Icon) as well as the Upgrade menu will turn the color red.
In order to calculate accurate energy usage statistics, a few characteristics of your electrical system needs to be know. These variables should describe the characteristics of the electrical system being used by the relays to operate electrical devices.
Note
If not using a current sensor, proper energy usage calculations will rely on the correct current draw to be set for each output (see Output Settings).
Setting
Description
Max Amps
Set the maximum allowed amperage to be switched on at any given time. If a output that's instructed to turn on will cause the sum of active devices to exceed this amount, the output will not be allowed to turn on, to prevent any damage that may result from exceeding current limits.
Voltage
Alternating current (AC) voltage that is switched by the outputs. This is usually 120 or 240.
Cost per kWh
This is how much you pay per kWh.
Currency Unit
This is the unit used for the currency that pays for electricity.
Day of Month
This is the day of the month (1-30) that the electricity meter is read (which will correspond to the electrical bill).
Generate Usage/Cost Report
These options define when an Energy Usage Report will be generated. Currently, these Only support the Output Duration calculation method.
Time Span to Generate
How often to automatically generate a usage/cost report.
Day of Week/Month to Generate
On which day of the week to generate the report. Daily: 1-7 (Monday = 1), Monthly: 1-28.
Hour of Day to Generate
On which hour of the day to generate the report (0-23).
Each controller for Inputs, Outputs, and Functions operate periodically. The fastest these controllers can respond is determined by the sample rate of each. The looping function of each controller is paused for the specific duration. For instance, the Output controller can only have a resolution of 1 second if the sample rate is set to 1 second, meaning if you instruct an output to turn on or off, it will take a maximum of 1 second to respond to that request.
Setting
Description
Max Amps
Set the maximum allowed amperage to be switched on at any given time. If a output that's instructed to turn on will cause the sum of active devices to exceed this amount, the output will not be allowed to turn on, to prevent any damage that may result from exceeding current limits.
Voltage
Alternating current (AC) voltage that is switched by the outputs. This is usually 120 or 240.
Cost per kWh
This is how much you pay per kWh.
Currency Unit
This is the unit used for the currency that pays for electricity.
Day of Month
This is the day of the month (1-30) that the electricity meter is read (which will correspond to the electrical bill).
Generate Usage/Cost Report
These options define when an Energy Usage Report will be generated. Currently, these Only support the Output Duration calculation method.
New measurements, units, and conversions can be created that can extend functionality of Mycodo beyond the built-in types and equations. Be sure to create units before measurements, as units need to be selected when creating a measurement. A measurement can be created that already exists, allowing additional units to be added to a pre-existing measurement. For example, the measurement 'altitude' already exists, however if you wanted to add the unit 'fathom', first create the unit 'fathom', then create the measurement 'altitude' with the 'fathom' unit selected. It is okay to create a custom measurement for a measurement that already exist (this is how new units for a currently-installed measurement is added).
Setting
Description
Measurement ID
ID for the measurement to use in the measurements_dict of input modules (e.g. "length", "width", "speed").
Measurement Name
Common name for the measurement (e.g. "Length", "Weight", "Speed").
Measurement Units
Select all the units that are associated with the measurement.
Unit ID
ID for the unit to use in the measurements_dict of input modules (e.g. "K", "g", "m").
Unit Name
Common name for the unit (e.g. "Kilogram", "Meter").
Unit Abbreviation
Abbreviation for the unit (e.g. "kg", "m").
Convert From Unit
The unit that will be converted from.
Convert To Unit
The unit that will be converted to.
Equation
The equation used to convert one unit to another. The lowercase letter "x" must be included in the equation (e.g. "x/1000+20", "250*(x/3)"). This "x" will be replaced with the actual measurement being converted.
Mycodo requires at least one Admin user for the login system to be enabled. If there isn't an Admin user, the web server will redirect to an Admin Creation Form. This is the first page you see when starting Mycodo for the first time. After an Admin user has been created, additional users may be created from the User Settings page.
Setting
Description
Username
Choose a user name that is between 2 and 64 characters. The user name is case insensitive (all user names are converted to lower-case).
Email
The email associated with the new account.
Password/Repeat
Choose a password that is between 6 and 64 characters and only contains letters, numbers, and symbols.
Keypad Code
Set an optional numeric code that is at least 4 digits for logging in using a keypad.
Role
Roles are a way of imposing access restrictions on users, to either allow or deny actions. See the table below for explanations of the four default Roles.
Theme
The web user interface theme to apply, including colors, themes, and other design elements.
Roles define the permissions of each user. There are 4 default roles that determine if a user can view or edit particular areas of Mycodo. Four roles are provided by default, but custom roles may be created.
Role
Admin
Editor
Monitor
Guest
Edit Users
X
Edit Controllers
X
X
Edit Settings
X
X
View Settings
X
X
X
View Camera
X
X
X
View Stats
X
X
X
View Logs
X
X
X
The Edit Controllers permission protects the editing of Conditionals, Graphs, LCDs, Methods, PIDs, Outputs, and Inputs.
The View Stats permission protects the viewing of usage statistics and the System Information and Energy Usage pages.
Pi settings configure parts of the linux system that Mycodo runs on.
pigpiod is required if you wish to use PWM Outputs, as well as PWM, RPM, DHT22, DHT11, HTU21D Inputs.
Setting
Description
Enable/Disable Feature
These are system interfaces that can be enabled and disabled from the web UI via the raspi-config command.
pigpiod Sample Rate
This is the sample rate the pigpiod service will operate at. The lower number enables faster PWM frequencies, but may significantly increase processor load on the Pi Zeros. pigpiod may als be disabled completely if it's not required (see note, above).
Alert settings set up the credentials for sending email notifications.
Setting
Description
SMTP Host
The SMTP server to use to send emails from.
SMTP Port
Port to communicate with the SMTP server (465 for SSL, 587 for TSL).
Enable SSL
Check to enable SSL, uncheck to enable TSL.
SMTP User
The user name to send the email from. This can be just a name or the entire email address.
SMTP Password
The password for the user.
From Email
What the from email address be set as. This should be the actual email address for this user.
Max emails (per hour)
Set the maximum number of emails that can be sent per hour. If more notifications are triggered within the hour and this number has been reached, the notifications will be discarded.
Send Test Email
Test the email configuration by sending a test email.
Many cameras can be used simultaneously with Mycodo. Each camera needs to be set up in the camera settings, then may be used throughout the software.
Note
Not every option (such as Hue or White Balance) may be able to be used with your particular camera, due to manufacturer differences in hardware and software.
Setting
Description
Type
Select whether the camera is a Raspberry Pi Camera or a USB camera.
Library
Select which library to use to communicate with the camera. The Raspberry Pi Camera uses picamera, and USB cameras should be set to fswebcam.
Device
The device to use to connect to the camera. fswebcam is the only library that uses this option.
Output
This output will turn on during the capture of any still image (which includes timelapses).
Output Duration
Turn output on for this duration of time before the image is captured.
Rotate Image
The number of degrees to rotate the image.
...
Image Width, Image Height, Brightness, Contrast, Exposure, Gain, Hue, Saturation, White Balance. These options are self-explanatory. Not all options will work with all cameras.
Pre Command
A command to execute (as user 'root') before a still image is captured.
Post Command
A command to execute (as user 'root') after a still image is captured.
Sometimes issues arise in the system as a result of incompatible configurations, either the result of a misconfigured part of the system (Input, Output, etc.) or an update that didn't properly handle a database upgrade, or other unforeseen issue. Sometimes it is necessary to perform diagnostic actions that can determine the cause of the issue or fix the issue itself. The options below are meant to alleviate issues, such as a misconfigured dashboard element causing an error on the Data -> Dashboard page, which may cause an inability to access the Data -> Dashboard page to correct the issue. Deleting all Dashboard Elements may be the most economical method to enable access to the Data -> Dashboard page again, at the cost of having to readd all the Dashboard Elements that were once there.
Setting
Description
Delete All Dashboards
Delete all saved Dashboards on the Data - Dashboard page.
Delete All Inputs
Delete all Inputs on the Setup -> Input page.
Delete all Note and Note Tags
Delete all notes and tags from the More -> Note page.
Delete all Outputs
Delete all Outputs from the Setup -> Output page.
Delete Settings Database
Delete the mycodo.db settings database (WARNING: This will delete all settings and users).
Delete File: .dependency
Delete the .dependency file. If you are having an issue accessing the dependency install page, try this.
Delete File: .upgrade
Delete the .upgrade file. If you are having an issue accessing the upgrade page or running an upgrade, try this.
Recreate Influxdb 1.x database
Delete the InfluxDB 1.x measurement database, then recreate it. This deletes all measurement data!
Recreate Influxdb 2.x database
Delete the InfluxDB 2.x measurement database, then recreate it. This deletes all measurement data!
Reset Email Counter
Reset the email/hour email counter.
Install Dependencies
Start the dependency install script that will install all needed dependencies for the entire Mycodo system.
Set to Upgrade to Master
This will change FORCE_UPGRADE_MASTER to True in config.py. This is a way to instruct the upgrade system to upgrade to the master branch on GitHub without having to log in and manually edit the config.py file.
\ No newline at end of file
diff --git a/Data-Viewing.de/index.html b/Data-Viewing.de/index.html
index 5a3c9f8e3..8934c4583 100644
--- a/Data-Viewing.de/index.html
+++ b/Data-Viewing.de/index.html
@@ -1,4 +1,4 @@
- Data Viewing - Mycodo
Die Seite "Live-Messungen" ist die erste Seite, die ein Benutzer nach dem Einloggen in Mycodo sieht. Sie zeigt die aktuellen Messungen an, die von Eingangs- und Funktionscontrollern erfasst werden. Wenn auf der Seite "Live" nichts angezeigt wird, vergewissern Sie sich, dass ein Eingangs- oder Funktionsregler korrekt konfiguriert und aktiviert ist. Die Daten werden auf der Seite automatisch aus der Messdatenbank aktualisiert.
Eine grafische Datenanzeige, die für die Anzeige von Datensätzen über relativ lange Zeiträume (Wochen/Monate/Jahre) nützlich ist, deren Anzeige als Synchrondiagramm sehr daten- und prozessorintensiv sein könnte. Wählen Sie einen Zeitraum aus, und die Daten werden aus dieser Zeitspanne geladen, sofern sie vorhanden sind. In der ersten Ansicht wird der gesamte ausgewählte Datensatz angezeigt. Für jede Ansicht/Zoom werden 700 Datenpunkte geladen. Wenn mehr als 700 Datenpunkte für die ausgewählte Zeitspanne aufgezeichnet wurden, werden 700 Punkte aus einer Mittelung der Punkte in dieser Zeitspanne erstellt. Auf diese Weise können viel weniger Daten verwendet werden, um durch einen großen Datensatz zu navigieren. So können beispielsweise 4 Monate an Daten 10 Megabyte umfassen, wenn sie vollständig heruntergeladen werden. Bei der Betrachtung einer 4-monatigen Zeitspanne ist es jedoch nicht möglich, jeden Datenpunkt dieser 10 Megabyte zu sehen, und eine Aggregation der Punkte ist unvermeidlich. Beim asynchronen Laden von Daten laden Sie nur das herunter, was Sie sehen. Anstatt also bei jedem Laden des Diagramms 10 Megabyte herunterzuladen, werden nur ~50kb heruntergeladen, bis eine neue Vergrößerungsstufe ausgewählt wird, woraufhin nur weitere ~50kb heruntergeladen werden.
Note
Diagramme erfordern Messungen, daher muss mindestens ein Eingang/Ausgang/Funktion/etc. hinzugefügt und aktiviert werden, um Daten anzuzeigen.
Dank der zahlreichen Dashboard-Widgets kann das Dashboard sowohl zur Anzeige von Daten als auch zur Manipulation des Systems verwendet werden. Es können mehrere Dashboards erstellt und gesperrt werden, um eine Änderung der Anordnung zu verhindern.
Widgets sind Elemente auf dem Dashboard, die für verschiedene Zwecke verwendet werden können, z. B. zur Anzeige von Daten (Diagramme, Indikatoren, Messgeräte usw.) oder zur Interaktion mit dem System (Manipulation von Ausgängen, Änderung des PWM-Tastverhältnisses, Abfrage oder Änderung einer Datenbank usw.). Widgets lassen sich durch Ziehen und Ablegen leicht neu anordnen und in der Größe verändern. Eine vollständige Liste der unterstützten Widgets finden Sie unter Unterstützte Widgets.
In Mycodo gibt es ein System für den Import benutzerdefinierter Widgets, mit dem vom Benutzer erstellte Widgets im Mycodo-System verwendet werden können. Benutzerdefinierte Widgets können auf der Seite [Zahnradsymbol] -> Konfigurieren -> Benutzerdefinierte Widgets hochgeladen werden. Nach dem Import können sie auf der Seite "Einstellungen -> Widgets" verwendet werden.
Wenn Sie ein funktionierendes Modul entwickeln, ziehen Sie bitte in Erwägung, ein neues GitHub-Problem zu erstellen oder einen Pull-Request zu stellen, damit es in das integrierte Set aufgenommen werden kann.
Öffnen Sie eines der integrierten Widget-Module im Verzeichnis Mycodo/mycodo/widgets, um Beispiele für die richtige Formatierung zu sehen. Es gibt auch Beispiele für benutzerdefinierte Widgets im Verzeichnis Mycodo/mycodo/widgets/examples.
Die Erstellung eines benutzerdefinierten Widget-Moduls erfordert oft eine spezielle Platzierung und Ausführung von Javascript. Um dies zu berücksichtigen, wurden in jedem Modul mehrere Variablen erstellt, die der folgenden kurzen Struktur der Dashboard-Seite folgen, die mit mehreren angezeigten Widgets erstellt würde.
Die Seite "Live-Messungen" ist die erste Seite, die ein Benutzer nach dem Einloggen in Mycodo sieht. Sie zeigt die aktuellen Messungen an, die von Eingangs- und Funktionscontrollern erfasst werden. Wenn auf der Seite "Live" nichts angezeigt wird, vergewissern Sie sich, dass ein Eingangs- oder Funktionsregler korrekt konfiguriert und aktiviert ist. Die Daten werden auf der Seite automatisch aus der Messdatenbank aktualisiert.
Eine grafische Datenanzeige, die für die Anzeige von Datensätzen über relativ lange Zeiträume (Wochen/Monate/Jahre) nützlich ist, deren Anzeige als Synchrondiagramm sehr daten- und prozessorintensiv sein könnte. Wählen Sie einen Zeitraum aus, und die Daten werden aus dieser Zeitspanne geladen, sofern sie vorhanden sind. In der ersten Ansicht wird der gesamte ausgewählte Datensatz angezeigt. Für jede Ansicht/Zoom werden 700 Datenpunkte geladen. Wenn mehr als 700 Datenpunkte für die ausgewählte Zeitspanne aufgezeichnet wurden, werden 700 Punkte aus einer Mittelung der Punkte in dieser Zeitspanne erstellt. Auf diese Weise können viel weniger Daten verwendet werden, um durch einen großen Datensatz zu navigieren. So können beispielsweise 4 Monate an Daten 10 Megabyte umfassen, wenn sie vollständig heruntergeladen werden. Bei der Betrachtung einer 4-monatigen Zeitspanne ist es jedoch nicht möglich, jeden Datenpunkt dieser 10 Megabyte zu sehen, und eine Aggregation der Punkte ist unvermeidlich. Beim asynchronen Laden von Daten laden Sie nur das herunter, was Sie sehen. Anstatt also bei jedem Laden des Diagramms 10 Megabyte herunterzuladen, werden nur ~50kb heruntergeladen, bis eine neue Vergrößerungsstufe ausgewählt wird, woraufhin nur weitere ~50kb heruntergeladen werden.
Note
Diagramme erfordern Messungen, daher muss mindestens ein Eingang/Ausgang/Funktion/etc. hinzugefügt und aktiviert werden, um Daten anzuzeigen.
Dank der zahlreichen Dashboard-Widgets kann das Dashboard sowohl zur Anzeige von Daten als auch zur Manipulation des Systems verwendet werden. Es können mehrere Dashboards erstellt und gesperrt werden, um eine Änderung der Anordnung zu verhindern.
Widgets sind Elemente auf dem Dashboard, die für verschiedene Zwecke verwendet werden können, z. B. zur Anzeige von Daten (Diagramme, Indikatoren, Messgeräte usw.) oder zur Interaktion mit dem System (Manipulation von Ausgängen, Änderung des PWM-Tastverhältnisses, Abfrage oder Änderung einer Datenbank usw.). Widgets lassen sich durch Ziehen und Ablegen leicht neu anordnen und in der Größe verändern. Eine vollständige Liste der unterstützten Widgets finden Sie unter Unterstützte Widgets.
In Mycodo gibt es ein System für den Import benutzerdefinierter Widgets, mit dem vom Benutzer erstellte Widgets im Mycodo-System verwendet werden können. Benutzerdefinierte Widgets können auf der Seite [Zahnradsymbol] -> Konfigurieren -> Benutzerdefinierte Widgets hochgeladen werden. Nach dem Import können sie auf der Seite "Einstellungen -> Widgets" verwendet werden.
Wenn Sie ein funktionierendes Modul entwickeln, ziehen Sie bitte in Erwägung, ein neues GitHub-Problem zu erstellen oder einen Pull-Request zu stellen, damit es in das integrierte Set aufgenommen werden kann.
Öffnen Sie eines der integrierten Widget-Module im Verzeichnis Mycodo/mycodo/widgets, um Beispiele für die richtige Formatierung zu sehen. Es gibt auch Beispiele für benutzerdefinierte Widgets im Verzeichnis Mycodo/mycodo/widgets/examples.
Die Erstellung eines benutzerdefinierten Widget-Moduls erfordert oft eine spezielle Platzierung und Ausführung von Javascript. Um dies zu berücksichtigen, wurden in jedem Modul mehrere Variablen erstellt, die der folgenden kurzen Struktur der Dashboard-Seite folgen, die mit mehreren angezeigten Widgets erstellt würde.
\ No newline at end of file
diff --git a/Data-Viewing.es/index.html b/Data-Viewing.es/index.html
index 9a503361b..b25cb5125 100644
--- a/Data-Viewing.es/index.html
+++ b/Data-Viewing.es/index.html
@@ -1,4 +1,4 @@
- Data Viewing - Mycodo
La página Mediciones en vivo es la primera página que ve un usuario después de iniciar sesión en Mycodo. En ella se muestran las mediciones actuales que se están adquiriendo de los controladores de Entrada y Función. Si no se muestra nada en la página Live, asegúrese de que un controlador de Entrada o Función está configurado correctamente y activado. Los datos se actualizarán automáticamente en la página desde la base de datos de mediciones.
Una visualización gráfica de datos que resulta útil para ver conjuntos de datos que abarcan periodos de tiempo relativamente largos (semanas/meses/años), cuya visualización en forma de gráfico sincrónico podría requerir muchos datos y un gran número de procesadores. Seleccione un periodo de tiempo y se cargarán los datos de ese periodo, si existen. La primera vista será de todo el conjunto de datos seleccionado. Para cada vista/zoom, se cargarán 700 puntos de datos. Si hay más de 700 puntos de datos registrados para el lapso de tiempo seleccionado, se crearán 700 puntos a partir de un promedio de los puntos de ese lapso de tiempo. Esto permite utilizar muchos menos datos para navegar por un conjunto de datos grande. Por ejemplo, 4 meses de datos pueden ser 10 megabytes si se descargan todos. Sin embargo, al visualizar un lapso de 4 meses, no es posible ver todos los puntos de datos de esos 10 megabytes, y la agregación de puntos es inevitable. Con la carga asíncrona de datos, sólo se descarga lo que se ve. Así, en lugar de descargar 10 megabytes cada vez que se carga el gráfico, sólo se descargarán ~50kb hasta que se seleccione un nuevo nivel de zoom, momento en el que sólo se descargarán otros ~50kb.
Note
Los gráficos requieren mediciones, por lo que es necesario añadir y activar al menos una Entrada/Salida/Función/etc. para poder mostrar los datos.
El cuadro de mandos puede utilizarse tanto para ver los datos como para manipular el sistema, gracias a los numerosos widgets del cuadro de mandos disponibles. Se pueden crear múltiples cuadros de mando, así como bloquearlos para evitar que se modifique su disposición.
Los widgets son elementos del cuadro de mandos que tienen una serie de usos, como la visualización de datos (gráficos, indicadores, medidores, etc.) o la interacción con el sistema (manipular salidas, cambiar el ciclo de trabajo PWM, consultar o modificar una base de datos, etc.). Los widgets se pueden reorganizar y cambiar de tamaño fácilmente arrastrando y soltando. Para obtener una lista completa de los widgets admitidos, consulte Widgets admitidos.
Existe un sistema de importación de Widgets personalizados en Mycodo que permite utilizar Widgets creados por el usuario en el sistema Mycodo. Los widgets personalizados pueden cargarse en la página [Icono del engranaje] -> Configurar -> Widgets personalizados. Una vez importados, estarán disponibles para su uso en la página Configuración -> Widget.
Si desarrollas un módulo que funcione, considera la posibilidad de crear una nueva incidencia en GitHub o una solicitud de extracción, y puede que se incluya en el conjunto incorporado.
Abra cualquiera de los módulos de widgets incorporados ubicados en el directorio Mycodo/mycodo/widgets para ver ejemplos del formato adecuado. También hay ejemplos de Widgets personalizados en el directorio Mycodo/mycodo/widgets/examples.
La creación de un módulo de widgets personalizados suele requerir una colocación y ejecución específica de Javascript. Se crearon varias variables en cada módulo para abordar esto, y siguen la siguiente estructura breve de la página del tablero de instrumentos que se generaría con múltiples widgets que se muestran.
La página Mediciones en vivo es la primera página que ve un usuario después de iniciar sesión en Mycodo. En ella se muestran las mediciones actuales que se están adquiriendo de los controladores de Entrada y Función. Si no se muestra nada en la página Live, asegúrese de que un controlador de Entrada o Función está configurado correctamente y activado. Los datos se actualizarán automáticamente en la página desde la base de datos de mediciones.
Una visualización gráfica de datos que resulta útil para ver conjuntos de datos que abarcan periodos de tiempo relativamente largos (semanas/meses/años), cuya visualización en forma de gráfico sincrónico podría requerir muchos datos y un gran número de procesadores. Seleccione un periodo de tiempo y se cargarán los datos de ese periodo, si existen. La primera vista será de todo el conjunto de datos seleccionado. Para cada vista/zoom, se cargarán 700 puntos de datos. Si hay más de 700 puntos de datos registrados para el lapso de tiempo seleccionado, se crearán 700 puntos a partir de un promedio de los puntos de ese lapso de tiempo. Esto permite utilizar muchos menos datos para navegar por un conjunto de datos grande. Por ejemplo, 4 meses de datos pueden ser 10 megabytes si se descargan todos. Sin embargo, al visualizar un lapso de 4 meses, no es posible ver todos los puntos de datos de esos 10 megabytes, y la agregación de puntos es inevitable. Con la carga asíncrona de datos, sólo se descarga lo que se ve. Así, en lugar de descargar 10 megabytes cada vez que se carga el gráfico, sólo se descargarán ~50kb hasta que se seleccione un nuevo nivel de zoom, momento en el que sólo se descargarán otros ~50kb.
Note
Los gráficos requieren mediciones, por lo que es necesario añadir y activar al menos una Entrada/Salida/Función/etc. para poder mostrar los datos.
El cuadro de mandos puede utilizarse tanto para ver los datos como para manipular el sistema, gracias a los numerosos widgets del cuadro de mandos disponibles. Se pueden crear múltiples cuadros de mando, así como bloquearlos para evitar que se modifique su disposición.
Los widgets son elementos del cuadro de mandos que tienen una serie de usos, como la visualización de datos (gráficos, indicadores, medidores, etc.) o la interacción con el sistema (manipular salidas, cambiar el ciclo de trabajo PWM, consultar o modificar una base de datos, etc.). Los widgets se pueden reorganizar y cambiar de tamaño fácilmente arrastrando y soltando. Para obtener una lista completa de los widgets admitidos, consulte Widgets admitidos.
Existe un sistema de importación de Widgets personalizados en Mycodo que permite utilizar Widgets creados por el usuario en el sistema Mycodo. Los widgets personalizados pueden cargarse en la página [Icono del engranaje] -> Configurar -> Widgets personalizados. Una vez importados, estarán disponibles para su uso en la página Configuración -> Widget.
Si desarrollas un módulo que funcione, considera la posibilidad de crear una nueva incidencia en GitHub o una solicitud de extracción, y puede que se incluya en el conjunto incorporado.
Abra cualquiera de los módulos de widgets incorporados ubicados en el directorio Mycodo/mycodo/widgets para ver ejemplos del formato adecuado. También hay ejemplos de Widgets personalizados en el directorio Mycodo/mycodo/widgets/examples.
La creación de un módulo de widgets personalizados suele requerir una colocación y ejecución específica de Javascript. Se crearon varias variables en cada módulo para abordar esto, y siguen la siguiente estructura breve de la página del tablero de instrumentos que se generaría con múltiples widgets que se muestran.
\ No newline at end of file
diff --git a/Data-Viewing.fr/index.html b/Data-Viewing.fr/index.html
index 759d0bb02..1a9df8065 100644
--- a/Data-Viewing.fr/index.html
+++ b/Data-Viewing.fr/index.html
@@ -1,4 +1,4 @@
- Data Viewing - Mycodo
La page Live Measurements est la première page qu'un utilisateur voit après s'être connecté à Mycodo. Elle affiche les mesures actuelles acquises par les contrôleurs d'entrée et de fonction. Si rien n'est affiché sur la page Live, assurez-vous qu'un contrôleur d'entrée ou de fonction est correctement configuré et activé. Les données seront automatiquement mises à jour sur la page à partir de la base de données des mesures.
Un affichage graphique des données qui est utile pour visualiser des ensembles de données couvrant des périodes relativement longues (semaines/mois/années), qui pourraient être très gourmands en données et en processeur pour être affichés sous forme de graphique synchrone. Sélectionnez une période de temps et les données seront chargées à partir de cette période, si elle existe. La première vue sera celle de l'ensemble des données sélectionnées. Pour chaque vue/zoom, 700 points de données seront chargés. S'il y a plus de 700 points de données enregistrés pour l'intervalle de temps sélectionné, 700 points seront créés à partir d'une moyenne des points de cet intervalle de temps. Cela permet d'utiliser beaucoup moins de données pour naviguer dans un grand ensemble de données. Par exemple, 4 mois de données peuvent représenter 10 mégaoctets si elles sont toutes téléchargées. Cependant, lorsqu'on visualise une période de 4 mois, il n'est pas possible de voir chaque point de données de ces 10 mégaoctets, et l'agrégation des points est inévitable. Avec le chargement asynchrone des données, vous ne téléchargez que ce que vous voyez. Ainsi, au lieu de télécharger 10 mégaoctets à chaque chargement de graphique, seuls ~50kb seront téléchargés jusqu'à ce qu'un nouveau niveau de zoom soit sélectionné, auquel moment seulement ~50kb supplémentaires seront téléchargés.
Note
Les graphiques nécessitent des mesures, donc au moins une entrée/sortie/fonction/etc. doit être ajoutée et activée afin d'afficher les données.
Le tableau de bord peut être utilisé à la fois pour visualiser les données et pour manipuler le système, grâce aux nombreux widgets de tableau de bord disponibles. Il est possible de créer plusieurs tableaux de bord et de les verrouiller pour empêcher toute modification de leur agencement.
Les widgets sont des éléments du tableau de bord qui ont un certain nombre d'utilisations, telles que l'affichage de données (graphiques, indicateurs, jauges, etc.) ou l'interaction avec le système (manipulation des sorties, modification du cycle de fonctionnement du PWM, interrogation ou modification d'une base de données, etc.) Les widgets peuvent être facilement réorganisés et redimensionnés par glisser-déposer. Pour une liste complète des widgets pris en charge, voir Widgets pris en charge.
Il existe un système d'importation de Widgets personnalisés dans Mycodo qui permet aux Widgets créés par les utilisateurs d'être utilisés dans le système Mycodo. Les widgets personnalisés peuvent être téléchargés sur la page [Icône Gear] -> Configurer -> Widgets personnalisés. Après importation, ils seront disponibles pour être utilisés sur la page Setup -> Widget.
Si vous développez un module fonctionnel, veuillez envisager de créer un nouveau problème GitHub ou une demande de retrait, et il pourra être inclus dans l'ensemble intégré.
Ouvrez l'un des modules Widget intégrés situés dans le répertoire Mycodo/mycodo/widgets pour voir des exemples de formatage approprié. Il existe également des exemples de Widgets personnalisés dans le répertoire Mycodo/mycodo/widgets/examples.
La création d'un module de widgets personnalisés nécessite souvent un placement et une exécution spécifiques de Javascript. Plusieurs variables ont été créées dans chaque module pour y remédier, et suivent la brève structure suivante de la page du tableau de bord qui serait générée avec l'affichage de plusieurs widgets.
La page Live Measurements est la première page qu'un utilisateur voit après s'être connecté à Mycodo. Elle affiche les mesures actuelles acquises par les contrôleurs d'entrée et de fonction. Si rien n'est affiché sur la page Live, assurez-vous qu'un contrôleur d'entrée ou de fonction est correctement configuré et activé. Les données seront automatiquement mises à jour sur la page à partir de la base de données des mesures.
Un affichage graphique des données qui est utile pour visualiser des ensembles de données couvrant des périodes relativement longues (semaines/mois/années), qui pourraient être très gourmands en données et en processeur pour être affichés sous forme de graphique synchrone. Sélectionnez une période de temps et les données seront chargées à partir de cette période, si elle existe. La première vue sera celle de l'ensemble des données sélectionnées. Pour chaque vue/zoom, 700 points de données seront chargés. S'il y a plus de 700 points de données enregistrés pour l'intervalle de temps sélectionné, 700 points seront créés à partir d'une moyenne des points de cet intervalle de temps. Cela permet d'utiliser beaucoup moins de données pour naviguer dans un grand ensemble de données. Par exemple, 4 mois de données peuvent représenter 10 mégaoctets si elles sont toutes téléchargées. Cependant, lorsqu'on visualise une période de 4 mois, il n'est pas possible de voir chaque point de données de ces 10 mégaoctets, et l'agrégation des points est inévitable. Avec le chargement asynchrone des données, vous ne téléchargez que ce que vous voyez. Ainsi, au lieu de télécharger 10 mégaoctets à chaque chargement de graphique, seuls ~50kb seront téléchargés jusqu'à ce qu'un nouveau niveau de zoom soit sélectionné, auquel moment seulement ~50kb supplémentaires seront téléchargés.
Note
Les graphiques nécessitent des mesures, donc au moins une entrée/sortie/fonction/etc. doit être ajoutée et activée afin d'afficher les données.
Le tableau de bord peut être utilisé à la fois pour visualiser les données et pour manipuler le système, grâce aux nombreux widgets de tableau de bord disponibles. Il est possible de créer plusieurs tableaux de bord et de les verrouiller pour empêcher toute modification de leur agencement.
Les widgets sont des éléments du tableau de bord qui ont un certain nombre d'utilisations, telles que l'affichage de données (graphiques, indicateurs, jauges, etc.) ou l'interaction avec le système (manipulation des sorties, modification du cycle de fonctionnement du PWM, interrogation ou modification d'une base de données, etc.) Les widgets peuvent être facilement réorganisés et redimensionnés par glisser-déposer. Pour une liste complète des widgets pris en charge, voir Widgets pris en charge.
Il existe un système d'importation de Widgets personnalisés dans Mycodo qui permet aux Widgets créés par les utilisateurs d'être utilisés dans le système Mycodo. Les widgets personnalisés peuvent être téléchargés sur la page [Icône Gear] -> Configurer -> Widgets personnalisés. Après importation, ils seront disponibles pour être utilisés sur la page Setup -> Widget.
Si vous développez un module fonctionnel, veuillez envisager de créer un nouveau problème GitHub ou une demande de retrait, et il pourra être inclus dans l'ensemble intégré.
Ouvrez l'un des modules Widget intégrés situés dans le répertoire Mycodo/mycodo/widgets pour voir des exemples de formatage approprié. Il existe également des exemples de Widgets personnalisés dans le répertoire Mycodo/mycodo/widgets/examples.
La création d'un module de widgets personnalisés nécessite souvent un placement et une exécution spécifiques de Javascript. Plusieurs variables ont été créées dans chaque module pour y remédier, et suivent la brève structure suivante de la page du tableau de bord qui serait générée avec l'affichage de plusieurs widgets.
\ No newline at end of file
diff --git a/Data-Viewing.id/index.html b/Data-Viewing.id/index.html
index f5a1f0fab..dbc3dee32 100644
--- a/Data-Viewing.id/index.html
+++ b/Data-Viewing.id/index.html
@@ -1,4 +1,4 @@
- Data Viewing - Mycodo
Halaman Pengukuran Langsung adalah halaman pertama yang dilihat pengguna setelah masuk ke Mycodo. Ini akan menampilkan pengukuran saat ini yang diperoleh dari pengontrol Input dan Fungsi. Jika tidak ada yang ditampilkan pada halaman Live, pastikan pengontrol Input atau Fungsi dikonfigurasi dengan benar dan diaktifkan. Data akan secara otomatis diperbarui pada halaman dari database pengukuran.
Tampilan data grafis yang berguna untuk melihat kumpulan data yang mencakup periode waktu yang relatif lama (minggu/bulan/tahun), yang bisa jadi sangat intensif data dan prosesor untuk dilihat sebagai Grafik Sinkron. Pilih kerangka waktu dan data akan dimuat dari rentang waktu tersebut, jika ada. Tampilan pertama adalah seluruh kumpulan data yang dipilih. Untuk setiap tampilan/zoom, 700 titik data akan dimuat. Jika terdapat lebih dari 700 titik data yang direkam untuk rentang waktu yang dipilih, 700 titik akan dibuat dari rata-rata titik dalam rentang waktu tersebut. Hal ini memungkinkan data yang jauh lebih sedikit digunakan untuk menavigasi kumpulan data yang besar. Misalnya, data 4 bulan mungkin 10 megabyte jika semuanya diunduh. Namun, ketika melihat rentang waktu 4 bulan, tidak mungkin untuk melihat setiap titik data dari 10 megabyte itu, dan pengumpulan titik-titik tidak dapat dihindari. Dengan pemuatan data secara asinkron, Anda hanya mengunduh apa yang Anda lihat. Jadi, alih-alih mengunduh 10 megabyte setiap pemuatan grafik, hanya ~50kb yang akan diunduh hingga tingkat zoom baru dipilih, dan pada saat itu hanya ~50kb lagi yang diunduh.
Note
Graphs require measurements, therefore at least one Input/Output/Function/etc. needs to be added and activated in order to display data.
Dasbor dapat digunakan untuk melihat data dan memanipulasi sistem, berkat banyaknya widget dasbor yang tersedia. Beberapa dasbor dapat dibuat serta dikunci untuk mencegah perubahan pengaturan.
Widget adalah elemen pada Dasbor yang memiliki sejumlah kegunaan, seperti melihat data (grafik, indikator, pengukur, dll.) atau berinteraksi dengan sistem (memanipulasi output, mengubah siklus tugas PWM, menanyakan atau memodifikasi database, dll.). Widget dapat dengan mudah diatur ulang dan diubah ukurannya dengan menyeret dan menjatuhkan. Untuk daftar lengkap Widget yang didukung, lihat Supported Widgets.
There is a Custom Widget import system in Mycodo that allows user-created Widgets to be used in the Mycodo system. Custom Widgets can be uploaded on the [Gear Icon] -> Configure -> Custom Widgets page. After import, they will be available to use on the Setup -> Widget page.
If you develop a working module, please consider creating a new GitHub issue or pull request, and it may be included in the built-in set.
Open any of the built-in Widget modules located in the directory Mycodo/mycodo/widgets for examples of the proper formatting. There are also example Custom Widgets in the directory Mycodo/mycodo/widgets/examples.
Creating a custom widget module often requires specific placement and execution of Javascript. Several variables were created in each module to address this, and follow the following brief structure of the dashboard page that would be generated with multiple widgets being displayed.
Halaman Pengukuran Langsung adalah halaman pertama yang dilihat pengguna setelah masuk ke Mycodo. Ini akan menampilkan pengukuran saat ini yang diperoleh dari pengontrol Input dan Fungsi. Jika tidak ada yang ditampilkan pada halaman Live, pastikan pengontrol Input atau Fungsi dikonfigurasi dengan benar dan diaktifkan. Data akan secara otomatis diperbarui pada halaman dari database pengukuran.
Tampilan data grafis yang berguna untuk melihat kumpulan data yang mencakup periode waktu yang relatif lama (minggu/bulan/tahun), yang bisa jadi sangat intensif data dan prosesor untuk dilihat sebagai Grafik Sinkron. Pilih kerangka waktu dan data akan dimuat dari rentang waktu tersebut, jika ada. Tampilan pertama adalah seluruh kumpulan data yang dipilih. Untuk setiap tampilan/zoom, 700 titik data akan dimuat. Jika terdapat lebih dari 700 titik data yang direkam untuk rentang waktu yang dipilih, 700 titik akan dibuat dari rata-rata titik dalam rentang waktu tersebut. Hal ini memungkinkan data yang jauh lebih sedikit digunakan untuk menavigasi kumpulan data yang besar. Misalnya, data 4 bulan mungkin 10 megabyte jika semuanya diunduh. Namun, ketika melihat rentang waktu 4 bulan, tidak mungkin untuk melihat setiap titik data dari 10 megabyte itu, dan pengumpulan titik-titik tidak dapat dihindari. Dengan pemuatan data secara asinkron, Anda hanya mengunduh apa yang Anda lihat. Jadi, alih-alih mengunduh 10 megabyte setiap pemuatan grafik, hanya ~50kb yang akan diunduh hingga tingkat zoom baru dipilih, dan pada saat itu hanya ~50kb lagi yang diunduh.
Note
Graphs require measurements, therefore at least one Input/Output/Function/etc. needs to be added and activated in order to display data.
Dasbor dapat digunakan untuk melihat data dan memanipulasi sistem, berkat banyaknya widget dasbor yang tersedia. Beberapa dasbor dapat dibuat serta dikunci untuk mencegah perubahan pengaturan.
Widget adalah elemen pada Dasbor yang memiliki sejumlah kegunaan, seperti melihat data (grafik, indikator, pengukur, dll.) atau berinteraksi dengan sistem (memanipulasi output, mengubah siklus tugas PWM, menanyakan atau memodifikasi database, dll.). Widget dapat dengan mudah diatur ulang dan diubah ukurannya dengan menyeret dan menjatuhkan. Untuk daftar lengkap Widget yang didukung, lihat Supported Widgets.
There is a Custom Widget import system in Mycodo that allows user-created Widgets to be used in the Mycodo system. Custom Widgets can be uploaded on the [Gear Icon] -> Configure -> Custom Widgets page. After import, they will be available to use on the Setup -> Widget page.
If you develop a working module, please consider creating a new GitHub issue or pull request, and it may be included in the built-in set.
Open any of the built-in Widget modules located in the directory Mycodo/mycodo/widgets for examples of the proper formatting. There are also example Custom Widgets in the directory Mycodo/mycodo/widgets/examples.
Creating a custom widget module often requires specific placement and execution of Javascript. Several variables were created in each module to address this, and follow the following brief structure of the dashboard page that would be generated with multiple widgets being displayed.
\ No newline at end of file
diff --git a/Data-Viewing.it/index.html b/Data-Viewing.it/index.html
index 471d0372d..cd7454d07 100644
--- a/Data-Viewing.it/index.html
+++ b/Data-Viewing.it/index.html
@@ -1,4 +1,4 @@
- Data Viewing - Mycodo
La pagina Misure in tempo reale è la prima pagina che l'utente vede dopo aver effettuato l'accesso a Mycodo. Mostra le misure correnti acquisite dai controllori di ingresso e di funzione. Se non viene visualizzato nulla nella pagina Live, accertarsi che un controllore di ingresso o di funzione sia configurato correttamente e attivato. I dati saranno aggiornati automaticamente sulla pagina dal database delle misure.
Una visualizzazione grafica dei dati utile per visualizzare insiemi di dati che coprono periodi di tempo relativamente lunghi (settimane/mesi/anni), che potrebbero essere molto impegnativi in termini di dati e di processore se visualizzati come grafico sincrono. Selezionando un intervallo di tempo, i dati verranno caricati da quell'intervallo, se esistente. La prima visualizzazione sarà quella dell'intero set di dati selezionato. Per ogni vista/zoom, verranno caricati 700 punti di dati. Se sono stati registrati più di 700 punti di dati per l'intervallo di tempo selezionato, verranno creati 700 punti da una media dei punti di quell'intervallo di tempo. In questo modo è possibile utilizzare una quantità di dati molto inferiore per navigare in un set di dati di grandi dimensioni. Ad esempio, 4 mesi di dati potrebbero essere 10 megabyte se venissero scaricati tutti. Tuttavia, quando si visualizza un arco di tempo di 4 mesi, non è possibile vedere tutti i punti dati di quei 10 megabyte e l'aggregazione dei punti è inevitabile. Con il caricamento asincrono dei dati, si scarica solo ciò che si vede. Quindi, invece di scaricare 10 megabyte a ogni caricamento del grafico, verranno scaricati solo ~50kb fino a quando non viene selezionato un nuovo livello di zoom, a quel punto verranno scaricati solo altri ~50kb.
Note
I grafici richiedono misurazioni, pertanto è necessario aggiungere e attivare almeno un ingresso/uscita/funzione/ecc. per poter visualizzare i dati.
Il cruscotto può essere utilizzato sia per visualizzare i dati che per manipolare il sistema, grazie ai numerosi widget disponibili. È possibile creare più cruscotti e bloccarli per evitare di modificarne la disposizione.
I widget sono elementi della Dashboard che possono essere utilizzati in vari modi, ad esempio per visualizzare i dati (grafici, indicatori, ecc.) o per interagire con il sistema (manipolare le uscite, modificare il ciclo di lavoro PWM, interrogare o modificare un database, ecc.) I widget possono essere facilmente riorganizzati e ridimensionati trascinandoli. Per un elenco completo dei widget supportati, vedere Widget supportati.
In Mycodo esiste un sistema di importazione di Widget personalizzati che consente di utilizzare nel sistema Mycodo i Widget creati dagli utenti. I widget personalizzati possono essere caricati nella pagina [Icona ingranaggio] -> Configura -> Widget personalizzati. Dopo l'importazione, saranno disponibili per l'uso nella pagina Impostazione -> Widget.
Se sviluppate un modulo funzionante, prendete in considerazione la possibilità di creare un nuovo problema su GitHub o una richiesta di pull, in modo da includerlo nel set integrato.
Aprire uno qualsiasi dei moduli Widget incorporati che si trovano nella directory Mycodo/mycodo/widgets per avere esempi di formattazione corretta. Ci sono anche esempi di widget personalizzati nella directory Mycodo/mycodo/widgets/examples.
La creazione di un modulo di widget personalizzato richiede spesso un posizionamento e un'esecuzione specifici di Javascript. Per questo motivo, in ogni modulo sono state create diverse variabili, che seguono la seguente breve struttura della pagina del dashboard che verrebbe generata con la visualizzazione di più widget.
La pagina Misure in tempo reale è la prima pagina che l'utente vede dopo aver effettuato l'accesso a Mycodo. Mostra le misure correnti acquisite dai controllori di ingresso e di funzione. Se non viene visualizzato nulla nella pagina Live, accertarsi che un controllore di ingresso o di funzione sia configurato correttamente e attivato. I dati saranno aggiornati automaticamente sulla pagina dal database delle misure.
Una visualizzazione grafica dei dati utile per visualizzare insiemi di dati che coprono periodi di tempo relativamente lunghi (settimane/mesi/anni), che potrebbero essere molto impegnativi in termini di dati e di processore se visualizzati come grafico sincrono. Selezionando un intervallo di tempo, i dati verranno caricati da quell'intervallo, se esistente. La prima visualizzazione sarà quella dell'intero set di dati selezionato. Per ogni vista/zoom, verranno caricati 700 punti di dati. Se sono stati registrati più di 700 punti di dati per l'intervallo di tempo selezionato, verranno creati 700 punti da una media dei punti di quell'intervallo di tempo. In questo modo è possibile utilizzare una quantità di dati molto inferiore per navigare in un set di dati di grandi dimensioni. Ad esempio, 4 mesi di dati potrebbero essere 10 megabyte se venissero scaricati tutti. Tuttavia, quando si visualizza un arco di tempo di 4 mesi, non è possibile vedere tutti i punti dati di quei 10 megabyte e l'aggregazione dei punti è inevitabile. Con il caricamento asincrono dei dati, si scarica solo ciò che si vede. Quindi, invece di scaricare 10 megabyte a ogni caricamento del grafico, verranno scaricati solo ~50kb fino a quando non viene selezionato un nuovo livello di zoom, a quel punto verranno scaricati solo altri ~50kb.
Note
I grafici richiedono misurazioni, pertanto è necessario aggiungere e attivare almeno un ingresso/uscita/funzione/ecc. per poter visualizzare i dati.
Il cruscotto può essere utilizzato sia per visualizzare i dati che per manipolare il sistema, grazie ai numerosi widget disponibili. È possibile creare più cruscotti e bloccarli per evitare di modificarne la disposizione.
I widget sono elementi della Dashboard che possono essere utilizzati in vari modi, ad esempio per visualizzare i dati (grafici, indicatori, ecc.) o per interagire con il sistema (manipolare le uscite, modificare il ciclo di lavoro PWM, interrogare o modificare un database, ecc.) I widget possono essere facilmente riorganizzati e ridimensionati trascinandoli. Per un elenco completo dei widget supportati, vedere Widget supportati.
In Mycodo esiste un sistema di importazione di Widget personalizzati che consente di utilizzare nel sistema Mycodo i Widget creati dagli utenti. I widget personalizzati possono essere caricati nella pagina [Icona ingranaggio] -> Configura -> Widget personalizzati. Dopo l'importazione, saranno disponibili per l'uso nella pagina Impostazione -> Widget.
Se sviluppate un modulo funzionante, prendete in considerazione la possibilità di creare un nuovo problema su GitHub o una richiesta di pull, in modo da includerlo nel set integrato.
Aprire uno qualsiasi dei moduli Widget incorporati che si trovano nella directory Mycodo/mycodo/widgets per avere esempi di formattazione corretta. Ci sono anche esempi di widget personalizzati nella directory Mycodo/mycodo/widgets/examples.
La creazione di un modulo di widget personalizzato richiede spesso un posizionamento e un'esecuzione specifici di Javascript. Per questo motivo, in ogni modulo sono state create diverse variabili, che seguono la seguente breve struttura della pagina del dashboard che verrebbe generata con la visualizzazione di più widget.
\ No newline at end of file
diff --git a/Data-Viewing.nl/index.html b/Data-Viewing.nl/index.html
index f06de5c3d..e2a91a76e 100644
--- a/Data-Viewing.nl/index.html
+++ b/Data-Viewing.nl/index.html
@@ -1,4 +1,4 @@
- Data Viewing - Mycodo
De Live Measurements pagina is de eerste pagina die een gebruiker ziet na het inloggen op Mycodo. Het toont de huidige metingen die worden verkregen van ingangs- en functiecontrollers. Als er niets wordt weergegeven op de Live-pagina, zorg er dan voor dat een ingangs- of functiecontroller correct is geconfigureerd en geactiveerd. Gegevens worden automatisch bijgewerkt op de pagina vanuit de meetdatabase.
Een grafische weergave van gegevens die nuttig is voor het bekijken van gegevensreeksen over relatief lange perioden (weken/maanden/jaren), die zeer gegevens- en processorintensief zouden kunnen zijn om te bekijken als een synchrone grafiek. Selecteer een tijdspanne en de gegevens worden geladen van die tijdspanne, als die bestaat. De eerste weergave betreft de gehele geselecteerde gegevensreeks. Voor elke weergave/zoom worden 700 datapunten geladen. Als er meer dan 700 datapunten zijn opgenomen voor de geselecteerde tijdspanne, worden 700 punten gecreëerd uit een gemiddelde van de punten in die tijdspanne. Hierdoor kunnen veel minder gegevens worden gebruikt om door een grote dataset te navigeren. Bijvoorbeeld, 4 maanden gegevens kunnen 10 megabytes zijn als ze allemaal werden gedownload. Bij het bekijken van een periode van 4 maanden is het echter niet mogelijk elk gegevenspunt van die 10 megabyte te zien, en is het samenvoegen van punten onvermijdelijk. Met asynchroon laden van gegevens downloadt u alleen wat u ziet. Dus in plaats van 10 megabyte te downloaden bij elke grafieklading, wordt slechts ~50kb gedownload tot een nieuw zoomniveau wordt geselecteerd, waarna nog eens ~50kb wordt gedownload.
Note
Grafieken vereisen metingen, daarom moet ten minste één ingang/uitgang/functie/etc. worden toegevoegd en geactiveerd om gegevens weer te geven.
Het dashboard kan zowel worden gebruikt om gegevens te bekijken als om het systeem te manipuleren, dankzij de talrijke beschikbare dashboardwidgets. Er kunnen meerdere dashboards worden aangemaakt en vergrendeld om de indeling niet te wijzigen.
Widgets zijn elementen op het Dashboard die een aantal toepassingen hebben, zoals het bekijken van gegevens (grafieken, indicatoren, meters, enz.) of interactie met het systeem (uitgangen manipuleren, PWM duty cycle wijzigen, een database opvragen of wijzigen, enz.) Widgets kunnen gemakkelijk worden herschikt en van grootte veranderd door ze te verslepen. Voor een volledige lijst van ondersteunde Widgets, zie Ondersteunde Widgets.
Er is een systeem voor het importeren van aangepaste Widgets in Mycodo waarmee door gebruikers gemaakte Widgets in het Mycodo-systeem kunnen worden gebruikt. Aangepaste Widgets kunnen worden geüpload op de pagina [Versnellingspictogram] -> Configuratie -> Aangepaste Widgets. Na het importeren zijn ze beschikbaar voor gebruik op de pagina Instellen -> Widget.
Als je een werkende module ontwikkelt, overweeg dan een nieuw GitHub issue aanmaken of een pull request, en het kan worden opgenomen in de ingebouwde set.
Het maken van een aangepaste widgetmodule vereist vaak specifieke plaatsing en uitvoering van Javascript. In elke module werden verschillende variabelen gemaakt om dit aan te pakken, en de volgende korte structuur te volgen van de dashboardpagina die zou worden gegenereerd met meerdere widgets die worden weergegeven.
De Live Measurements pagina is de eerste pagina die een gebruiker ziet na het inloggen op Mycodo. Het toont de huidige metingen die worden verkregen van ingangs- en functiecontrollers. Als er niets wordt weergegeven op de Live-pagina, zorg er dan voor dat een ingangs- of functiecontroller correct is geconfigureerd en geactiveerd. Gegevens worden automatisch bijgewerkt op de pagina vanuit de meetdatabase.
Een grafische weergave van gegevens die nuttig is voor het bekijken van gegevensreeksen over relatief lange perioden (weken/maanden/jaren), die zeer gegevens- en processorintensief zouden kunnen zijn om te bekijken als een synchrone grafiek. Selecteer een tijdspanne en de gegevens worden geladen van die tijdspanne, als die bestaat. De eerste weergave betreft de gehele geselecteerde gegevensreeks. Voor elke weergave/zoom worden 700 datapunten geladen. Als er meer dan 700 datapunten zijn opgenomen voor de geselecteerde tijdspanne, worden 700 punten gecreëerd uit een gemiddelde van de punten in die tijdspanne. Hierdoor kunnen veel minder gegevens worden gebruikt om door een grote dataset te navigeren. Bijvoorbeeld, 4 maanden gegevens kunnen 10 megabytes zijn als ze allemaal werden gedownload. Bij het bekijken van een periode van 4 maanden is het echter niet mogelijk elk gegevenspunt van die 10 megabyte te zien, en is het samenvoegen van punten onvermijdelijk. Met asynchroon laden van gegevens downloadt u alleen wat u ziet. Dus in plaats van 10 megabyte te downloaden bij elke grafieklading, wordt slechts ~50kb gedownload tot een nieuw zoomniveau wordt geselecteerd, waarna nog eens ~50kb wordt gedownload.
Note
Grafieken vereisen metingen, daarom moet ten minste één ingang/uitgang/functie/etc. worden toegevoegd en geactiveerd om gegevens weer te geven.
Het dashboard kan zowel worden gebruikt om gegevens te bekijken als om het systeem te manipuleren, dankzij de talrijke beschikbare dashboardwidgets. Er kunnen meerdere dashboards worden aangemaakt en vergrendeld om de indeling niet te wijzigen.
Widgets zijn elementen op het Dashboard die een aantal toepassingen hebben, zoals het bekijken van gegevens (grafieken, indicatoren, meters, enz.) of interactie met het systeem (uitgangen manipuleren, PWM duty cycle wijzigen, een database opvragen of wijzigen, enz.) Widgets kunnen gemakkelijk worden herschikt en van grootte veranderd door ze te verslepen. Voor een volledige lijst van ondersteunde Widgets, zie Ondersteunde Widgets.
Er is een systeem voor het importeren van aangepaste Widgets in Mycodo waarmee door gebruikers gemaakte Widgets in het Mycodo-systeem kunnen worden gebruikt. Aangepaste Widgets kunnen worden geüpload op de pagina [Versnellingspictogram] -> Configuratie -> Aangepaste Widgets. Na het importeren zijn ze beschikbaar voor gebruik op de pagina Instellen -> Widget.
Als je een werkende module ontwikkelt, overweeg dan een nieuw GitHub issue aanmaken of een pull request, en het kan worden opgenomen in de ingebouwde set.
Het maken van een aangepaste widgetmodule vereist vaak specifieke plaatsing en uitvoering van Javascript. In elke module werden verschillende variabelen gemaakt om dit aan te pakken, en de volgende korte structuur te volgen van de dashboardpagina die zou worden gegenereerd met meerdere widgets die worden weergegeven.
\ No newline at end of file
diff --git a/Data-Viewing.nn/index.html b/Data-Viewing.nn/index.html
index 527e0822d..02a86f01e 100644
--- a/Data-Viewing.nn/index.html
+++ b/Data-Viewing.nn/index.html
@@ -1,4 +1,4 @@
- Data Viewing - Mycodo
The Live Measurements page is the first page a user sees after logging in to Mycodo. It will display the current measurements being acquired from Input and Function controllers. If there is nothing displayed on the Live page, ensure an Input or Function controller is both configured correctly and activated. Data will be automatically updated on the page from the measurement database.
A graphical data display that is useful for viewing data sets spanning relatively long periods of time (weeks/months/years), which could be very data- and processor-intensive to view as a Synchronous Graph. Select a time frame and data will be loaded from that time span, if it exists. The first view will be of the entire selected data set. For every view/zoom, 700 data points will be loaded. If there are more than 700 data points recorded for the time span selected, 700 points will be created from an averaging of the points in that time span. This enables much less data to be used to navigate a large data set. For instance, 4 months of data may be 10 megabytes if all of it were downloaded. However, when viewing a 4 month span, it's not possible to see every data point of that 10 megabytes, and aggregating of points is inevitable. With asynchronous loading of data, you only download what you see. So, instead of downloading 10 megabytes every graph load, only ~50kb will be downloaded until a new zoom level is selected, at which time only another ~50kb is downloaded.
Note
Graphs require measurements, therefore at least one Input/Output/Function/etc. needs to be added and activated in order to display data.
The dashboard can be used for both viewing data and manipulating the system, thanks to the numerous dashboard widgets available. Multiple dashboards can be created as well as locked to prevent changing the arrangement.
Widgets are elements on the Dashboard that have a number of uses, such as viewing data (charts, indicators, gauges, etc.) or interacting with the system (manipulate outputs, change PWM duty cycle, querying or modifying a database, etc.). Widgets can be easily rearranged and resized by dragging and dropping. For a full list of supported Widgets, see Supported Widgets.
There is a Custom Widget import system in Mycodo that allows user-created Widgets to be used in the Mycodo system. Custom Widgets can be uploaded on the [Gear Icon] -> Configure -> Custom Widgets page. After import, they will be available to use on the Setup -> Widget page.
If you develop a working module, please consider creating a new GitHub issue or pull request, and it may be included in the built-in set.
Open any of the built-in Widget modules located in the directory Mycodo/mycodo/widgets for examples of the proper formatting. There are also example Custom Widgets in the directory Mycodo/mycodo/widgets/examples.
Creating a custom widget module often requires specific placement and execution of Javascript. Several variables were created in each module to address this, and follow the following brief structure of the dashboard page that would be generated with multiple widgets being displayed.
The Live Measurements page is the first page a user sees after logging in to Mycodo. It will display the current measurements being acquired from Input and Function controllers. If there is nothing displayed on the Live page, ensure an Input or Function controller is both configured correctly and activated. Data will be automatically updated on the page from the measurement database.
A graphical data display that is useful for viewing data sets spanning relatively long periods of time (weeks/months/years), which could be very data- and processor-intensive to view as a Synchronous Graph. Select a time frame and data will be loaded from that time span, if it exists. The first view will be of the entire selected data set. For every view/zoom, 700 data points will be loaded. If there are more than 700 data points recorded for the time span selected, 700 points will be created from an averaging of the points in that time span. This enables much less data to be used to navigate a large data set. For instance, 4 months of data may be 10 megabytes if all of it were downloaded. However, when viewing a 4 month span, it's not possible to see every data point of that 10 megabytes, and aggregating of points is inevitable. With asynchronous loading of data, you only download what you see. So, instead of downloading 10 megabytes every graph load, only ~50kb will be downloaded until a new zoom level is selected, at which time only another ~50kb is downloaded.
Note
Graphs require measurements, therefore at least one Input/Output/Function/etc. needs to be added and activated in order to display data.
The dashboard can be used for both viewing data and manipulating the system, thanks to the numerous dashboard widgets available. Multiple dashboards can be created as well as locked to prevent changing the arrangement.
Widgets are elements on the Dashboard that have a number of uses, such as viewing data (charts, indicators, gauges, etc.) or interacting with the system (manipulate outputs, change PWM duty cycle, querying or modifying a database, etc.). Widgets can be easily rearranged and resized by dragging and dropping. For a full list of supported Widgets, see Supported Widgets.
There is a Custom Widget import system in Mycodo that allows user-created Widgets to be used in the Mycodo system. Custom Widgets can be uploaded on the [Gear Icon] -> Configure -> Custom Widgets page. After import, they will be available to use on the Setup -> Widget page.
If you develop a working module, please consider creating a new GitHub issue or pull request, and it may be included in the built-in set.
Open any of the built-in Widget modules located in the directory Mycodo/mycodo/widgets for examples of the proper formatting. There are also example Custom Widgets in the directory Mycodo/mycodo/widgets/examples.
Creating a custom widget module often requires specific placement and execution of Javascript. Several variables were created in each module to address this, and follow the following brief structure of the dashboard page that would be generated with multiple widgets being displayed.
\ No newline at end of file
diff --git a/Data-Viewing.pl/index.html b/Data-Viewing.pl/index.html
index 11c11f89a..fd8898c15 100644
--- a/Data-Viewing.pl/index.html
+++ b/Data-Viewing.pl/index.html
@@ -1,4 +1,4 @@
- Data Viewing - Mycodo
Strona Pomiary na żywo jest pierwszą stroną, którą widzi użytkownik po zalogowaniu się do Mycodo. Wyświetla ona aktualne pomiary uzyskane z kontrolerów wejścia i funkcji. Jeśli nic nie jest wyświetlane na stronie Live, upewnij się, że kontroler wejścia lub funkcji jest poprawnie skonfigurowany i aktywowany. Dane będą automatycznie aktualizowane na stronie z bazy danych pomiarów.
Graficzne wyświetlanie danych przydatne do przeglądania zestawów danych obejmujących stosunkowo długie okresy czasu (tygodnie/miesiące/roki), których wyświetlanie w postaci wykresu synchronicznego mogłoby wymagać dużej ilości danych i procesora. Po wybraniu przedziału czasowego zostaną wczytane dane z tego przedziału, jeśli istnieje. Pierwszy widok będzie dotyczył całego wybranego zestawu danych. Dla każdego widoku/powiększenia zostanie załadowanych 700 punktów danych. Jeśli dla wybranego przedziału czasowego zarejestrowano więcej niż 700 punktów danych, 700 punktów zostanie utworzonych z uśrednienia punktów w tym przedziale czasowym. Umożliwia to wykorzystanie znacznie mniejszej ilości danych do nawigacji po dużym zbiorze danych. Na przykład, 4 miesiące danych mogą mieć rozmiar 10 megabajtów, jeśli wszystkie zostaną pobrane. Jednak podczas przeglądania 4-miesięcznego okresu nie jest możliwe zobaczenie każdego punktu danych z tych 10 megabajtów, a agregacja punktów jest nieunikniona. Przy asynchronicznym ładowaniu danych, pobierasz tylko to, co widzisz. Tak więc, zamiast pobierać 10 megabajtów przy każdym ładowaniu wykresu, tylko ~50kb zostanie pobrane do momentu wybrania nowego poziomu powiększenia, w którym to momencie pobierane jest tylko kolejne ~50kb.
Note
Wykresy wymagają pomiarów, dlatego aby wyświetlić dane należy dodać i aktywować przynajmniej jedno Wejście/Wyjście/Funkcję/etc.
Dashboard może służyć zarówno do przeglądania danych, jak i do manipulowania systemem, dzięki licznym dostępnym widżetom dashboardowym. Można tworzyć wiele dashboardów, jak również zablokować je, aby uniemożliwić zmianę układu.
Widżety to elementy na pulpicie nawigacyjnym, które mają wiele zastosowań, takich jak wyświetlanie danych (wykresy, wskaźniki, mierniki itp.) lub interakcja z systemem (manipulowanie wyjściami, zmiana cyklu pracy PWM, odpytywanie lub modyfikowanie bazy danych itp.) Widżety można łatwo zmieniać układ i rozmiar poprzez przeciąganie i upuszczanie. Pełna lista obsługiwanych Widżetów znajduje się w Obsługiwane Widżety.
W Mycodo istnieje system importu Custom Widget, który umożliwia wykorzystanie w systemie Mycodo widgetów stworzonych przez użytkownika. Custom Widgety można wgrać na stronie [Gear Icon] -> Configure -> Custom Widgets. Po zaimportowaniu będą one dostępne do użycia na stronie Setup -> Widget.
Jeśli opracujesz działający moduł, rozważ utworzenie nowego wydania GitHub lub pull request, a może on zostać włączony do wbudowanego zestawu.
Otwórz dowolny z wbudowanych modułów Widget znajdujących się w katalogu Mycodo/mycodo/widgets, aby uzyskać przykłady prawidłowego formatowania. Istnieją również przykładowe Widżety niestandardowe w katalogu Mycodo/mycodo/widgets/examples.
Tworzenie niestandardowego modułu widżetów często wymaga specyficznego umieszczenia i wykonania skryptów Javascript. W każdym module utworzono kilka zmiennych, aby rozwiązać ten problem, i podążać za następującą krótką strukturą strony pulpitu nawigacyjnego, która zostałaby wygenerowana przy wyświetlaniu wielu widżetów.
Strona Pomiary na żywo jest pierwszą stroną, którą widzi użytkownik po zalogowaniu się do Mycodo. Wyświetla ona aktualne pomiary uzyskane z kontrolerów wejścia i funkcji. Jeśli nic nie jest wyświetlane na stronie Live, upewnij się, że kontroler wejścia lub funkcji jest poprawnie skonfigurowany i aktywowany. Dane będą automatycznie aktualizowane na stronie z bazy danych pomiarów.
Graficzne wyświetlanie danych przydatne do przeglądania zestawów danych obejmujących stosunkowo długie okresy czasu (tygodnie/miesiące/roki), których wyświetlanie w postaci wykresu synchronicznego mogłoby wymagać dużej ilości danych i procesora. Po wybraniu przedziału czasowego zostaną wczytane dane z tego przedziału, jeśli istnieje. Pierwszy widok będzie dotyczył całego wybranego zestawu danych. Dla każdego widoku/powiększenia zostanie załadowanych 700 punktów danych. Jeśli dla wybranego przedziału czasowego zarejestrowano więcej niż 700 punktów danych, 700 punktów zostanie utworzonych z uśrednienia punktów w tym przedziale czasowym. Umożliwia to wykorzystanie znacznie mniejszej ilości danych do nawigacji po dużym zbiorze danych. Na przykład, 4 miesiące danych mogą mieć rozmiar 10 megabajtów, jeśli wszystkie zostaną pobrane. Jednak podczas przeglądania 4-miesięcznego okresu nie jest możliwe zobaczenie każdego punktu danych z tych 10 megabajtów, a agregacja punktów jest nieunikniona. Przy asynchronicznym ładowaniu danych, pobierasz tylko to, co widzisz. Tak więc, zamiast pobierać 10 megabajtów przy każdym ładowaniu wykresu, tylko ~50kb zostanie pobrane do momentu wybrania nowego poziomu powiększenia, w którym to momencie pobierane jest tylko kolejne ~50kb.
Note
Wykresy wymagają pomiarów, dlatego aby wyświetlić dane należy dodać i aktywować przynajmniej jedno Wejście/Wyjście/Funkcję/etc.
Dashboard może służyć zarówno do przeglądania danych, jak i do manipulowania systemem, dzięki licznym dostępnym widżetom dashboardowym. Można tworzyć wiele dashboardów, jak również zablokować je, aby uniemożliwić zmianę układu.
Widżety to elementy na pulpicie nawigacyjnym, które mają wiele zastosowań, takich jak wyświetlanie danych (wykresy, wskaźniki, mierniki itp.) lub interakcja z systemem (manipulowanie wyjściami, zmiana cyklu pracy PWM, odpytywanie lub modyfikowanie bazy danych itp.) Widżety można łatwo zmieniać układ i rozmiar poprzez przeciąganie i upuszczanie. Pełna lista obsługiwanych Widżetów znajduje się w Obsługiwane Widżety.
W Mycodo istnieje system importu Custom Widget, który umożliwia wykorzystanie w systemie Mycodo widgetów stworzonych przez użytkownika. Custom Widgety można wgrać na stronie [Gear Icon] -> Configure -> Custom Widgets. Po zaimportowaniu będą one dostępne do użycia na stronie Setup -> Widget.
Jeśli opracujesz działający moduł, rozważ utworzenie nowego wydania GitHub lub pull request, a może on zostać włączony do wbudowanego zestawu.
Otwórz dowolny z wbudowanych modułów Widget znajdujących się w katalogu Mycodo/mycodo/widgets, aby uzyskać przykłady prawidłowego formatowania. Istnieją również przykładowe Widżety niestandardowe w katalogu Mycodo/mycodo/widgets/examples.
Tworzenie niestandardowego modułu widżetów często wymaga specyficznego umieszczenia i wykonania skryptów Javascript. W każdym module utworzono kilka zmiennych, aby rozwiązać ten problem, i podążać za następującą krótką strukturą strony pulpitu nawigacyjnego, która zostałaby wygenerowana przy wyświetlaniu wielu widżetów.
\ No newline at end of file
diff --git a/Data-Viewing.pt/index.html b/Data-Viewing.pt/index.html
index 4888c6788..f756ae9c1 100644
--- a/Data-Viewing.pt/index.html
+++ b/Data-Viewing.pt/index.html
@@ -1,4 +1,4 @@
- Data Viewing - Mycodo
A página "Medições em directo" é a primeira página que um utilizador vê depois de entrar no Mycodo. Irá mostrar as medidas actuais que estão a ser adquiridas dos controladores de Entrada e Função. Se não houver nada exibido na página Vivo, certifique-se de que um controlador de Entrada ou de Função está configurado correctamente e activado. Os dados serão automaticamente actualizados na página a partir da base de dados de medições.
Uma visualização gráfica de dados que é útil para visualizar conjuntos de dados que abrangem períodos de tempo relativamente longos (semanas/meses/anos), que podem ser muito exigentes em termos de dados e de processador para serem visualizados como um Gráfico Síncrono. Seleccione um período de tempo e os dados serão carregados a partir desse período de tempo, se este existir. A primeira vista será de todo o conjunto de dados seleccionado. Para cada vista/zoom, 700 pontos de dados serão carregados. Se houver mais de 700 pontos de dados registados para o intervalo de tempo seleccionado, serão criados 700 pontos a partir de uma média dos pontos nesse intervalo de tempo. Isto permite que muito menos dados sejam utilizados para navegar num grande conjunto de dados. Por exemplo, 4 meses de dados podem ser de 10 megabytes se todos os dados forem descarregados. Contudo, ao visualizar um período de 4 meses, não é possível ver todos os pontos de dados desses 10 megabytes, e a agregação de pontos é inevitável. Com o carregamento assíncrono de dados, só é possível descarregar o que se vê. Assim, em vez de descarregar 10 megabytes por cada carga gráfica, apenas ~50kb serão descarregados até ser seleccionado um novo nível de zoom, altura em que apenas outros ~50kb serão descarregados.
Note
Os gráficos requerem medições, pelo que pelo menos uma Entrada/Saída/Função/etc. precisa de ser adicionada e activada para exibir os dados.
O tablier pode ser utilizado tanto para visualizar dados como para manipular o sistema, graças aos numerosos widgets de tablier disponíveis. Podem ser criados vários painéis de instrumentos, bem como bloqueados para impedir a alteração da disposição.
Os Widgets são elementos do Painel que têm várias utilizações, tais como visualizar dados (gráficos, indicadores, medidores, etc.) ou interagir com o sistema (manipular saídas, alterar o ciclo de funcionamento do PWM, consultar ou modificar uma base de dados, etc.). Os widgets podem ser facilmente rearranjados e redimensionados por arrastar e largar. Para uma lista completa de Widgets suportados, ver Supported Widgets.
Existe um sistema personalizado de importação de Widgets em Mycodo que permite a utilização de Widgets criados pelo utilizador no sistema Mycodo. Os Widgets Personalizados podem ser carregados na página [Ícone do Equipamento] -> Configurar -> Widgets Personalizados'. Após a importação, estarão disponíveis para utilização na páginaSetup -> Widget`.
Se desenvolver um módulo de trabalho, considere criar uma nova edição do GitHub ou faça um pedido, e este pode ser incluído no conjunto integrado.
Abrir qualquer um dos módulos Widget integrados localizados no directório Mycodo/mycodo/widgets para exemplos da formatação adequada. Há também exemplos de Widgets personalizados no directório Mycodo/mycodo/widgets/examples.
A criação de um módulo widget personalizado requer frequentemente a colocação e execução específicas de Javascript. Várias variáveis foram criadas em cada módulo para tratar disto, e seguir a seguinte breve estrutura da página do painel que seria gerada com múltiplos widgets a serem exibidos.
A página "Medições em directo" é a primeira página que um utilizador vê depois de entrar no Mycodo. Irá mostrar as medidas actuais que estão a ser adquiridas dos controladores de Entrada e Função. Se não houver nada exibido na página Vivo, certifique-se de que um controlador de Entrada ou de Função está configurado correctamente e activado. Os dados serão automaticamente actualizados na página a partir da base de dados de medições.
Uma visualização gráfica de dados que é útil para visualizar conjuntos de dados que abrangem períodos de tempo relativamente longos (semanas/meses/anos), que podem ser muito exigentes em termos de dados e de processador para serem visualizados como um Gráfico Síncrono. Seleccione um período de tempo e os dados serão carregados a partir desse período de tempo, se este existir. A primeira vista será de todo o conjunto de dados seleccionado. Para cada vista/zoom, 700 pontos de dados serão carregados. Se houver mais de 700 pontos de dados registados para o intervalo de tempo seleccionado, serão criados 700 pontos a partir de uma média dos pontos nesse intervalo de tempo. Isto permite que muito menos dados sejam utilizados para navegar num grande conjunto de dados. Por exemplo, 4 meses de dados podem ser de 10 megabytes se todos os dados forem descarregados. Contudo, ao visualizar um período de 4 meses, não é possível ver todos os pontos de dados desses 10 megabytes, e a agregação de pontos é inevitável. Com o carregamento assíncrono de dados, só é possível descarregar o que se vê. Assim, em vez de descarregar 10 megabytes por cada carga gráfica, apenas ~50kb serão descarregados até ser seleccionado um novo nível de zoom, altura em que apenas outros ~50kb serão descarregados.
Note
Os gráficos requerem medições, pelo que pelo menos uma Entrada/Saída/Função/etc. precisa de ser adicionada e activada para exibir os dados.
O tablier pode ser utilizado tanto para visualizar dados como para manipular o sistema, graças aos numerosos widgets de tablier disponíveis. Podem ser criados vários painéis de instrumentos, bem como bloqueados para impedir a alteração da disposição.
Os Widgets são elementos do Painel que têm várias utilizações, tais como visualizar dados (gráficos, indicadores, medidores, etc.) ou interagir com o sistema (manipular saídas, alterar o ciclo de funcionamento do PWM, consultar ou modificar uma base de dados, etc.). Os widgets podem ser facilmente rearranjados e redimensionados por arrastar e largar. Para uma lista completa de Widgets suportados, ver Supported Widgets.
Existe um sistema personalizado de importação de Widgets em Mycodo que permite a utilização de Widgets criados pelo utilizador no sistema Mycodo. Os Widgets Personalizados podem ser carregados na página [Ícone do Equipamento] -> Configurar -> Widgets Personalizados'. Após a importação, estarão disponíveis para utilização na páginaSetup -> Widget`.
Se desenvolver um módulo de trabalho, considere criar uma nova edição do GitHub ou faça um pedido, e este pode ser incluído no conjunto integrado.
Abrir qualquer um dos módulos Widget integrados localizados no directório Mycodo/mycodo/widgets para exemplos da formatação adequada. Há também exemplos de Widgets personalizados no directório Mycodo/mycodo/widgets/examples.
A criação de um módulo widget personalizado requer frequentemente a colocação e execução específicas de Javascript. Várias variáveis foram criadas em cada módulo para tratar disto, e seguir a seguinte breve estrutura da página do painel que seria gerada com múltiplos widgets a serem exibidos.
\ No newline at end of file
diff --git a/Data-Viewing.ru/index.html b/Data-Viewing.ru/index.html
index fd87d4d87..f2c3e58ac 100644
--- a/Data-Viewing.ru/index.html
+++ b/Data-Viewing.ru/index.html
@@ -1,4 +1,4 @@
- Data Viewing - Mycodo
Страница Live Measurements - это первая страница, которую видит пользователь после входа в Mycodo. На ней отображаются текущие измерения, получаемые от входных и функциональных контроллеров. Если на странице Live ничего не отображается, убедитесь, что входной или функциональный контроллер настроен правильно и активирован. Данные будут автоматически обновляться на этой странице из базы данных измерений.
Графическое отображение данных, полезное для просмотра наборов данных, охватывающих относительно длительные периоды времени (недели/месяцы/годы), просмотр которых в виде синхронного графика может потребовать больших затрат данных и процессора. Выберите временной интервал, и данные будут загружены из этого временного интервала, если он существует. Первый просмотр будет всего выбранного набора данных. Для каждого вида/масштаба будет загружено 700 точек данных. Если для выбранного временного интервала записано более 700 точек данных, 700 точек будут созданы на основе усреднения точек этого временного интервала. Это позволяет использовать гораздо меньше данных для навигации по большому набору данных. Например, данные за 4 месяца могут занимать 10 мегабайт, если загрузить их все. Однако при просмотре данных за 4 месяца невозможно увидеть каждую точку данных из этих 10 мегабайт, и объединение точек неизбежно. При асинхронной загрузке данных вы загружаете только то, что видите. Таким образом, вместо загрузки 10 мегабайт при каждой загрузке графика, будет загружаться только ~50 кб, пока не будет выбран новый уровень масштабирования, и тогда будет загружено еще ~50 кб.
Note
Graphs require measurements, therefore at least one Input/Output/Function/etc. needs to be added and activated in order to display data.
Приборная панель может использоваться как для просмотра данных, так и для манипулирования системой благодаря многочисленным виджетам приборной панели. Можно создать несколько приборных панелей, а также заблокировать их для предотвращения изменения расположения.
Виджеты - это элементы приборной панели, которые могут использоваться для просмотра данных (графики, индикаторы, датчики и т.д.) или взаимодействия с системой (манипулирование выходами, изменение рабочего цикла ШИМ, запрос или изменение базы данных и т.д.). Виджеты можно легко переставлять и изменять их размер путем перетаскивания. Полный список поддерживаемых виджетов см. в Supported Widgets.
There is a Custom Widget import system in Mycodo that allows user-created Widgets to be used in the Mycodo system. Custom Widgets can be uploaded on the [Gear Icon] -> Configure -> Custom Widgets page. After import, they will be available to use on the Setup -> Widget page.
If you develop a working module, please consider creating a new GitHub issue or pull request, and it may be included in the built-in set.
Open any of the built-in Widget modules located in the directory Mycodo/mycodo/widgets for examples of the proper formatting. There are also example Custom Widgets in the directory Mycodo/mycodo/widgets/examples.
Creating a custom widget module often requires specific placement and execution of Javascript. Several variables were created in each module to address this, and follow the following brief structure of the dashboard page that would be generated with multiple widgets being displayed.
Страница Live Measurements - это первая страница, которую видит пользователь после входа в Mycodo. На ней отображаются текущие измерения, получаемые от входных и функциональных контроллеров. Если на странице Live ничего не отображается, убедитесь, что входной или функциональный контроллер настроен правильно и активирован. Данные будут автоматически обновляться на этой странице из базы данных измерений.
Графическое отображение данных, полезное для просмотра наборов данных, охватывающих относительно длительные периоды времени (недели/месяцы/годы), просмотр которых в виде синхронного графика может потребовать больших затрат данных и процессора. Выберите временной интервал, и данные будут загружены из этого временного интервала, если он существует. Первый просмотр будет всего выбранного набора данных. Для каждого вида/масштаба будет загружено 700 точек данных. Если для выбранного временного интервала записано более 700 точек данных, 700 точек будут созданы на основе усреднения точек этого временного интервала. Это позволяет использовать гораздо меньше данных для навигации по большому набору данных. Например, данные за 4 месяца могут занимать 10 мегабайт, если загрузить их все. Однако при просмотре данных за 4 месяца невозможно увидеть каждую точку данных из этих 10 мегабайт, и объединение точек неизбежно. При асинхронной загрузке данных вы загружаете только то, что видите. Таким образом, вместо загрузки 10 мегабайт при каждой загрузке графика, будет загружаться только ~50 кб, пока не будет выбран новый уровень масштабирования, и тогда будет загружено еще ~50 кб.
Note
Graphs require measurements, therefore at least one Input/Output/Function/etc. needs to be added and activated in order to display data.
Приборная панель может использоваться как для просмотра данных, так и для манипулирования системой благодаря многочисленным виджетам приборной панели. Можно создать несколько приборных панелей, а также заблокировать их для предотвращения изменения расположения.
Виджеты - это элементы приборной панели, которые могут использоваться для просмотра данных (графики, индикаторы, датчики и т.д.) или взаимодействия с системой (манипулирование выходами, изменение рабочего цикла ШИМ, запрос или изменение базы данных и т.д.). Виджеты можно легко переставлять и изменять их размер путем перетаскивания. Полный список поддерживаемых виджетов см. в Supported Widgets.
There is a Custom Widget import system in Mycodo that allows user-created Widgets to be used in the Mycodo system. Custom Widgets can be uploaded on the [Gear Icon] -> Configure -> Custom Widgets page. After import, they will be available to use on the Setup -> Widget page.
If you develop a working module, please consider creating a new GitHub issue or pull request, and it may be included in the built-in set.
Open any of the built-in Widget modules located in the directory Mycodo/mycodo/widgets for examples of the proper formatting. There are also example Custom Widgets in the directory Mycodo/mycodo/widgets/examples.
Creating a custom widget module often requires specific placement and execution of Javascript. Several variables were created in each module to address this, and follow the following brief structure of the dashboard page that would be generated with multiple widgets being displayed.
\ No newline at end of file
diff --git a/Data-Viewing.sr/index.html b/Data-Viewing.sr/index.html
index 249818d1a..4d5e1b7aa 100644
--- a/Data-Viewing.sr/index.html
+++ b/Data-Viewing.sr/index.html
@@ -1,4 +1,4 @@
- Data Viewing - Mycodo
The Live Measurements page is the first page a user sees after logging in to Mycodo. It will display the current measurements being acquired from Input and Function controllers. If there is nothing displayed on the Live page, ensure an Input or Function controller is both configured correctly and activated. Data will be automatically updated on the page from the measurement database.
A graphical data display that is useful for viewing data sets spanning relatively long periods of time (weeks/months/years), which could be very data- and processor-intensive to view as a Synchronous Graph. Select a time frame and data will be loaded from that time span, if it exists. The first view will be of the entire selected data set. For every view/zoom, 700 data points will be loaded. If there are more than 700 data points recorded for the time span selected, 700 points will be created from an averaging of the points in that time span. This enables much less data to be used to navigate a large data set. For instance, 4 months of data may be 10 megabytes if all of it were downloaded. However, when viewing a 4 month span, it's not possible to see every data point of that 10 megabytes, and aggregating of points is inevitable. With asynchronous loading of data, you only download what you see. So, instead of downloading 10 megabytes every graph load, only ~50kb will be downloaded until a new zoom level is selected, at which time only another ~50kb is downloaded.
Note
Graphs require measurements, therefore at least one Input/Output/Function/etc. needs to be added and activated in order to display data.
The dashboard can be used for both viewing data and manipulating the system, thanks to the numerous dashboard widgets available. Multiple dashboards can be created as well as locked to prevent changing the arrangement.
Widgets are elements on the Dashboard that have a number of uses, such as viewing data (charts, indicators, gauges, etc.) or interacting with the system (manipulate outputs, change PWM duty cycle, querying or modifying a database, etc.). Widgets can be easily rearranged and resized by dragging and dropping. For a full list of supported Widgets, see Supported Widgets.
There is a Custom Widget import system in Mycodo that allows user-created Widgets to be used in the Mycodo system. Custom Widgets can be uploaded on the [Gear Icon] -> Configure -> Custom Widgets page. After import, they will be available to use on the Setup -> Widget page.
If you develop a working module, please consider creating a new GitHub issue or pull request, and it may be included in the built-in set.
Open any of the built-in Widget modules located in the directory Mycodo/mycodo/widgets for examples of the proper formatting. There are also example Custom Widgets in the directory Mycodo/mycodo/widgets/examples.
Creating a custom widget module often requires specific placement and execution of Javascript. Several variables were created in each module to address this, and follow the following brief structure of the dashboard page that would be generated with multiple widgets being displayed.
The Live Measurements page is the first page a user sees after logging in to Mycodo. It will display the current measurements being acquired from Input and Function controllers. If there is nothing displayed on the Live page, ensure an Input or Function controller is both configured correctly and activated. Data will be automatically updated on the page from the measurement database.
A graphical data display that is useful for viewing data sets spanning relatively long periods of time (weeks/months/years), which could be very data- and processor-intensive to view as a Synchronous Graph. Select a time frame and data will be loaded from that time span, if it exists. The first view will be of the entire selected data set. For every view/zoom, 700 data points will be loaded. If there are more than 700 data points recorded for the time span selected, 700 points will be created from an averaging of the points in that time span. This enables much less data to be used to navigate a large data set. For instance, 4 months of data may be 10 megabytes if all of it were downloaded. However, when viewing a 4 month span, it's not possible to see every data point of that 10 megabytes, and aggregating of points is inevitable. With asynchronous loading of data, you only download what you see. So, instead of downloading 10 megabytes every graph load, only ~50kb will be downloaded until a new zoom level is selected, at which time only another ~50kb is downloaded.
Note
Graphs require measurements, therefore at least one Input/Output/Function/etc. needs to be added and activated in order to display data.
The dashboard can be used for both viewing data and manipulating the system, thanks to the numerous dashboard widgets available. Multiple dashboards can be created as well as locked to prevent changing the arrangement.
Widgets are elements on the Dashboard that have a number of uses, such as viewing data (charts, indicators, gauges, etc.) or interacting with the system (manipulate outputs, change PWM duty cycle, querying or modifying a database, etc.). Widgets can be easily rearranged and resized by dragging and dropping. For a full list of supported Widgets, see Supported Widgets.
There is a Custom Widget import system in Mycodo that allows user-created Widgets to be used in the Mycodo system. Custom Widgets can be uploaded on the [Gear Icon] -> Configure -> Custom Widgets page. After import, they will be available to use on the Setup -> Widget page.
If you develop a working module, please consider creating a new GitHub issue or pull request, and it may be included in the built-in set.
Open any of the built-in Widget modules located in the directory Mycodo/mycodo/widgets for examples of the proper formatting. There are also example Custom Widgets in the directory Mycodo/mycodo/widgets/examples.
Creating a custom widget module often requires specific placement and execution of Javascript. Several variables were created in each module to address this, and follow the following brief structure of the dashboard page that would be generated with multiple widgets being displayed.
\ No newline at end of file
diff --git a/Data-Viewing.sv/index.html b/Data-Viewing.sv/index.html
index 08bb71526..7723b63bc 100644
--- a/Data-Viewing.sv/index.html
+++ b/Data-Viewing.sv/index.html
@@ -1,4 +1,4 @@
- Data Viewing - Mycodo
Sidan Live Measurements är den första sidan som en användare ser efter att ha loggat in på Mycodo. Den visar de aktuella mätningar som erhålls från styrenheter för ingång och funktion. Om det inte visas något på sidan Live ska du se till att en ingångs- eller funktionsregulator är både korrekt konfigurerad och aktiverad. Data kommer automatiskt att uppdateras på sidan från mätningsdatabasen.
En grafisk datavisning som är användbar för att visa datamängder som sträcker sig över relativt långa tidsperioder (veckor/månader/år), vilket kan vara mycket data- och processorkrävande att visa som en synkron graf. Välj en tidsram och data kommer att laddas från den tidsperioden, om den finns. Den första visningen kommer att vara av hela den valda datamängden. För varje vy/zoom kommer 700 datapunkter att laddas. Om det finns fler än 700 datapunkter registrerade för det valda tidsspannet kommer 700 punkter att skapas genom en genomsnittlig beräkning av punkterna i det tidsspannet. På så sätt kan mycket mindre data användas för att navigera i en stor datamängd. Exempelvis kan 4 månaders data vara 10 megabyte om alla data laddas ner. När man tittar på en 4-månadersperiod är det dock inte möjligt att se varje datapunkt i de 10 megabyte, och aggregering av punkter är oundviklig. Med asynkron laddning av data hämtar du bara det du ser. Så i stället för att ladda ner 10 megabyte varje gång grafen laddas, laddas endast ~50 kb ner tills en ny zoomnivå väljs, varvid endast ytterligare ~50 kb laddas ner.
Note
Grafer kräver mätningar, därför måste minst en ingång/utgång/funktion/etc. läggas till och aktiveras för att data ska kunna visas.
Instrumentpanelen kan användas både för att visa data och för att manipulera systemet, tack vare de många widgetar som finns tillgängliga. Flera instrumentpaneler kan skapas och låsas för att förhindra att arrangemanget ändras.
Widgets är element på instrumentpanelen som kan användas på olika sätt, t.ex. för att visa data (diagram, indikatorer, mätare osv.) eller för att interagera med systemet (manipulera utgångar, ändra PWM-tjänstgöringscykel, fråga eller ändra en databas osv.). Widgetar kan enkelt omorganiseras och ändras i storlek genom att dra och släppa dem. För en fullständig lista över widgets som stöds, se Supported Widgets.
Det finns ett importsystem för anpassade widgetar i Mycodo som gör det möjligt att använda användarskapade widgetar i Mycodo-systemet. Anpassade widgetar kan laddas upp på sidan [Gear Icon] -> Configure -> Custom Widgets. Efter import kommer de att vara tillgängliga för användning på sidan Setup -> Widget.
Om du utvecklar en fungerande modul kan du överväga att skapa ett nytt GitHub-ärende eller en pull request, så att den kan inkluderas i den inbyggda uppsättningen.
Öppna någon av de inbyggda widgetmoduler som finns i katalogen Mycodo/mycodo/widgets för att få exempel på korrekt formatering. Det finns också exempel på anpassade widgets i katalogen Mycodo/mycodo/widgets/examples.
För att skapa en anpassad widgetmodul krävs ofta en specifik placering och utförande av Javascript. Flera variabler skapades i varje modul för att lösa detta och följer följande korta struktur för den instrumentbrädsida som skulle genereras när flera widgetar visas.
Sidan Live Measurements är den första sidan som en användare ser efter att ha loggat in på Mycodo. Den visar de aktuella mätningar som erhålls från styrenheter för ingång och funktion. Om det inte visas något på sidan Live ska du se till att en ingångs- eller funktionsregulator är både korrekt konfigurerad och aktiverad. Data kommer automatiskt att uppdateras på sidan från mätningsdatabasen.
En grafisk datavisning som är användbar för att visa datamängder som sträcker sig över relativt långa tidsperioder (veckor/månader/år), vilket kan vara mycket data- och processorkrävande att visa som en synkron graf. Välj en tidsram och data kommer att laddas från den tidsperioden, om den finns. Den första visningen kommer att vara av hela den valda datamängden. För varje vy/zoom kommer 700 datapunkter att laddas. Om det finns fler än 700 datapunkter registrerade för det valda tidsspannet kommer 700 punkter att skapas genom en genomsnittlig beräkning av punkterna i det tidsspannet. På så sätt kan mycket mindre data användas för att navigera i en stor datamängd. Exempelvis kan 4 månaders data vara 10 megabyte om alla data laddas ner. När man tittar på en 4-månadersperiod är det dock inte möjligt att se varje datapunkt i de 10 megabyte, och aggregering av punkter är oundviklig. Med asynkron laddning av data hämtar du bara det du ser. Så i stället för att ladda ner 10 megabyte varje gång grafen laddas, laddas endast ~50 kb ner tills en ny zoomnivå väljs, varvid endast ytterligare ~50 kb laddas ner.
Note
Grafer kräver mätningar, därför måste minst en ingång/utgång/funktion/etc. läggas till och aktiveras för att data ska kunna visas.
Instrumentpanelen kan användas både för att visa data och för att manipulera systemet, tack vare de många widgetar som finns tillgängliga. Flera instrumentpaneler kan skapas och låsas för att förhindra att arrangemanget ändras.
Widgets är element på instrumentpanelen som kan användas på olika sätt, t.ex. för att visa data (diagram, indikatorer, mätare osv.) eller för att interagera med systemet (manipulera utgångar, ändra PWM-tjänstgöringscykel, fråga eller ändra en databas osv.). Widgetar kan enkelt omorganiseras och ändras i storlek genom att dra och släppa dem. För en fullständig lista över widgets som stöds, se Supported Widgets.
Det finns ett importsystem för anpassade widgetar i Mycodo som gör det möjligt att använda användarskapade widgetar i Mycodo-systemet. Anpassade widgetar kan laddas upp på sidan [Gear Icon] -> Configure -> Custom Widgets. Efter import kommer de att vara tillgängliga för användning på sidan Setup -> Widget.
Om du utvecklar en fungerande modul kan du överväga att skapa ett nytt GitHub-ärende eller en pull request, så att den kan inkluderas i den inbyggda uppsättningen.
Öppna någon av de inbyggda widgetmoduler som finns i katalogen Mycodo/mycodo/widgets för att få exempel på korrekt formatering. Det finns också exempel på anpassade widgets i katalogen Mycodo/mycodo/widgets/examples.
För att skapa en anpassad widgetmodul krävs ofta en specifik placering och utförande av Javascript. Flera variabler skapades i varje modul för att lösa detta och följer följande korta struktur för den instrumentbrädsida som skulle genereras när flera widgetar visas.
\ No newline at end of file
diff --git a/Data-Viewing.tr/index.html b/Data-Viewing.tr/index.html
index b1961caf9..9e7baff8d 100644
--- a/Data-Viewing.tr/index.html
+++ b/Data-Viewing.tr/index.html
@@ -1,4 +1,4 @@
- Data Viewing - Mycodo
Canlı Ölçümler sayfası, bir kullanıcının Mycodo'ya giriş yaptıktan sonra gördüğü ilk sayfadır. Giriş ve Fonksiyon kontrolörlerinden alınan mevcut ölçümleri görüntüler. Canlı` sayfasında hiçbir şey görüntülenmiyorsa, bir Giriş veya Fonksiyon kontrolörünün hem doğru yapılandırıldığından hem de etkinleştirildiğinden emin olun. Veriler ölçüm veritabanından otomatik olarak sayfada güncellenecektir.
Senkron Grafik olarak görüntülemek için çok veri ve işlemci yoğun olabilecek nispeten uzun zaman dilimlerini (haftalar/aylar/yıllar) kapsayan veri kümelerini görüntülemek için yararlı olan bir grafik veri ekranı. Bir zaman dilimi seçtiğinizde, eğer varsa, o zaman aralığındaki veriler yüklenecektir. İlk görünüm seçilen veri setinin tamamına ait olacaktır. Her görünüm/yakınlaştırma için 700 veri noktası yüklenecektir. Seçilen zaman aralığı için 700'den fazla veri noktası kaydedilmişse, 700 nokta o zaman aralığındaki noktaların ortalamasından oluşturulacaktır. Bu, büyük bir veri setinde gezinmek için çok daha az verinin kullanılmasını sağlar. Örneğin, 4 aylık verinin tamamı indirilirse 10 megabayt olabilir. Ancak, 4 aylık bir süreyi görüntülerken, bu 10 megabaytın her veri noktasını görmek mümkün değildir ve noktaların toplanması kaçınılmazdır. Eşzamansız veri yüklemesi ile yalnızca gördüğünüz kadarını indirirsiniz. Böylece, her grafik yüklemesinde 10 megabayt indirmek yerine, yeni bir yakınlaştırma seviyesi seçilene kadar yalnızca ~50kb indirilir ve bu sırada yalnızca ~50kb daha indirilir.
Note
Graphs require measurements, therefore at least one Input/Output/Function/etc. needs to be added and activated in order to display data.
Gösterge paneli, mevcut çok sayıda gösterge paneli widget'ı sayesinde hem verileri görüntülemek hem de sistemi manipüle etmek için kullanılabilir. Birden fazla gösterge tablosu oluşturulabilir ve düzenlemenin değiştirilmesini önlemek için kilitlenebilir.
Pencere öğeleri, Gösterge Tablosunda veri görüntüleme (grafikler, göstergeler, göstergeler, vb.) veya sistemle etkileşim (çıkışları manipüle etme, PWM görev döngüsünü değiştirme, bir veritabanını sorgulama veya değiştirme, vb.) Pencere öğeleri sürüklenip bırakılarak kolayca yeniden düzenlenebilir ve yeniden boyutlandırılabilir. Desteklenen Pencere Araçlarının tam listesi için Desteklenen Pencere Araçları bölümüne bakın.
There is a Custom Widget import system in Mycodo that allows user-created Widgets to be used in the Mycodo system. Custom Widgets can be uploaded on the [Gear Icon] -> Configure -> Custom Widgets page. After import, they will be available to use on the Setup -> Widget page.
If you develop a working module, please consider creating a new GitHub issue or pull request, and it may be included in the built-in set.
Open any of the built-in Widget modules located in the directory Mycodo/mycodo/widgets for examples of the proper formatting. There are also example Custom Widgets in the directory Mycodo/mycodo/widgets/examples.
Creating a custom widget module often requires specific placement and execution of Javascript. Several variables were created in each module to address this, and follow the following brief structure of the dashboard page that would be generated with multiple widgets being displayed.
Canlı Ölçümler sayfası, bir kullanıcının Mycodo'ya giriş yaptıktan sonra gördüğü ilk sayfadır. Giriş ve Fonksiyon kontrolörlerinden alınan mevcut ölçümleri görüntüler. Canlı` sayfasında hiçbir şey görüntülenmiyorsa, bir Giriş veya Fonksiyon kontrolörünün hem doğru yapılandırıldığından hem de etkinleştirildiğinden emin olun. Veriler ölçüm veritabanından otomatik olarak sayfada güncellenecektir.
Senkron Grafik olarak görüntülemek için çok veri ve işlemci yoğun olabilecek nispeten uzun zaman dilimlerini (haftalar/aylar/yıllar) kapsayan veri kümelerini görüntülemek için yararlı olan bir grafik veri ekranı. Bir zaman dilimi seçtiğinizde, eğer varsa, o zaman aralığındaki veriler yüklenecektir. İlk görünüm seçilen veri setinin tamamına ait olacaktır. Her görünüm/yakınlaştırma için 700 veri noktası yüklenecektir. Seçilen zaman aralığı için 700'den fazla veri noktası kaydedilmişse, 700 nokta o zaman aralığındaki noktaların ortalamasından oluşturulacaktır. Bu, büyük bir veri setinde gezinmek için çok daha az verinin kullanılmasını sağlar. Örneğin, 4 aylık verinin tamamı indirilirse 10 megabayt olabilir. Ancak, 4 aylık bir süreyi görüntülerken, bu 10 megabaytın her veri noktasını görmek mümkün değildir ve noktaların toplanması kaçınılmazdır. Eşzamansız veri yüklemesi ile yalnızca gördüğünüz kadarını indirirsiniz. Böylece, her grafik yüklemesinde 10 megabayt indirmek yerine, yeni bir yakınlaştırma seviyesi seçilene kadar yalnızca ~50kb indirilir ve bu sırada yalnızca ~50kb daha indirilir.
Note
Graphs require measurements, therefore at least one Input/Output/Function/etc. needs to be added and activated in order to display data.
Gösterge paneli, mevcut çok sayıda gösterge paneli widget'ı sayesinde hem verileri görüntülemek hem de sistemi manipüle etmek için kullanılabilir. Birden fazla gösterge tablosu oluşturulabilir ve düzenlemenin değiştirilmesini önlemek için kilitlenebilir.
Pencere öğeleri, Gösterge Tablosunda veri görüntüleme (grafikler, göstergeler, göstergeler, vb.) veya sistemle etkileşim (çıkışları manipüle etme, PWM görev döngüsünü değiştirme, bir veritabanını sorgulama veya değiştirme, vb.) Pencere öğeleri sürüklenip bırakılarak kolayca yeniden düzenlenebilir ve yeniden boyutlandırılabilir. Desteklenen Pencere Araçlarının tam listesi için Desteklenen Pencere Araçları bölümüne bakın.
There is a Custom Widget import system in Mycodo that allows user-created Widgets to be used in the Mycodo system. Custom Widgets can be uploaded on the [Gear Icon] -> Configure -> Custom Widgets page. After import, they will be available to use on the Setup -> Widget page.
If you develop a working module, please consider creating a new GitHub issue or pull request, and it may be included in the built-in set.
Open any of the built-in Widget modules located in the directory Mycodo/mycodo/widgets for examples of the proper formatting. There are also example Custom Widgets in the directory Mycodo/mycodo/widgets/examples.
Creating a custom widget module often requires specific placement and execution of Javascript. Several variables were created in each module to address this, and follow the following brief structure of the dashboard page that would be generated with multiple widgets being displayed.
\ No newline at end of file
diff --git a/Data-Viewing.zh/index.html b/Data-Viewing.zh/index.html
index a8ea63cc3..c26b3e8d0 100644
--- a/Data-Viewing.zh/index.html
+++ b/Data-Viewing.zh/index.html
@@ -1,4 +1,4 @@
- Data Viewing - Mycodo
There is a Custom Widget import system in Mycodo that allows user-created Widgets to be used in the Mycodo system. Custom Widgets can be uploaded on the [Gear Icon] -> Configure -> Custom Widgets page. After import, they will be available to use on the Setup -> Widget page.
If you develop a working module, please consider creating a new GitHub issue or pull request, and it may be included in the built-in set.
Open any of the built-in Widget modules located in the directory Mycodo/mycodo/widgets for examples of the proper formatting. There are also example Custom Widgets in the directory Mycodo/mycodo/widgets/examples.
Creating a custom widget module often requires specific placement and execution of Javascript. Several variables were created in each module to address this, and follow the following brief structure of the dashboard page that would be generated with multiple widgets being displayed.
There is a Custom Widget import system in Mycodo that allows user-created Widgets to be used in the Mycodo system. Custom Widgets can be uploaded on the [Gear Icon] -> Configure -> Custom Widgets page. After import, they will be available to use on the Setup -> Widget page.
If you develop a working module, please consider creating a new GitHub issue or pull request, and it may be included in the built-in set.
Open any of the built-in Widget modules located in the directory Mycodo/mycodo/widgets for examples of the proper formatting. There are also example Custom Widgets in the directory Mycodo/mycodo/widgets/examples.
Creating a custom widget module often requires specific placement and execution of Javascript. Several variables were created in each module to address this, and follow the following brief structure of the dashboard page that would be generated with multiple widgets being displayed.
\ No newline at end of file
diff --git a/Data-Viewing/index.html b/Data-Viewing/index.html
index 52073176c..79e5adc33 100644
--- a/Data-Viewing/index.html
+++ b/Data-Viewing/index.html
@@ -1,4 +1,4 @@
- Data Viewing - Mycodo
The Live Measurements page is the first page a user sees after logging in to Mycodo. It will display the current measurements being acquired from Input and Function controllers. If there is nothing displayed on the Live page, ensure an Input or Function controller is both configured correctly and activated. Data will be automatically updated on the page from the measurement database.
A graphical data display that is useful for viewing data sets spanning relatively long periods of time (weeks/months/years), which could be very data- and processor-intensive to view as a Synchronous Graph. Select a time frame and data will be loaded from that time span, if it exists. The first view will be of the entire selected data set. For every view/zoom, 700 data points will be loaded. If there are more than 700 data points recorded for the time span selected, 700 points will be created from an averaging of the points in that time span. This enables much less data to be used to navigate a large data set. For instance, 4 months of data may be 10 megabytes if all of it were downloaded. However, when viewing a 4 month span, it's not possible to see every data point of that 10 megabytes, and aggregating of points is inevitable. With asynchronous loading of data, you only download what you see. So, instead of downloading 10 megabytes every graph load, only ~50kb will be downloaded until a new zoom level is selected, at which time only another ~50kb is downloaded.
Note
Graphs require measurements, therefore at least one Input/Output/Function/etc. needs to be added and activated in order to display data.
The dashboard can be used for both viewing data and manipulating the system, thanks to the numerous dashboard widgets available. Multiple dashboards can be created as well as locked to prevent changing the arrangement.
Widgets are elements on the Dashboard that have a number of uses, such as viewing data (charts, indicators, gauges, etc.) or interacting with the system (manipulate outputs, change PWM duty cycle, querying or modifying a database, etc.). Widgets can be easily rearranged and resized by dragging and dropping. For a full list of supported Widgets, see Supported Widgets.
There is a Custom Widget import system in Mycodo that allows user-created Widgets to be used in the Mycodo system. Custom Widgets can be uploaded on the [Gear Icon] -> Configure -> Custom Widgets page. After import, they will be available to use on the Setup -> Widget page.
If you develop a working module, please consider creating a new GitHub issue or pull request, and it may be included in the built-in set.
Open any of the built-in Widget modules located in the directory Mycodo/mycodo/widgets for examples of the proper formatting. There are also example Custom Widgets in the directory Mycodo/mycodo/widgets/examples.
Creating a custom widget module often requires specific placement and execution of Javascript. Several variables were created in each module to address this, and follow the following brief structure of the dashboard page that would be generated with multiple widgets being displayed.
The Live Measurements page is the first page a user sees after logging in to Mycodo. It will display the current measurements being acquired from Input and Function controllers. If there is nothing displayed on the Live page, ensure an Input or Function controller is both configured correctly and activated. Data will be automatically updated on the page from the measurement database.
A graphical data display that is useful for viewing data sets spanning relatively long periods of time (weeks/months/years), which could be very data- and processor-intensive to view as a Synchronous Graph. Select a time frame and data will be loaded from that time span, if it exists. The first view will be of the entire selected data set. For every view/zoom, 700 data points will be loaded. If there are more than 700 data points recorded for the time span selected, 700 points will be created from an averaging of the points in that time span. This enables much less data to be used to navigate a large data set. For instance, 4 months of data may be 10 megabytes if all of it were downloaded. However, when viewing a 4 month span, it's not possible to see every data point of that 10 megabytes, and aggregating of points is inevitable. With asynchronous loading of data, you only download what you see. So, instead of downloading 10 megabytes every graph load, only ~50kb will be downloaded until a new zoom level is selected, at which time only another ~50kb is downloaded.
Note
Graphs require measurements, therefore at least one Input/Output/Function/etc. needs to be added and activated in order to display data.
The dashboard can be used for both viewing data and manipulating the system, thanks to the numerous dashboard widgets available. Multiple dashboards can be created as well as locked to prevent changing the arrangement.
Widgets are elements on the Dashboard that have a number of uses, such as viewing data (charts, indicators, gauges, etc.) or interacting with the system (manipulate outputs, change PWM duty cycle, querying or modifying a database, etc.). Widgets can be easily rearranged and resized by dragging and dropping. For a full list of supported Widgets, see Supported Widgets.
There is a Custom Widget import system in Mycodo that allows user-created Widgets to be used in the Mycodo system. Custom Widgets can be uploaded on the [Gear Icon] -> Configure -> Custom Widgets page. After import, they will be available to use on the Setup -> Widget page.
If you develop a working module, please consider creating a new GitHub issue or pull request, and it may be included in the built-in set.
Open any of the built-in Widget modules located in the directory Mycodo/mycodo/widgets for examples of the proper formatting. There are also example Custom Widgets in the directory Mycodo/mycodo/widgets/examples.
Creating a custom widget module often requires specific placement and execution of Javascript. Several variables were created in each module to address this, and follow the following brief structure of the dashboard page that would be generated with multiple widgets being displayed.
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
Page: [Gear Icon] -> Dependencies
The dependency page allows viewing of dependency information and the ability to initiate their installation. This is not something you will need to normally do, as dependencies are installed on an as-needed basis. If an Input, Output, Function, or other device you're adding has unmet dependencies, you will be prompted to install them when you attempt to install that device.
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
Page: [Gear Icon] -> Dependencies
The dependency page allows viewing of dependency information and the ability to initiate their installation. This is not something you will need to normally do, as dependencies are installed on an as-needed basis. If an Input, Output, Function, or other device you're adding has unmet dependencies, you will be prompted to install them when you attempt to install that device.
\ No newline at end of file
diff --git a/Device-Notes/index.html b/Device-Notes/index.html
index caaa33b55..cfb8164bb 100644
--- a/Device-Notes/index.html
+++ b/Device-Notes/index.html
@@ -1,4 +1,4 @@
- Device Notes - Mycodo
The detection of a changing signal, for instance a simple switch completing a circuit, requires the use of edge detection. By detecting a rising edge (LOW to HIGH), a falling edge (HIGH to LOW), or both, actions or events can be triggered. The GPIO chosen to detect the signal should be equipped with an appropriate resistor that either pulls the GPIO up [to 5-volts] or down [to ground]. The option to enable the internal pull-up or pull-down resistors is not available for safety reasons. Use your own resistor to pull the GPIO high or low.
Examples of devices that can be used with edge detection: simple switches and buttons, PIR motion sensors, reed switches, hall effect sensors, float switches, and more.
There are only a few number fo displays that are supported. 16x2 and 20x4 character LCD displays with I2C backpacks and the 128x32 / 128x64 OLED displays are supported. The below image is the type of device with the I2C backpack that should be compatible. See Supported Functions for more information.
The Raspberry Pi has an integrated temperature sensor on the BCM2835 SoC that measure the temperature of the CPU/GPU. This is the easiest sensor to set up in Mycodo, as it is immediately available to be used.
I figured out why this [AM2315] sensor is unreliable with Rpi3 hardware I2C. It is among a number of I2C devices that really hates the BCM2835 clock stretching blunder (hardware bug: raspberrypi/linux#254). The wakeup attempts fail, consistently. I checked the bitstream with a sniffer, and see that the sensor may respond once out of 20 or so tries (or not at all) but only with a single byte returned. The solution is to use a software implementation of the I2C bus. You need to add pull-up resistors (4.7k is dandy) to 3.3v and install the i2c_gpio device overlay. Seems to work fine now, will run for a few days, but the CRC failures are gone and I get good readings, every time. And no twiddling the power for the sensor is required.
To enable software I2C, add the following line to your /boot/config.txt
After rebooting, a new I2C bus at /dev/i2c-3 should exist with SDA on pin 23 (BCM) and SCL on pin 24 (BCM). Make sure you add the appropriate pull-up resistors before connecting any devices.
Using USB devices, such as USB-to-serial interfaces (CP210x) to connect a sensor, while convenient, poses an issue if there are multiple devices when the system reboots. After a reboot, there is no guarantee the device will persist with the same name. For instance, if Sensor A is /dev/ttyUSB0 and Sensor B is /dev/ttyUSB1, after a reboot Sensor A may be /dev/ttyUSB1 and Sensor B may be /dev/ttyUSB0. This will cause Mycodo to query the wrong device for a measurement, potentially causing a mis-measurement, or worse, an incorrect measurement because the response is not from the correct sensor (I've seen my temperature sensor read 700+ degrees celsius because of this!). Follow the instructions below to alleviate this issue.
I use udev to create a persistent device name ('/dev/dust-sensor') that will be linked to the /dev/ttyUSBn that is chosen at device arrival in the kernel. The only requirement is some attribute returned from the USB device that is unique. The common circumstance is that none of the attributes are unique and you get stuck with just VID and PID, which is ok as long as you don't have any other adapters that report the same VID and PID. If you have multiple adapters with the same VID and PID, then hopefully they have some unique attribute. This command will walk the attributes. Run on each USB device and then compare differences to possibly find some attribute to use.
udevadm info --name=/dev/ttyUSB0 --attribute-walk
I ended up using the serial number on the ZH03B to program the USB adapter serial field. This way guarantees unique serial numbers rather than me trying to remember what was the last serial number I used to increment by 1.
When you plug a USB device in it can be enumerated to different device names by the operating system. To fix this problem for this sensor on linux, I changed attributes that make the connection unique.
The detection of a changing signal, for instance a simple switch completing a circuit, requires the use of edge detection. By detecting a rising edge (LOW to HIGH), a falling edge (HIGH to LOW), or both, actions or events can be triggered. The GPIO chosen to detect the signal should be equipped with an appropriate resistor that either pulls the GPIO up [to 5-volts] or down [to ground]. The option to enable the internal pull-up or pull-down resistors is not available for safety reasons. Use your own resistor to pull the GPIO high or low.
Examples of devices that can be used with edge detection: simple switches and buttons, PIR motion sensors, reed switches, hall effect sensors, float switches, and more.
There are only a few number fo displays that are supported. 16x2 and 20x4 character LCD displays with I2C backpacks and the 128x32 / 128x64 OLED displays are supported. The below image is the type of device with the I2C backpack that should be compatible. See Supported Functions for more information.
The Raspberry Pi has an integrated temperature sensor on the BCM2835 SoC that measure the temperature of the CPU/GPU. This is the easiest sensor to set up in Mycodo, as it is immediately available to be used.
I figured out why this [AM2315] sensor is unreliable with Rpi3 hardware I2C. It is among a number of I2C devices that really hates the BCM2835 clock stretching blunder (hardware bug: raspberrypi/linux#254). The wakeup attempts fail, consistently. I checked the bitstream with a sniffer, and see that the sensor may respond once out of 20 or so tries (or not at all) but only with a single byte returned. The solution is to use a software implementation of the I2C bus. You need to add pull-up resistors (4.7k is dandy) to 3.3v and install the i2c_gpio device overlay. Seems to work fine now, will run for a few days, but the CRC failures are gone and I get good readings, every time. And no twiddling the power for the sensor is required.
To enable software I2C, add the following line to your /boot/config.txt
After rebooting, a new I2C bus at /dev/i2c-3 should exist with SDA on pin 23 (BCM) and SCL on pin 24 (BCM). Make sure you add the appropriate pull-up resistors before connecting any devices.
Using USB devices, such as USB-to-serial interfaces (CP210x) to connect a sensor, while convenient, poses an issue if there are multiple devices when the system reboots. After a reboot, there is no guarantee the device will persist with the same name. For instance, if Sensor A is /dev/ttyUSB0 and Sensor B is /dev/ttyUSB1, after a reboot Sensor A may be /dev/ttyUSB1 and Sensor B may be /dev/ttyUSB0. This will cause Mycodo to query the wrong device for a measurement, potentially causing a mis-measurement, or worse, an incorrect measurement because the response is not from the correct sensor (I've seen my temperature sensor read 700+ degrees celsius because of this!). Follow the instructions below to alleviate this issue.
I use udev to create a persistent device name ('/dev/dust-sensor') that will be linked to the /dev/ttyUSBn that is chosen at device arrival in the kernel. The only requirement is some attribute returned from the USB device that is unique. The common circumstance is that none of the attributes are unique and you get stuck with just VID and PID, which is ok as long as you don't have any other adapters that report the same VID and PID. If you have multiple adapters with the same VID and PID, then hopefully they have some unique attribute. This command will walk the attributes. Run on each USB device and then compare differences to possibly find some attribute to use.
udevadm info --name=/dev/ttyUSB0 --attribute-walk
I ended up using the serial number on the ZH03B to program the USB adapter serial field. This way guarantees unique serial numbers rather than me trying to remember what was the last serial number I used to increment by 1.
When you plug a USB device in it can be enumerated to different device names by the operating system. To fix this problem for this sensor on linux, I changed attributes that make the connection unique.
Now I have an attribute to tell udev what to do. I create a file in /etc/udev/rules.d with a name like "99-dustsensor.rules". In that file I tell udev what device name to create when it sees this device plugged in:
\ No newline at end of file
diff --git a/Energy-Usage/index.html b/Energy-Usage/index.html
index 539392f4c..9f94415c0 100644
--- a/Energy-Usage/index.html
+++ b/Energy-Usage/index.html
@@ -1 +1 @@
- Energy Usage - Mycodo
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
Page: More -> Energy Usage
There are two methods for calculating energy usage. The first relies on determining how long Outputs have been on. Based on this, if the number of Amps the output draws has been set in the output Settings, then the kWh and cost can be calculated. Discovering the number of amps the device draws can be accomplished by calculating this from the output typically given as watts on the device label, or with the use of a current clamp while the device is operating. The limitation of this method is PWM Outputs are not currently used to calculate these figures due to the difficulty determining the current consumption of devices driven by PWM signals.
The second method for calculating energy consumption is more accurate and is the recommended method if you desire the most accurate estimation of energy consumption and cost. This method relies on an Input or Function measuring Amps. One way to do this is with the used of an analog-to-digital converter (ADC) that converts the voltage output from a transformer into current (Amps). One wire from the AC line that powers your device(s) passes thorough the transformer and the device converts the current that passes through that wire into a voltage that corresponds to the amperage. For instance, the below sensor converts 0 -50 amps input to 0 - 5 volts output. An ADC receives this output as its input. One would set this conversion range in Mycodo and the calculated amperage will be stored. On the Energy Usage page, add this ADC Input measurement and a report summary will be generated. Keep in mind that for a particular period (for example, the past week) to be accurate, there needs to be a constant measurement of amps at a periodic rate. The faster the rate the more accurate the calculation will be. This is due to the amperage measurements being averaged for this period prior to calculating kWh and cost. If there is any time turing this period where amp measurements aren't being acquired when in fact there are devices consuming current, the calculation is likely to not be accurate.
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
Page: More -> Energy Usage
There are two methods for calculating energy usage. The first relies on determining how long Outputs have been on. Based on this, if the number of Amps the output draws has been set in the output Settings, then the kWh and cost can be calculated. Discovering the number of amps the device draws can be accomplished by calculating this from the output typically given as watts on the device label, or with the use of a current clamp while the device is operating. The limitation of this method is PWM Outputs are not currently used to calculate these figures due to the difficulty determining the current consumption of devices driven by PWM signals.
The second method for calculating energy consumption is more accurate and is the recommended method if you desire the most accurate estimation of energy consumption and cost. This method relies on an Input or Function measuring Amps. One way to do this is with the used of an analog-to-digital converter (ADC) that converts the voltage output from a transformer into current (Amps). One wire from the AC line that powers your device(s) passes thorough the transformer and the device converts the current that passes through that wire into a voltage that corresponds to the amperage. For instance, the below sensor converts 0 -50 amps input to 0 - 5 volts output. An ADC receives this output as its input. One would set this conversion range in Mycodo and the calculated amperage will be stored. On the Energy Usage page, add this ADC Input measurement and a report summary will be generated. Keep in mind that for a particular period (for example, the past week) to be accurate, there needs to be a constant measurement of amps at a periodic rate. The faster the rate the more accurate the calculation will be. This is due to the amperage measurements being averaged for this period prior to calculating kWh and cost. If there is any time turing this period where amp measurements aren't being acquired when in fact there are devices consuming current, the calculation is likely to not be accurate.
Mycodo can return a number of different errors. Below are a few of the numbered errors that you may receive and information about how to diagnose the issue.
Cannot set a value of 'X' of type Y. Must be a float or string representing a float.
Examples:
Cannot set a value of '1.33.4' of type str.
Cannot set a value of 'Output: 1.2' of type str.
Cannot set a value of '[1.3, 2.4]' of type list.
Cannot set a value of '{"output": 1.99}' of type dict.
Cannot set a value of 'None' of type Nonetype.
This error occurs because the value provided to be stored in the influxdb time-series database is not a numerical value (integer or decimal/float) or it is not a string that represents a float (e.g. "5", "3.14"). There are a number of reasons why this error occurs, but the most common reason is the sensor being ready by an Input did not return a measurement when queried, or it returned something other than something that represents a numerical value, indicating the sensor is not working. This could be from a number of reasons, including but not limited to, faulty wiring, faulty/insufficient power supply, defective sensor, I2C bus hasn't been enabled, misconfigured settings, etc. Often, a sensor can fail or not get set up correctly during Input initialization when the daemon starts, leading to this error every measurement period. You will need to review the Daemon Log ([Gear Icon] -> Mycodo Logs) all the way back to when the daemon started (since this is when the Input started and potentially failed with an initial error that may be more informative). Enabling Log Level: Debug in the Controller setting can also be useful by providing debugging log lines (when available) in addition to the info and error log lines.
This error occurs when the Controller (Input/Output/Function/etc.) could not properly initialize the device or channel when it started and is now trying to access an uninitialized device or channel. For Inputs, this could be loading the 3rd party library used to communicate with the sensor. If there was an error loading the library, then the library cannot be used to communicate with the sensor. You will often need to review the Daemon Log ([Gear Icon] -> Mycodo Logs) for any relevant errors that occurred when the Controller was initially activated to determine the issue setting up the device. Try deactivating, then activating the device, to see the initialization error again. Enabling Log Level: Debug in the Controller setting can also be useful by providing debugging log lines (when available) in addition to the info and error log lines.
Mycodo can return a number of different errors. Below are a few of the numbered errors that you may receive and information about how to diagnose the issue.
Cannot set a value of 'X' of type Y. Must be a float or string representing a float.
Examples:
Cannot set a value of '1.33.4' of type str.
Cannot set a value of 'Output: 1.2' of type str.
Cannot set a value of '[1.3, 2.4]' of type list.
Cannot set a value of '{"output": 1.99}' of type dict.
Cannot set a value of 'None' of type Nonetype.
This error occurs because the value provided to be stored in the influxdb time-series database is not a numerical value (integer or decimal/float) or it is not a string that represents a float (e.g. "5", "3.14"). There are a number of reasons why this error occurs, but the most common reason is the sensor being ready by an Input did not return a measurement when queried, or it returned something other than something that represents a numerical value, indicating the sensor is not working. This could be from a number of reasons, including but not limited to, faulty wiring, faulty/insufficient power supply, defective sensor, I2C bus hasn't been enabled, misconfigured settings, etc. Often, a sensor can fail or not get set up correctly during Input initialization when the daemon starts, leading to this error every measurement period. You will need to review the Daemon Log ([Gear Icon] -> Mycodo Logs) all the way back to when the daemon started (since this is when the Input started and potentially failed with an initial error that may be more informative). Enabling Log Level: Debug in the Controller setting can also be useful by providing debugging log lines (when available) in addition to the info and error log lines.
This error occurs when the Controller (Input/Output/Function/etc.) could not properly initialize the device or channel when it started and is now trying to access an uninitialized device or channel. For Inputs, this could be loading the 3rd party library used to communicate with the sensor. If there was an error loading the library, then the library cannot be used to communicate with the sensor. You will often need to review the Daemon Log ([Gear Icon] -> Mycodo Logs) for any relevant errors that occurred when the Controller was initially activated to determine the issue setting up the device. Try deactivating, then activating the device, to see the initialization error again. Enabling Log Level: Debug in the Controller setting can also be useful by providing debugging log lines (when available) in addition to the info and error log lines.
\ No newline at end of file
diff --git a/Export-Import/index.html b/Export-Import/index.html
index 336ccc59d..4e83bbf78 100644
--- a/Export-Import/index.html
+++ b/Export-Import/index.html
@@ -1 +1 @@
- Export/Import - Mycodo
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
Page: More -> Export Import
Measurements that fall within the selected date/time frame may be exported as CSV with their corresponding timestamps.
Additionally, the entire measurement database (influxdb) may be exported as a ZIP archive backup. This ZIP may be imported back in any Mycodo system to restore these measurements.
Note
Measurements are associated with specific IDs that correspond to the Inputs/Outputs/etc. of your specific system. If you import measurements without also importing the associated Inputs/Outputs/etc., you will not see these measurements (e.g. on Dashboard Graphs). Therefore, it is recommended to export both Measurements and Settings at the same time so when you import them at a later time, you will have the devices associated with the measurements available on the system you're importing to.
Note
Importing measurement data will not destroy old data and will be added to the current measurement data.
Mycodo settings may be exported as a ZIP file containing the Mycodo settings database (sqlite) and any custom Inputs, Outputs, Functions, and Widgets. This ZIP file may be used to restore these to another Mycodo install, as long as the Mycodo and database versions being imported are equal or less than the system you are installing them to. Additionally, you can only import to a system with the same major version number (the first number in the version format x.x.x). For instance, you can export settings from Mycodo 8.5.0 and import them into Mycodo 8.8.0, however you can not import them into Mycodo 8.2.0 (earlier version with same major version number), 7.0.0 (not the same major version number), or 9.0.0 (not the same major version number).
Warning
An import will override the current settings and custom controller data (i.e. destroying it). It is advised to make a Mycodo backup prior to attempting an import.
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
Page: More -> Export Import
Measurements that fall within the selected date/time frame may be exported as CSV with their corresponding timestamps.
Additionally, the entire measurement database (influxdb) may be exported as a ZIP archive backup. This ZIP may be imported back in any Mycodo system to restore these measurements.
Note
Measurements are associated with specific IDs that correspond to the Inputs/Outputs/etc. of your specific system. If you import measurements without also importing the associated Inputs/Outputs/etc., you will not see these measurements (e.g. on Dashboard Graphs). Therefore, it is recommended to export both Measurements and Settings at the same time so when you import them at a later time, you will have the devices associated with the measurements available on the system you're importing to.
Note
Importing measurement data will not destroy old data and will be added to the current measurement data.
Mycodo settings may be exported as a ZIP file containing the Mycodo settings database (sqlite) and any custom Inputs, Outputs, Functions, and Widgets. This ZIP file may be used to restore these to another Mycodo install, as long as the Mycodo and database versions being imported are equal or less than the system you are installing them to. Additionally, you can only import to a system with the same major version number (the first number in the version format x.x.x). For instance, you can export settings from Mycodo 8.5.0 and import them into Mycodo 8.8.0, however you can not import them into Mycodo 8.2.0 (earlier version with same major version number), 7.0.0 (not the same major version number), or 9.0.0 (not the same major version number).
Warning
An import will override the current settings and custom controller data (i.e. destroying it). It is advised to make a Mycodo backup prior to attempting an import.
\ No newline at end of file
diff --git a/Functions/index.html b/Functions/index.html
index 14272cc08..d9073ee8c 100644
--- a/Functions/index.html
+++ b/Functions/index.html
@@ -1,4 +1,4 @@
- Functions - Mycodo
Function controllers perform tasks that often involve the use of Inputs and Outputs.
Note
"Last" means the Function will only acquire the last (latest) measurement in the database. "Past" means the Function will acquire all measurements from the present until the "Max Age (seconds)" that's been set (e.g. if measurements are acquired every 10 seconds, and a Max Age is set to 60 seconds, there will on average be 6 measurements returned to the Function to operate with).
There is a Custom Function import system in Mycodo that allows user-created Functions to be used in the Mycodo system. Custom Functions can be uploaded on the [Gear Icon] -> Configure -> Custom Functions page. After import, they will be available to use on the Setup -> Function page.
If you develop a working Function module, please consider creating a new GitHub issue or pull request, and it may be included in the built-in set.
Open any of the built-in modules located in the directory Mycodo/mycodo/functions for examples of the proper formatting.
A proportional-derivative-integral (PID) controller is a control loop feedback mechanism used throughout industry for controlling systems. It efficiently brings a measurable condition, such as the temperature, to a desired state and maintains it there with little overshoot and oscillation. A well-tuned PID controller will raise to the setpoint quickly, have minimal overshoot, and maintain the setpoint with little oscillation.
PID settings may be changed while the PID is activated and the new settings will take effect immediately. If settings are changed while the controller is paused, the values will be used once the controller resumes operation.
When paused, the control variable will not be updated and the PID will not turn on the associated outputs. Settings can be changed without losing current PID output values.
Hold
When held, the control variable will not be updated but the PID will turn on the associated outputs, Settings can be changed without losing current PID output values.
Resume
Resume a PID controller from being held or paused.
Direction
This is the direction that you wish to regulate. For example, if you only require the temperature to be raised, set this to "Up," but if you require regulation up and down, set this to "Both."
Period
This is the duration between when the PID acquires a measurement, the PID is updated, and the output is modulated.
Start Offset (seconds)
Wait this duration before attempting the first calculation/measurement.
Max Age
The time (in seconds) that the sensor measurement age is required to be less than. If the measurement is not younger than this age, the measurement is thrown out and the PID will not actuate the output. This is a safety measure to ensure the PID is only using recent measurements.
Setpoint
This is the specific point you would like the environment to be regulated at. For example, if you would like the humidity regulated to 60%, enter 60.
Band (+/- Setpoint)
Hysteresis option. If set to a non-0 value, the setpoint will become a band, which will be between the band_max=setpoint+band and band_min=setpoint-band. If Raising, the PID will raise above band_max, then wait until the condition falls below band_min to resume regulation. If Lowering, the PID will lower below band_min, then wait until the condition rises above band_max to resume regulating. If set to Both, regulation will only occur to the outside min and max of the band, and cease when within the band. Set to 0 to disable Hysteresis.
Store Lower as Negative
Checking this will store all output variables (PID and output duration/duty cycle) as a negative values in the measurement database. This is useful for displaying graphs that indicate whether the PID is currently lowering or raising. Disable this if you desire all positive values to be stored in the measurement database.
KP Gain
Proportional coefficient (non-negative). Accounts for present values of the error. For example, if the error is large and positive, the control output will also be large and positive.
KI Gain
Integral coefficient (non-negative). Accounts for past values of the error. For example, if the current output is not sufficiently strong, the integral of the error will accumulate over time, and the controller will respond by applying a stronger action.
KD Gain
Derivative coefficient (non-negative). Accounts for predicted future values of the error, based on its current rate of change.
Integrator Min
The minimum allowed integrator value, for calculating Ki_total: (Ki_total = Ki * integrator; and PID output = Kp_total + Ki_total + Kd_total)
Integrator Max
The maximum allowed integrator value, for calculating Ki_total: (Ki_total = Ki * integrator; and PID output = Kp_total + Ki_total + Kd_total)
Output (Raise/Lower)
This is the output that will cause the particular environmental condition to rise or lower. In the case of raising the temperature, this may be a heating pad or coil.
Min On Duration, Duty Cycle, or Amount (Raise/Lower)
This is the minimum value that the PID output must be before Output (Lower) turns on. If the PID output is less than this value, Duration Outputs will not turn on, and PWM Outputs will be turned off unless Always Min is enabled.
Max On Duration, Duty Cycle, or Amount (Raise/Lower)
This is the maximum duration, volume, or duty cycle the Output (Raise) can be set to. If the PID output is greater than this value, the Max value set here will be used.
Min Off Duration (Raise/Lower)
For On/Off (Duration) Outputs, this is the minimum amount of time the Output must have been off for before it is allowed to turn back on. Ths is useful for devices that can be damaged by rapid power cycling (e.g. fridges).
Always Min (Raise/Lower)
For PWM Outputs only. If enabled, the duty cycle will never be set below the Min value.
PID Controllers can control a number of different output types (e.g. duration, volume, or PWM duty cycle). For most output types, the PID output (Control Variable) will be proportional (i.e. Output Duration = PID Control Variable). However, when outputting a duty cycle, it will be calculated as Duty Cycle = (Control Variable / Period) * 100.
Note
Control Variable = P Output + I Output + D Output. Duty cycle is limited within the 0 - 100 % range and the set Min Duty Cycle and Max Duty Cycle. An output duration is limited by the set Min On Duration and Max On Duration, and output volume similarly.
PID tuning can be a complex process, depending on the output device(s) used and the environment or system under control. A system with large perturbations will be more difficult to control than one that is stable. Similarly, output devices that are unsuitable may make PID tuning difficult or impossible. Learning how PID controllers operate and the theory behind their tuning will not only better prepare you to operate a PID controller, but also in the development of your system and selection and implementation of the output devices used to regulate your system.
The PID controller is the most common regulatory controller found in industrial settings, for it"s ability to handle both simple and complex regulation. The PID controller has three paths, the proportional, integral, and derivative.
The Proportional takes the error and multiplies it by the constant KP, to yield an output value. When the error is large, there will be a large proportional output.
The Integral takes the error and multiplies it by KI, then integrates it (KI · 1/s). As the error changes over time, the integral will continually sum it and multiply it by the constant KI. The integral is used to remove perpetual error in the control system. If using KP alone produces an output that produces a perpetual error (i.e. if the sensor measurement never reaches the Set Point), the integral will increase the output until the error decreases and the Set Point is reached.
The Derivative multiplies the error by KD, then differentiates it (KD · s). When the error rate changes over time, the output signal will change. The faster the change in error, the larger the derivative path becomes, decreasing the output rate of change. This has the effect of dampening overshoot and undershoot (oscillation) of the Set Point.
The KP, KI, and KD gains determine how much each of the P, I, and D variables influence the final PID output value. For instance, the greater the value of the gain, the more influence that variable has on the output.
The output from the PID controller can be used in a number of ways. A simple use is to use this value as the number of seconds an output is turned on during a periodic interval (Period). For instance, if the Period is set to 30 seconds, the PID equation has the desired measurement and the actual measurement used to calculate the PID output every 30 seconds. The more the output is on during this period, the more it will affect the system. For example, an output on for 15 seconds every 30 seconds is at a 50 % duty cycle, and would affect the system roughly half as much as when the output is on for 30 seconds every 30 seconds, or at at 100 % duty cycle. The PID controller will calculate the output based on the amount of error (how far the actual measurement is from the desired measurement). If the error increases or persists, the output increases, causing the output to turn on for a longer duration within the Period, which usually in term causes the measured condition to change and the error to reduce. When the error reduces, the control variable decreases, meaning the output is turned on for a shorter duration of time. The ultimate goal of a well-tuned PID controller is to bring the actual measurement to the desired measurement quickly, with little overshoot, and maintain the setpoint with minimal oscillation.
Using temperature as an example, the Process Variable (PV) is the measured temperature, the Setpoint (SP) is the desired temperature, and the Error (e) is the distance between the measured temperature and the desired temperature (indicating if the actual temperature is too hot or too cold and to what degree). The error is manipulated by each of the three PID components, producing an output, called the Manipulated Variable (MV) or Control Variable (CV). To allow control of how much each path contributes to the output value, each path is multiplied by a gain (represented by KP, KI, and KD). By adjusting the gains, the sensitivity of the system to each path is affected. When all three paths are summed, the PID output is produced. If a gain is set to 0, that path does not contribute to the output and that path is essentially turned off.
The output can be used a number of ways, however this controller was designed to use the output to affect the measured value (PV). This feedback loop, with a properly tuned PID controller, can achieve a set point in a short period of time, maintain regulation with little oscillation, and respond quickly to disturbance.
Therefor, if one would be regulating temperature, the sensor would be a temperature sensor and the feedback device(s) would be able to heat and cool. If the temperature is lower than the Set Point, the output value would be positive and a heater would activate. The temperature would rise toward the desired temperature, causing the error to decrease and a lower output to be produced. This feedback loop would continue until the error reaches 0 (at which point the output would be 0). If the temperature continues to rise past the Set Point (this is may be acceptable, depending on the degree), the PID would produce a negative output, which could be used by the cooling device to bring the temperature back down, to reduce the error. If the temperature would normally lower without the aid of a cooling device, then the system can be simplified by omitting a cooler and allowing it to lower on its own.
Implementing a controller that effectively utilizes KP, KI, and KD can be challenging. Furthermore, it is often unnecessary. For instance, the KI and KD can be set to 0, effectively turning them off and producing the very popular and simple P controller. Also popular is the PI controller. It is recommended to start with only KP activated, then experiment with KP and KI, before finally using all three. Because systems will vary (e.g. airspace volume, degree of insulation, and the degree of impact from the connected device, etc.), each path will need to be adjusted through experimentation to produce an effective output.
These example setups are meant to illustrate how to configure regulation in particular directions, and not to achieve ideal values to configure your KP, KI, and KD gains. There are a number of online resources that discuss techniques and methods that have been developed to determine ideal PID values (such as here, here, here, here, and here) and since there are no universal values that will work for every system, it is recommended to conduct your own research to understand the variables and essential to conduct your own experiments to effectively implement them.
Provided merely as an example of the variance of PID values, one of my setups had temperature PID values (up regulation) of KP = 30, KI = 1.0, and KD = 0.5, and humidity PID values (up regulation) of KP = 1.0, KI = 0.2, and KD = 0.5. Furthermore, these values may not have been optimal but they worked well for the conditions of my environmental chamber.
This will set up the system to raise and lower the temperature to a certain level with two regulatory devices (one that heats and one that cools).
Add a sensor, then save the proper device and pin/address for each sensor and activate the sensor.
Add two outputs, then save each GPIO and On Trigger state.
Add a PID, then select the newly-created sensor. Change Setpoint to the desired temperature, Regulate Direction to "Both". Set Raise Output to the relay attached to the heating device and the Lower Relay to the relay attached to the cooling device.
Set KP = 1, KI = 0, and KD = 0, then activate the PID.
If the temperature is lower than the Set Point, the heater should activate at some interval determined by the PID controller until the temperature rises to the set point. If the temperature goes higher than the Set Point (or Set Point + Buffer), the cooling device will activate until the temperature returns to the set point. If the temperature is not reaching the Set Point after a reasonable amount of time, increase the KP value and see how that affects the system. Experiment with different configurations involving only Read Interval and KP to achieve a good regulation. Avoid changing the KI and KD from 0 until a working regulation is achieved with KP alone.
View graphs in the 6 to 12 hour time span to identify how well the temperature is regulated to the Setpoint. What is meant by well-regulated will vary, depending on your specific application and tolerances. Most applications of a PID controller would like to see the proper temperature attained within a reasonable amount of time and with little oscillation around the Setpoint.
Once regulation is achieved, experiment by reducing KP slightly (~25%) and increasing KI by a low amount to start, such as 0.1 (or lower, 0.01), then start the PID and observe how well the controller regulates. Slowly increase KI until regulation becomes both quick and with little oscillation. At this point, you should be fairly familiar with experimenting with the system and the KD value can be experimented with once both KP and KI have been tuned.
Often the system can be simplified if two-way regulation is not needed. For instance, if cooling is unnecessary, this can be removed from the system and only up-regulation can be used.
Use the same configuration as the Exact Temperature Regulation example, except change Regulate Direction to "Raise" and do not touch the "Down Relay" section.
This is an experimental feature. It is best not used until you are familiar with the theory, operation, and tuning of a PID.
The Autotune function is a standalone controller that is useful for determining appropriate Kp, Ki, and Kd gains for use in the a PID controller. The autotuner will manipulate an output and analyze the measured response in a particular environment/system. It will take several cycles of perturbing the system with the chosen output before enough data is available to calculate the PID gains. In order to use this feature, select a Measurement and an Output that can module the specific condition being measured. Then, configure the Noise Band and Outstep and activate the function. Log lines of the autotuner will appear in the daemon log ([Gear Icon] -> Mycodo Logs -> Daemon Log). While the autotune is being performed, it is recommended to create a dashboard graph that includes the Measurement and Output in order to see what the PID Autotuner is doing and to notice any potential issues with the autotune settings that have been configured. If the autotune is taking a long time to complete, there may not be enough stability in the system being manipulated to calculate a reliable set of PID gains. This may be because there are too many perturbations to the system, or conditions are changing too rapidly to acquire consistent measurement oscillations. If this is the case, try modifying your system to increase stability and yield consistent measurement oscillations. Once the autotune successfully completes, perturbations may be reintroduced in order to further tune the PID controller to handle them.
Setting
Description
Measurement
This is the Input or Function measurement that is measuring the specific condition that the Output will affect. For instance, this could be a temperature measurement and the output could be a heater.
Output
This is the Output that will affect the measurement when it's activated. The autotune function will periodically turn this output on in order to raise the measurement beyond the setpoint.
Period
This is the period of time between the Output being turned on. This should be set to the same Period you wish to use for your PID controller. A different Period can significantly affect the PID gains that the autotune produces.
Setpoint
This is the desired measurement condition value. For instance, if temperature is being measured, this should be set a several degrees higher than the current temperature so the output, when activated, will cause the temperature to rise beyond the setpoint.
Noise Band
This is the amount above the setpoint the measured condition must reach before the output turns off. This is also how much below the setpoint the measured condition must fall before the output turns back on.
Outstep
This is how many seconds the output will turn on every PID Period. For instance, to autotune with 50% power, ensure the Outstep is half the value of the PID Period.
Direction
This is the direction for which the Output will push the Measurement. For instance, a heater will raise temperature, whereas a cooler will lower temperature.
Typical graph output will look like this:
And typical Daemon Log output will look like this:
2018-08-04 23:32:20,876 - mycodo.pid_3b533dff - INFO - Activated in 187.2 ms
+ Functions - Mycodo
Function controllers perform tasks that often involve the use of Inputs and Outputs.
Note
"Last" means the Function will only acquire the last (latest) measurement in the database. "Past" means the Function will acquire all measurements from the present until the "Max Age (seconds)" that's been set (e.g. if measurements are acquired every 10 seconds, and a Max Age is set to 60 seconds, there will on average be 6 measurements returned to the Function to operate with).
There is a Custom Function import system in Mycodo that allows user-created Functions to be used in the Mycodo system. Custom Functions can be uploaded on the [Gear Icon] -> Configure -> Custom Functions page. After import, they will be available to use on the Setup -> Function page.
If you develop a working Function module, please consider creating a new GitHub issue or pull request, and it may be included in the built-in set.
Open any of the built-in modules located in the directory Mycodo/mycodo/functions for examples of the proper formatting.
A proportional-derivative-integral (PID) controller is a control loop feedback mechanism used throughout industry for controlling systems. It efficiently brings a measurable condition, such as the temperature, to a desired state and maintains it there with little overshoot and oscillation. A well-tuned PID controller will raise to the setpoint quickly, have minimal overshoot, and maintain the setpoint with little oscillation.
PID settings may be changed while the PID is activated and the new settings will take effect immediately. If settings are changed while the controller is paused, the values will be used once the controller resumes operation.
When paused, the control variable will not be updated and the PID will not turn on the associated outputs. Settings can be changed without losing current PID output values.
Hold
When held, the control variable will not be updated but the PID will turn on the associated outputs, Settings can be changed without losing current PID output values.
Resume
Resume a PID controller from being held or paused.
Direction
This is the direction that you wish to regulate. For example, if you only require the temperature to be raised, set this to "Up," but if you require regulation up and down, set this to "Both."
Period
This is the duration between when the PID acquires a measurement, the PID is updated, and the output is modulated.
Start Offset (seconds)
Wait this duration before attempting the first calculation/measurement.
Max Age
The time (in seconds) that the sensor measurement age is required to be less than. If the measurement is not younger than this age, the measurement is thrown out and the PID will not actuate the output. This is a safety measure to ensure the PID is only using recent measurements.
Setpoint
This is the specific point you would like the environment to be regulated at. For example, if you would like the humidity regulated to 60%, enter 60.
Band (+/- Setpoint)
Hysteresis option. If set to a non-0 value, the setpoint will become a band, which will be between the band_max=setpoint+band and band_min=setpoint-band. If Raising, the PID will raise above band_max, then wait until the condition falls below band_min to resume regulation. If Lowering, the PID will lower below band_min, then wait until the condition rises above band_max to resume regulating. If set to Both, regulation will only occur to the outside min and max of the band, and cease when within the band. Set to 0 to disable Hysteresis.
Store Lower as Negative
Checking this will store all output variables (PID and output duration/duty cycle) as a negative values in the measurement database. This is useful for displaying graphs that indicate whether the PID is currently lowering or raising. Disable this if you desire all positive values to be stored in the measurement database.
KP Gain
Proportional coefficient (non-negative). Accounts for present values of the error. For example, if the error is large and positive, the control output will also be large and positive.
KI Gain
Integral coefficient (non-negative). Accounts for past values of the error. For example, if the current output is not sufficiently strong, the integral of the error will accumulate over time, and the controller will respond by applying a stronger action.
KD Gain
Derivative coefficient (non-negative). Accounts for predicted future values of the error, based on its current rate of change.
Integrator Min
The minimum allowed integrator value, for calculating Ki_total: (Ki_total = Ki * integrator; and PID output = Kp_total + Ki_total + Kd_total)
Integrator Max
The maximum allowed integrator value, for calculating Ki_total: (Ki_total = Ki * integrator; and PID output = Kp_total + Ki_total + Kd_total)
Output (Raise/Lower)
This is the output that will cause the particular environmental condition to rise or lower. In the case of raising the temperature, this may be a heating pad or coil.
Min On Duration, Duty Cycle, or Amount (Raise/Lower)
This is the minimum value that the PID output must be before Output (Lower) turns on. If the PID output is less than this value, Duration Outputs will not turn on, and PWM Outputs will be turned off unless Always Min is enabled.
Max On Duration, Duty Cycle, or Amount (Raise/Lower)
This is the maximum duration, volume, or duty cycle the Output (Raise) can be set to. If the PID output is greater than this value, the Max value set here will be used.
Min Off Duration (Raise/Lower)
For On/Off (Duration) Outputs, this is the minimum amount of time the Output must have been off for before it is allowed to turn back on. Ths is useful for devices that can be damaged by rapid power cycling (e.g. fridges).
Always Min (Raise/Lower)
For PWM Outputs only. If enabled, the duty cycle will never be set below the Min value.
PID Controllers can control a number of different output types (e.g. duration, volume, or PWM duty cycle). For most output types, the PID output (Control Variable) will be proportional (i.e. Output Duration = PID Control Variable). However, when outputting a duty cycle, it will be calculated as Duty Cycle = (Control Variable / Period) * 100.
Note
Control Variable = P Output + I Output + D Output. Duty cycle is limited within the 0 - 100 % range and the set Min Duty Cycle and Max Duty Cycle. An output duration is limited by the set Min On Duration and Max On Duration, and output volume similarly.
PID tuning can be a complex process, depending on the output device(s) used and the environment or system under control. A system with large perturbations will be more difficult to control than one that is stable. Similarly, output devices that are unsuitable may make PID tuning difficult or impossible. Learning how PID controllers operate and the theory behind their tuning will not only better prepare you to operate a PID controller, but also in the development of your system and selection and implementation of the output devices used to regulate your system.
The PID controller is the most common regulatory controller found in industrial settings, for it"s ability to handle both simple and complex regulation. The PID controller has three paths, the proportional, integral, and derivative.
The Proportional takes the error and multiplies it by the constant KP, to yield an output value. When the error is large, there will be a large proportional output.
The Integral takes the error and multiplies it by KI, then integrates it (KI · 1/s). As the error changes over time, the integral will continually sum it and multiply it by the constant KI. The integral is used to remove perpetual error in the control system. If using KP alone produces an output that produces a perpetual error (i.e. if the sensor measurement never reaches the Set Point), the integral will increase the output until the error decreases and the Set Point is reached.
The Derivative multiplies the error by KD, then differentiates it (KD · s). When the error rate changes over time, the output signal will change. The faster the change in error, the larger the derivative path becomes, decreasing the output rate of change. This has the effect of dampening overshoot and undershoot (oscillation) of the Set Point.
The KP, KI, and KD gains determine how much each of the P, I, and D variables influence the final PID output value. For instance, the greater the value of the gain, the more influence that variable has on the output.
The output from the PID controller can be used in a number of ways. A simple use is to use this value as the number of seconds an output is turned on during a periodic interval (Period). For instance, if the Period is set to 30 seconds, the PID equation has the desired measurement and the actual measurement used to calculate the PID output every 30 seconds. The more the output is on during this period, the more it will affect the system. For example, an output on for 15 seconds every 30 seconds is at a 50 % duty cycle, and would affect the system roughly half as much as when the output is on for 30 seconds every 30 seconds, or at at 100 % duty cycle. The PID controller will calculate the output based on the amount of error (how far the actual measurement is from the desired measurement). If the error increases or persists, the output increases, causing the output to turn on for a longer duration within the Period, which usually in term causes the measured condition to change and the error to reduce. When the error reduces, the control variable decreases, meaning the output is turned on for a shorter duration of time. The ultimate goal of a well-tuned PID controller is to bring the actual measurement to the desired measurement quickly, with little overshoot, and maintain the setpoint with minimal oscillation.
Using temperature as an example, the Process Variable (PV) is the measured temperature, the Setpoint (SP) is the desired temperature, and the Error (e) is the distance between the measured temperature and the desired temperature (indicating if the actual temperature is too hot or too cold and to what degree). The error is manipulated by each of the three PID components, producing an output, called the Manipulated Variable (MV) or Control Variable (CV). To allow control of how much each path contributes to the output value, each path is multiplied by a gain (represented by KP, KI, and KD). By adjusting the gains, the sensitivity of the system to each path is affected. When all three paths are summed, the PID output is produced. If a gain is set to 0, that path does not contribute to the output and that path is essentially turned off.
The output can be used a number of ways, however this controller was designed to use the output to affect the measured value (PV). This feedback loop, with a properly tuned PID controller, can achieve a set point in a short period of time, maintain regulation with little oscillation, and respond quickly to disturbance.
Therefor, if one would be regulating temperature, the sensor would be a temperature sensor and the feedback device(s) would be able to heat and cool. If the temperature is lower than the Set Point, the output value would be positive and a heater would activate. The temperature would rise toward the desired temperature, causing the error to decrease and a lower output to be produced. This feedback loop would continue until the error reaches 0 (at which point the output would be 0). If the temperature continues to rise past the Set Point (this is may be acceptable, depending on the degree), the PID would produce a negative output, which could be used by the cooling device to bring the temperature back down, to reduce the error. If the temperature would normally lower without the aid of a cooling device, then the system can be simplified by omitting a cooler and allowing it to lower on its own.
Implementing a controller that effectively utilizes KP, KI, and KD can be challenging. Furthermore, it is often unnecessary. For instance, the KI and KD can be set to 0, effectively turning them off and producing the very popular and simple P controller. Also popular is the PI controller. It is recommended to start with only KP activated, then experiment with KP and KI, before finally using all three. Because systems will vary (e.g. airspace volume, degree of insulation, and the degree of impact from the connected device, etc.), each path will need to be adjusted through experimentation to produce an effective output.
These example setups are meant to illustrate how to configure regulation in particular directions, and not to achieve ideal values to configure your KP, KI, and KD gains. There are a number of online resources that discuss techniques and methods that have been developed to determine ideal PID values (such as here, here, here, here, and here) and since there are no universal values that will work for every system, it is recommended to conduct your own research to understand the variables and essential to conduct your own experiments to effectively implement them.
Provided merely as an example of the variance of PID values, one of my setups had temperature PID values (up regulation) of KP = 30, KI = 1.0, and KD = 0.5, and humidity PID values (up regulation) of KP = 1.0, KI = 0.2, and KD = 0.5. Furthermore, these values may not have been optimal but they worked well for the conditions of my environmental chamber.
This will set up the system to raise and lower the temperature to a certain level with two regulatory devices (one that heats and one that cools).
Add a sensor, then save the proper device and pin/address for each sensor and activate the sensor.
Add two outputs, then save each GPIO and On Trigger state.
Add a PID, then select the newly-created sensor. Change Setpoint to the desired temperature, Regulate Direction to "Both". Set Raise Output to the relay attached to the heating device and the Lower Relay to the relay attached to the cooling device.
Set KP = 1, KI = 0, and KD = 0, then activate the PID.
If the temperature is lower than the Set Point, the heater should activate at some interval determined by the PID controller until the temperature rises to the set point. If the temperature goes higher than the Set Point (or Set Point + Buffer), the cooling device will activate until the temperature returns to the set point. If the temperature is not reaching the Set Point after a reasonable amount of time, increase the KP value and see how that affects the system. Experiment with different configurations involving only Read Interval and KP to achieve a good regulation. Avoid changing the KI and KD from 0 until a working regulation is achieved with KP alone.
View graphs in the 6 to 12 hour time span to identify how well the temperature is regulated to the Setpoint. What is meant by well-regulated will vary, depending on your specific application and tolerances. Most applications of a PID controller would like to see the proper temperature attained within a reasonable amount of time and with little oscillation around the Setpoint.
Once regulation is achieved, experiment by reducing KP slightly (~25%) and increasing KI by a low amount to start, such as 0.1 (or lower, 0.01), then start the PID and observe how well the controller regulates. Slowly increase KI until regulation becomes both quick and with little oscillation. At this point, you should be fairly familiar with experimenting with the system and the KD value can be experimented with once both KP and KI have been tuned.
Often the system can be simplified if two-way regulation is not needed. For instance, if cooling is unnecessary, this can be removed from the system and only up-regulation can be used.
Use the same configuration as the Exact Temperature Regulation example, except change Regulate Direction to "Raise" and do not touch the "Down Relay" section.
This is an experimental feature. It is best not used until you are familiar with the theory, operation, and tuning of a PID.
The Autotune function is a standalone controller that is useful for determining appropriate Kp, Ki, and Kd gains for use in the a PID controller. The autotuner will manipulate an output and analyze the measured response in a particular environment/system. It will take several cycles of perturbing the system with the chosen output before enough data is available to calculate the PID gains. In order to use this feature, select a Measurement and an Output that can module the specific condition being measured. Then, configure the Noise Band and Outstep and activate the function. Log lines of the autotuner will appear in the daemon log ([Gear Icon] -> Mycodo Logs -> Daemon Log). While the autotune is being performed, it is recommended to create a dashboard graph that includes the Measurement and Output in order to see what the PID Autotuner is doing and to notice any potential issues with the autotune settings that have been configured. If the autotune is taking a long time to complete, there may not be enough stability in the system being manipulated to calculate a reliable set of PID gains. This may be because there are too many perturbations to the system, or conditions are changing too rapidly to acquire consistent measurement oscillations. If this is the case, try modifying your system to increase stability and yield consistent measurement oscillations. Once the autotune successfully completes, perturbations may be reintroduced in order to further tune the PID controller to handle them.
Setting
Description
Measurement
This is the Input or Function measurement that is measuring the specific condition that the Output will affect. For instance, this could be a temperature measurement and the output could be a heater.
Output
This is the Output that will affect the measurement when it's activated. The autotune function will periodically turn this output on in order to raise the measurement beyond the setpoint.
Period
This is the period of time between the Output being turned on. This should be set to the same Period you wish to use for your PID controller. A different Period can significantly affect the PID gains that the autotune produces.
Setpoint
This is the desired measurement condition value. For instance, if temperature is being measured, this should be set a several degrees higher than the current temperature so the output, when activated, will cause the temperature to rise beyond the setpoint.
Noise Band
This is the amount above the setpoint the measured condition must reach before the output turns off. This is also how much below the setpoint the measured condition must fall before the output turns back on.
Outstep
This is how many seconds the output will turn on every PID Period. For instance, to autotune with 50% power, ensure the Outstep is half the value of the PID Period.
Direction
This is the direction for which the Output will push the Measurement. For instance, a heater will raise temperature, whereas a cooler will lower temperature.
Typical graph output will look like this:
And typical Daemon Log output will look like this:
2018-08-04 23:32:20,876 - mycodo.pid_3b533dff - INFO - Activated in 187.2 ms2018-08-04 23:32:20,877 - mycodo.pid_autotune - INFO - PID Autotune started2018-08-04 23:33:50,823 - mycodo.pid_autotune - INFO -2018-08-04 23:33:50,830 - mycodo.pid_autotune - INFO - Cycle: 19
@@ -217,4 +217,4 @@
self.logging.error("Warning, measurement was {}".format(measurement))self.message+="Measurement was {}".format(measurement)self.run_action("uiop5678}",message=self.message)
-
Before activating any conditionals, it's advised to thoroughly explore all possible scenarios and plan a configuration that eliminates conflicts. Some devices or outputs may respond atypically or fail when switched on and off in rapid succession. Therefore, trial run your configuration before connecting devices to any outputs.
A Trigger Controller will execute actions when events are triggered, such as an output turning on or off, a GPIO pin changing it's voltage state (Edge detection, rising or falling), timed events that include various timers (duration, time period, time point, etc), or the sunrise/sunset time at a specific latitude and longitude. Once the trigger is configured, add any number of Actions to be executed when that event is triggered.
If the state of the output changes to On or Off the conditional will trigger. If "On (any duration) is selected, th trigger will occur no matter how long the output turns on for, whereas if only "On" is selected, the conditional will trigger only when the output turns on for a duration of time equal to the set "Duration (seconds)".
If Duration (seconds)
If "On" is selected, an optional duration (seconds) may be set that will trigger the conditional only if the Output is turned on for this specific duration.
Monitor the state of a pin for a rising and/or falling edge.
Setting
Description
If Edge Detected
The conditional will be triggered if a change in state is detected, either Rising when the state changes from LOW (0 volts) to HIGH (3.5 volts) or Falling when the state changes from HIGH (3.3 volts) to LOW (0 volts), or Both (Rising and Falling).
Run a timer that triggers Conditional Actions at a specific period if it's between the set start and end times. For example, if the Start Time is set to 10:00 and End Time set to 11:00 and Period set to 120 seconds, the Conditional Actions will trigger every 120 seconds when the time is between 10 AM and 11 AM.
This may be useful, for instance, if you desire an Output to remain on during a particular time period and you want to prevent power outages from interrupting the cycle (which a simple Time Point Timer could not prevent against because it only triggers once at the Start Time). By setting an Output to turn the lights on every few minutes during the Start -> End period, it ensured the Output remains on during this period.
Setting
Description
Start Time (HH:MM)
Set the start time to trigger Conditional Actions, in the format "HH:MM", with HH denoting hours, and MM denoting minutes. Time is in 24-hour format.
End Time (HH:MM)
Set the end time to trigger Conditional Actions, in the format "HH:MM", with HH denoting hours, and MM denoting minutes. Time is in 24-hour format.
Period (seconds)
The period of time between triggering Conditional Actions.
Before activating any conditionals, it's advised to thoroughly explore all possible scenarios and plan a configuration that eliminates conflicts. Some devices or outputs may respond atypically or fail when switched on and off in rapid succession. Therefore, trial run your configuration before connecting devices to any outputs.
A Trigger Controller will execute actions when events are triggered, such as an output turning on or off, a GPIO pin changing it's voltage state (Edge detection, rising or falling), timed events that include various timers (duration, time period, time point, etc), or the sunrise/sunset time at a specific latitude and longitude. Once the trigger is configured, add any number of Actions to be executed when that event is triggered.
If the state of the output changes to On or Off the conditional will trigger. If "On (any duration) is selected, th trigger will occur no matter how long the output turns on for, whereas if only "On" is selected, the conditional will trigger only when the output turns on for a duration of time equal to the set "Duration (seconds)".
If Duration (seconds)
If "On" is selected, an optional duration (seconds) may be set that will trigger the conditional only if the Output is turned on for this specific duration.
Monitor the state of a pin for a rising and/or falling edge.
Setting
Description
If Edge Detected
The conditional will be triggered if a change in state is detected, either Rising when the state changes from LOW (0 volts) to HIGH (3.5 volts) or Falling when the state changes from HIGH (3.3 volts) to LOW (0 volts), or Both (Rising and Falling).
Run a timer that triggers Conditional Actions at a specific period if it's between the set start and end times. For example, if the Start Time is set to 10:00 and End Time set to 11:00 and Period set to 120 seconds, the Conditional Actions will trigger every 120 seconds when the time is between 10 AM and 11 AM.
This may be useful, for instance, if you desire an Output to remain on during a particular time period and you want to prevent power outages from interrupting the cycle (which a simple Time Point Timer could not prevent against because it only triggers once at the Start Time). By setting an Output to turn the lights on every few minutes during the Start -> End period, it ensured the Output remains on during this period.
Setting
Description
Start Time (HH:MM)
Set the start time to trigger Conditional Actions, in the format "HH:MM", with HH denoting hours, and MM denoting minutes. Time is in 24-hour format.
End Time (HH:MM)
Set the end time to trigger Conditional Actions, in the format "HH:MM", with HH denoting hours, and MM denoting minutes. Time is in 24-hour format.
Period (seconds)
The period of time between triggering Conditional Actions.
\ No newline at end of file
diff --git a/I2C-Multiplexers/index.html b/I2C-Multiplexers/index.html
index 52c3b97e5..5bfd0d90f 100644
--- a/I2C-Multiplexers/index.html
+++ b/I2C-Multiplexers/index.html
@@ -1 +1 @@
- I2C Multiplexers - Mycodo
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
All devices that connected to the Raspberry Pi by the I2C bus need to have a unique address in order to communicate. Some inputs may have the same address (such as the AM2315), which prevents more than one from being connected at the same time. Others may provide the ability to change the address, however the address range may be limited, which limits by how many you can use at the same time. I2C multiplexers are extremely clever and useful in these scenarios because they allow multiple sensors with the same I2C address to be connected.
For instance, the TCA9548A/PCA9548A: I2C Multiplexer has 8 selectable addresses, so 8 multiplexers can be connected to one Raspberry Pi. Each multiplexer has 8 channels, allowing up to 8 devices/sensors with the same address to be connected to each multiplexer. 8 multiplexers x 8 channels = 64 devices/sensors with the same I2C address.
TCA9548A/PCA9548A: I2C Multiplexer link (I2C): 8 selectable addresses, 8 channels
To load the kernel driver for the TCA9548A/PCA9548A that ships with raspbian add dtoverlay=i2c-mux,pca9548,addr=0x70 to /boot/config.txt where 0x70 is the i2c address of the multiplexer. If successfully set up, there will be 8 new I2C buses on the [Gear Icon] -> System Information page.
TCA9545A: I2C Bus Multiplexer link (I2C): The linked Grove board creates 4 new I2C buses, each with their own selectable voltage, either 3.3 or 5.0 volts.
To load the kernel driver for the TCA9545A add dtoverlay=i2c-mux,pca9545,addr=0x70 to /boot/config.txt where 0x70 is the i2c address of the multiplexer. If successfully set up, there will be 4 new I2C buses on the [Gear Icon] -> System Information page.
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
All devices that connected to the Raspberry Pi by the I2C bus need to have a unique address in order to communicate. Some inputs may have the same address (such as the AM2315), which prevents more than one from being connected at the same time. Others may provide the ability to change the address, however the address range may be limited, which limits by how many you can use at the same time. I2C multiplexers are extremely clever and useful in these scenarios because they allow multiple sensors with the same I2C address to be connected.
For instance, the TCA9548A/PCA9548A: I2C Multiplexer has 8 selectable addresses, so 8 multiplexers can be connected to one Raspberry Pi. Each multiplexer has 8 channels, allowing up to 8 devices/sensors with the same address to be connected to each multiplexer. 8 multiplexers x 8 channels = 64 devices/sensors with the same I2C address.
TCA9548A/PCA9548A: I2C Multiplexer link (I2C): 8 selectable addresses, 8 channels
To load the kernel driver for the TCA9548A/PCA9548A that ships with raspbian add dtoverlay=i2c-mux,pca9548,addr=0x70 to /boot/config.txt where 0x70 is the i2c address of the multiplexer. If successfully set up, there will be 8 new I2C buses on the [Gear Icon] -> System Information page.
TCA9545A: I2C Bus Multiplexer link (I2C): The linked Grove board creates 4 new I2C buses, each with their own selectable voltage, either 3.3 or 5.0 volts.
To load the kernel driver for the TCA9545A add dtoverlay=i2c-mux,pca9545,addr=0x70 to /boot/config.txt where 0x70 is the i2c address of the multiplexer. If successfully set up, there will be 4 new I2C buses on the [Gear Icon] -> System Information page.
\ No newline at end of file
diff --git a/Inputs/index.html b/Inputs/index.html
index 8870fa0d6..3c355c45b 100644
--- a/Inputs/index.html
+++ b/Inputs/index.html
@@ -1,4 +1,4 @@
- Inputs - Mycodo
Inputs, such as sensors, ADC signals, or even a response from a command, enable measuring conditions in the environment or elsewhere, which will be stored in a time-series database (InfluxDB). This database will provide measurements for Dashboard Widgets, Functions, and other parts of Mycodo to operate from. Add, configure, and activate inputs to begin recording measurements to the database and allow them to be used throughout Mycodo.
There is a Custom Input import system in Mycodo that allows user-created Inputs to be created an used in the Mycodo system. Custom Inputs can be uploaded and imported from the [Gear Icon] -> Configure -> Custom Inputs page. After import, they will be available to use on the Setup -> Input page.
If you develop a working Input module, please consider creating a new GitHub issue or pull request, and it may be included in the built-in set.
Open any of the built-in modules located in the directory Mycodo/mycodo/inputs for examples of the proper formatting.
Input Commands are functions within the Input module that can be executed from the Web UI. This is useful for things such as calibration or other functionality specific to the input. By default, there is at least one action, Acquire Measurements Now, which will cause the input to acquire measurements rather than waiting until the next Period has elapsed.
Note
Actions can only be executed while the Input is active.
Every Period the Input will acquire measurements and store then in the time-series database. Following measurement acquisition, one or more Actions can be executed to enhance the functionality of Inputs. For example, the MQTT Publish Action can be used to publish measurements to an MQTT server.
After the sensor has been properly configured, activation begins acquiring measurements from the sensor. Any activated Conditional Functions will now being operating.
Deactivate
Deactivation stops measurements from being acquired from the sensor. All associated Conditional Functions will cease to operate.
Save
Save the current configuration entered into the input boxes for a particular sensor.
Delete
Delete a particular sensor.
Acquire Measurements Now
Force the input to conduct measurements and them in the database.
Up/Down
Move a particular sensor up or down in the order displayed.
Power Output
Select a output that powers the sensor. This enables powering cycling (turn off then on) when the sensor returns 3 consecutive errors to attempt to fix the issue. Transistors may also be used instead of a relay (note: NPN transistors are preferred over PNP for powering sensors).
Location
Depending on what sensor is being used, you will need to either select a serial number (DS18B20 temperature sensor), a GPIO pin (in the case of sensors read by a GPIO), or an I2C address. or other.
I2C Bus
The bus to be used to communicate with the I2C address.
Period (seconds)
After the sensor is successfully read and a database entry is made, this is the duration of time waited until the sensor is measured again.
Measurement Unit
Select the unit to save the measurement as (only available for select measurements).
Pre Output
If you require a output to be activated before a measurement is made (for instance, if you have a pump that extracts air to a chamber where the sensor resides), this is the output number that will be activated. The output will be activated for a duration defined by the Pre Duration, then once the output turns off, a measurement by the sensor is made.
Pre Output Duration (seconds)
This is the duration of time that the Pre Output runs for before the sensor measurement is obtained.
Pre Output During Measurement
If enabled, the Pre Output stays on during the acquisition of a measurement. If disabled, the Pre Output is turned off directly before acquiring a measurement.
Command
A linux command (executed as the user 'root') that the return value becomes the measurement
Command Measurement
The measured condition (e.g. temperature, humidity, etc.) from the linux command
Command Units
The units of the measurement condition from the linux command
Edge
Edge sensors only: Select whether the Rising or Falling (or both) edges of a changing voltage are detected. A number of devices to do this when in-line with a circuit supplying a 3.3-volt input signal to a GPIO, such as simple mechanical switch, a button, a magnet (reed/hall) sensor, a PIR motion detector, and more.
Bounce Time (ms)
Edge sensors only: This is the number of milliseconds to bounce the input signal. This is commonly called debouncing a signal [1] and may be necessary if using a mechanical circuit.
Reset Period (seconds)
Edge sensors only: This is the period of time after an edge detection that another edge will not be recorded. This enables devices such as PIR motion sensors that may stay activated for longer periods of time.
Measurement
Analog-to-digital converter only: The type of measurement being acquired by the ADC. For instance, if the resistance of a photocell is being measured through a voltage divider, this measurement would be "light".
Units
Analog-to-digital converter only: This is the unit of the measurement. With the above example of "light" as the measurement, the unit may be "lux" or "intensity".
BT Adapter
The Bluetooth adapter to communicate with the input.
Clock Pin
The GPIO (using BCM numbering) connected to the Clock pin of the ADC
CS Pin
The GPIO (using BCM numbering) connected to the CS pin of the ADC
MISO Pin
The GPIO (using BCM numbering) connected to the MISO pin of the ADC
MOSI Pin
The GPIO (using BCM numbering) connected to the MOSI pin of the ADC
RTD Probe Type
Select to measure from a PT100 or PT1000 probe.
Resistor Reference (Ohm)
If your reference resistor is not the default (400 Ohm for PT100, 4000 Ohm for PT1000), you can manually set this value. Several manufacturers now use 430 Ohm resistors on their circuit boards, therefore it's recommended to verify the accuracy of your measurements and adjust this value if necessary.
Channel
Analog-to-digital converter only: This is the channel to obtain the voltage measurement from the ADC.
Gain
Analog-to-digital converter only: set the gain when acquiring the measurement.
Sample Speed
Analog-to-digital converter only: set the sample speed (typically samples per second).
Volts Min
Analog-to-digital converter only: What is the minimum voltage to use when scaling to produce the unit value for the database. For instance, if your ADC is not expected to measure below 0.2 volts for your particular circuit, set this to "0.2".
Volts Max
Analog-to-digital converter only: This is similar to the Min option above, however it is setting the ceiling to the voltage range. Units Min Analog-to-digital converter only: This value will be the lower value of a range that will use the Min and Max Voltages, above, to produce a unit output. For instance, if your voltage range is 0.0 -1.0 volts, and the unit range is 1 -60, and a voltage of 0.5 is measured, in addition to 0.5 being stored in the database, 30 will be stored as well. This enables creating calibrated scales to use with your particular circuit.
Units Max
Analog-to-digital converter only: This is similar to the Min option above, however it is setting the ceiling to the unit range.
Weighting
The This is a number between 0 and 1 and indicates how much the old reading affects the new reading. It defaults to 0 which means the old reading has no effect. This may be used to smooth the data.
Pulses Per Rev
The number of pulses for a complete revolution.
Port
The server port to be queried (Server Port Open input).
Times to Check
The number of times to attempt to ping a server (Server Ping input).
Deadline (seconds)
The maximum amount of time to wait for each ping attempt, after which 0 (offline) will be returned (Server Ping input).
Number of Measurement
The number of unique measurements to store data for this input.
Application ID
The Application ID on The Things Network.
App API Key
The Application API Key on The Things Network.
Device ID
The Device ID of the Application on The Things Network.
The Things Network (TTN, v2 and v3) Input module enables downloading of data from TTN if the Data Storage Integration is enabled in your TTN Application. The Data Storage Integration will store data for up to 7 days. Mycodo will download this data periodically and store the measurements locally.
The payload on TTN must be properly decoded to variables that correspond to the "Variable Name" option under "Channel Options", in the lower section of the Input options. For instance, in your TTN Application, if a custom Payload Format is selected, the decoder code may look like this:
Inputs, such as sensors, ADC signals, or even a response from a command, enable measuring conditions in the environment or elsewhere, which will be stored in a time-series database (InfluxDB). This database will provide measurements for Dashboard Widgets, Functions, and other parts of Mycodo to operate from. Add, configure, and activate inputs to begin recording measurements to the database and allow them to be used throughout Mycodo.
There is a Custom Input import system in Mycodo that allows user-created Inputs to be created an used in the Mycodo system. Custom Inputs can be uploaded and imported from the [Gear Icon] -> Configure -> Custom Inputs page. After import, they will be available to use on the Setup -> Input page.
If you develop a working Input module, please consider creating a new GitHub issue or pull request, and it may be included in the built-in set.
Open any of the built-in modules located in the directory Mycodo/mycodo/inputs for examples of the proper formatting.
Input Commands are functions within the Input module that can be executed from the Web UI. This is useful for things such as calibration or other functionality specific to the input. By default, there is at least one action, Acquire Measurements Now, which will cause the input to acquire measurements rather than waiting until the next Period has elapsed.
Note
Actions can only be executed while the Input is active.
Every Period the Input will acquire measurements and store then in the time-series database. Following measurement acquisition, one or more Actions can be executed to enhance the functionality of Inputs. For example, the MQTT Publish Action can be used to publish measurements to an MQTT server.
After the sensor has been properly configured, activation begins acquiring measurements from the sensor. Any activated Conditional Functions will now being operating.
Deactivate
Deactivation stops measurements from being acquired from the sensor. All associated Conditional Functions will cease to operate.
Save
Save the current configuration entered into the input boxes for a particular sensor.
Delete
Delete a particular sensor.
Acquire Measurements Now
Force the input to conduct measurements and them in the database.
Up/Down
Move a particular sensor up or down in the order displayed.
Power Output
Select a output that powers the sensor. This enables powering cycling (turn off then on) when the sensor returns 3 consecutive errors to attempt to fix the issue. Transistors may also be used instead of a relay (note: NPN transistors are preferred over PNP for powering sensors).
Location
Depending on what sensor is being used, you will need to either select a serial number (DS18B20 temperature sensor), a GPIO pin (in the case of sensors read by a GPIO), or an I2C address. or other.
I2C Bus
The bus to be used to communicate with the I2C address.
Period (seconds)
After the sensor is successfully read and a database entry is made, this is the duration of time waited until the sensor is measured again.
Measurement Unit
Select the unit to save the measurement as (only available for select measurements).
Pre Output
If you require a output to be activated before a measurement is made (for instance, if you have a pump that extracts air to a chamber where the sensor resides), this is the output number that will be activated. The output will be activated for a duration defined by the Pre Duration, then once the output turns off, a measurement by the sensor is made.
Pre Output Duration (seconds)
This is the duration of time that the Pre Output runs for before the sensor measurement is obtained.
Pre Output During Measurement
If enabled, the Pre Output stays on during the acquisition of a measurement. If disabled, the Pre Output is turned off directly before acquiring a measurement.
Command
A linux command (executed as the user 'root') that the return value becomes the measurement
Command Measurement
The measured condition (e.g. temperature, humidity, etc.) from the linux command
Command Units
The units of the measurement condition from the linux command
Edge
Edge sensors only: Select whether the Rising or Falling (or both) edges of a changing voltage are detected. A number of devices to do this when in-line with a circuit supplying a 3.3-volt input signal to a GPIO, such as simple mechanical switch, a button, a magnet (reed/hall) sensor, a PIR motion detector, and more.
Bounce Time (ms)
Edge sensors only: This is the number of milliseconds to bounce the input signal. This is commonly called debouncing a signal [1] and may be necessary if using a mechanical circuit.
Reset Period (seconds)
Edge sensors only: This is the period of time after an edge detection that another edge will not be recorded. This enables devices such as PIR motion sensors that may stay activated for longer periods of time.
Measurement
Analog-to-digital converter only: The type of measurement being acquired by the ADC. For instance, if the resistance of a photocell is being measured through a voltage divider, this measurement would be "light".
Units
Analog-to-digital converter only: This is the unit of the measurement. With the above example of "light" as the measurement, the unit may be "lux" or "intensity".
BT Adapter
The Bluetooth adapter to communicate with the input.
Clock Pin
The GPIO (using BCM numbering) connected to the Clock pin of the ADC
CS Pin
The GPIO (using BCM numbering) connected to the CS pin of the ADC
MISO Pin
The GPIO (using BCM numbering) connected to the MISO pin of the ADC
MOSI Pin
The GPIO (using BCM numbering) connected to the MOSI pin of the ADC
RTD Probe Type
Select to measure from a PT100 or PT1000 probe.
Resistor Reference (Ohm)
If your reference resistor is not the default (400 Ohm for PT100, 4000 Ohm for PT1000), you can manually set this value. Several manufacturers now use 430 Ohm resistors on their circuit boards, therefore it's recommended to verify the accuracy of your measurements and adjust this value if necessary.
Channel
Analog-to-digital converter only: This is the channel to obtain the voltage measurement from the ADC.
Gain
Analog-to-digital converter only: set the gain when acquiring the measurement.
Sample Speed
Analog-to-digital converter only: set the sample speed (typically samples per second).
Volts Min
Analog-to-digital converter only: What is the minimum voltage to use when scaling to produce the unit value for the database. For instance, if your ADC is not expected to measure below 0.2 volts for your particular circuit, set this to "0.2".
Volts Max
Analog-to-digital converter only: This is similar to the Min option above, however it is setting the ceiling to the voltage range. Units Min Analog-to-digital converter only: This value will be the lower value of a range that will use the Min and Max Voltages, above, to produce a unit output. For instance, if your voltage range is 0.0 -1.0 volts, and the unit range is 1 -60, and a voltage of 0.5 is measured, in addition to 0.5 being stored in the database, 30 will be stored as well. This enables creating calibrated scales to use with your particular circuit.
Units Max
Analog-to-digital converter only: This is similar to the Min option above, however it is setting the ceiling to the unit range.
Weighting
The This is a number between 0 and 1 and indicates how much the old reading affects the new reading. It defaults to 0 which means the old reading has no effect. This may be used to smooth the data.
Pulses Per Rev
The number of pulses for a complete revolution.
Port
The server port to be queried (Server Port Open input).
Times to Check
The number of times to attempt to ping a server (Server Ping input).
Deadline (seconds)
The maximum amount of time to wait for each ping attempt, after which 0 (offline) will be returned (Server Ping input).
Number of Measurement
The number of unique measurements to store data for this input.
Application ID
The Application ID on The Things Network.
App API Key
The Application API Key on The Things Network.
Device ID
The Device ID of the Application on The Things Network.
The Things Network (TTN, v2 and v3) Input module enables downloading of data from TTN if the Data Storage Integration is enabled in your TTN Application. The Data Storage Integration will store data for up to 7 days. Mycodo will download this data periodically and store the measurements locally.
The payload on TTN must be properly decoded to variables that correspond to the "Variable Name" option under "Channel Options", in the lower section of the Input options. For instance, in your TTN Application, if a custom Payload Format is selected, the decoder code may look like this:
This is useful if multiple data strings are to be sent to the same serial device (e.g. if both bme280_ttn.py and k30_ttn.py are being used at the same time), allowing the serial device to distinguish what data is being received.
The full code used to decode both bme280_ttn.py and k30_ttn.py, with informative comments, is located at /opt/Mycodo/mycodo/inputs/examples/ttn_data_storage_decoder_example.js.
These example Input modules may be modified to suit your needs and imported into Mycodo through the [Gear Icon] -> Configure -> Custom Inputs page. After import, they will be available to use on the Setup -> Input page.
This is useful if multiple data strings are to be sent to the same serial device (e.g. if both bme280_ttn.py and k30_ttn.py are being used at the same time), allowing the serial device to distinguish what data is being received.
The full code used to decode both bme280_ttn.py and k30_ttn.py, with informative comments, is located at /opt/Mycodo/mycodo/inputs/examples/ttn_data_storage_decoder_example.js.
These example Input modules may be modified to suit your needs and imported into Mycodo through the [Gear Icon] -> Configure -> Custom Inputs page. After import, they will be available to use on the Setup -> Input page.
\ No newline at end of file
diff --git a/Interfaces/index.html b/Interfaces/index.html
index a089b6ada..0923844d4 100644
--- a/Interfaces/index.html
+++ b/Interfaces/index.html
@@ -1 +1 @@
- Interfaces - Mycodo
This documentation provides specific installation procedures for configuring UART with the Raspberry Pi version 1 or 2.
Because the UART is handled differently higher after the Raspberry Pi 2 (due to the addition of bluetooth), there are a different set of instructions. If installing Mycodo on a Raspberry Pi 3 or above, you only need to perform these steps to configure UART:
Run raspi-config
sudo raspi-config
Go to Advanced Options -> Serial and disable. Then edit /boot/config.txt
sudo nano /boot/config.txt
Find the line "enable_uart=0" and change it to "enable_uart=1", then reboot.
This documentation provides specific installation procedures for configuring UART with the Raspberry Pi version 1 or 2.
Because the UART is handled differently higher after the Raspberry Pi 2 (due to the addition of bluetooth), there are a different set of instructions. If installing Mycodo on a Raspberry Pi 3 or above, you only need to perform these steps to configure UART:
Run raspi-config
sudo raspi-config
Go to Advanced Options -> Serial and disable. Then edit /boot/config.txt
sudo nano /boot/config.txt
Find the line "enable_uart=0" and change it to "enable_uart=1", then reboot.
\ No newline at end of file
diff --git a/Methods/index.html b/Methods/index.html
index a25565b8f..5fb85a007 100644
--- a/Methods/index.html
+++ b/Methods/index.html
@@ -1 +1 @@
- Methods - Mycodo
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
Page: Setup -> Method
Methods enable Setpoint Tracking in PIDs and time-based duty cycle changes in timers. Normally, a PID controller will regulate an environmental condition to a specific setpoint. If you would like the setpoint to change over time, this is called setpoint tracking. Setpoint Tracking is useful for applications such as reflow ovens, thermal cyclers (DNA replication), mimicking natural daily cycles, and more. Methods may also be used to change a duty cycle over time when used with a Run PWM Method Conditional.
A time/date method allows a specific time/date span to dictate the setpoint. This is useful for long-running methods, that may take place over the period of days, weeks, or months.
A Duration Method allows a Setpoint (for PIDs) or Duty Cycle (for Conditional) to be set after specific durations of time. Each new duration added will stack, meaning it will come after the previous duration, meaning a newly-added Start Setpoint will begin after the previous entry's End Setpoint.
If the "Repeat Method" option is used, this will cause the method to repeat once it has reached the end. If this option is used, no more durations may be added to the method. If the repeat option is deleted then more durations may be added. For instance, if your method is 200 seconds total, if the Repeat Duration is set to 600 seconds, the method will repeat 3 times and then automatically turn off the PID or Conditional.
The daily time-based method is similar to the time/date method, however it will repeat every day. Therefore, it is essential that only the span of one day be set in this method. Begin with the start time at 00:00:00 and end at 23:59:59 (or 00:00:00, which would be 24 hours from the start). The start time must be equal or greater than the previous end time.
The daily sine wave method defines the setpoint over the day based on a sinusoidal wave. The sine wave is defined by y = [A * sin(B * x + C)] + D, where A is amplitude, B is frequency, C is the angle shift, and D is the y-axis shift. This method will repeat daily.
A daily Bezier curve method define the setpoint over the day based on a cubic Bezier curve. If unfamiliar with a Bezier curve, it is recommended you use the graphical Bezier curve generator and use the 8 variables it creates for 4 points (each a set of x and y). The x-axis start (x3) and end (x0) will be automatically stretched or skewed to fit within a 24-hour period and this method will repeat daily.
This method combines multiple methods and outputs the average of the methods. For examples, let's combine a Duration method set to 100 for 60 seconds and 0 for 60 seconds (and set to repeat forever) with a Daily Method that rises from 0 at 00:00:00 to 50 at 12:00:00, and falls back to 0 at 23:59:59. At 00:00:00, the combined methods would produce an output that oscillates from 0 ((0 / 100) * (0 / 100) = 0) to 0 ((100 / 100) * (0 / 100) = 0) every 60 seconds, and gradually increase until at 12:00:00 the output would be oscillating from 0 ((0 / 100) * (50 / 100)) to 50 ((100 / 100) * (50 / 100)) every 60 seconds. This is a simple example, but combinations can become very complex.
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
Page: Setup -> Method
Methods enable Setpoint Tracking in PIDs and time-based duty cycle changes in timers. Normally, a PID controller will regulate an environmental condition to a specific setpoint. If you would like the setpoint to change over time, this is called setpoint tracking. Setpoint Tracking is useful for applications such as reflow ovens, thermal cyclers (DNA replication), mimicking natural daily cycles, and more. Methods may also be used to change a duty cycle over time when used with a Run PWM Method Conditional.
A time/date method allows a specific time/date span to dictate the setpoint. This is useful for long-running methods, that may take place over the period of days, weeks, or months.
A Duration Method allows a Setpoint (for PIDs) or Duty Cycle (for Conditional) to be set after specific durations of time. Each new duration added will stack, meaning it will come after the previous duration, meaning a newly-added Start Setpoint will begin after the previous entry's End Setpoint.
If the "Repeat Method" option is used, this will cause the method to repeat once it has reached the end. If this option is used, no more durations may be added to the method. If the repeat option is deleted then more durations may be added. For instance, if your method is 200 seconds total, if the Repeat Duration is set to 600 seconds, the method will repeat 3 times and then automatically turn off the PID or Conditional.
The daily time-based method is similar to the time/date method, however it will repeat every day. Therefore, it is essential that only the span of one day be set in this method. Begin with the start time at 00:00:00 and end at 23:59:59 (or 00:00:00, which would be 24 hours from the start). The start time must be equal or greater than the previous end time.
The daily sine wave method defines the setpoint over the day based on a sinusoidal wave. The sine wave is defined by y = [A * sin(B * x + C)] + D, where A is amplitude, B is frequency, C is the angle shift, and D is the y-axis shift. This method will repeat daily.
A daily Bezier curve method define the setpoint over the day based on a cubic Bezier curve. If unfamiliar with a Bezier curve, it is recommended you use the graphical Bezier curve generator and use the 8 variables it creates for 4 points (each a set of x and y). The x-axis start (x3) and end (x0) will be automatically stretched or skewed to fit within a 24-hour period and this method will repeat daily.
This method combines multiple methods and outputs the average of the methods. For examples, let's combine a Duration method set to 100 for 60 seconds and 0 for 60 seconds (and set to repeat forever) with a Daily Method that rises from 0 at 00:00:00 to 50 at 12:00:00, and falls back to 0 at 23:59:59. At 00:00:00, the combined methods would produce an output that oscillates from 0 ((0 / 100) * (0 / 100) = 0) to 0 ((100 / 100) * (0 / 100) = 0) every 60 seconds, and gradually increase until at 12:00:00 the output would be oscillating from 0 ((0 / 100) * (50 / 100)) to 50 ((100 / 100) * (50 / 100)) every 60 seconds. This is a simple example, but combinations can become very complex.
\ No newline at end of file
diff --git a/Mycodo-Client/index.html b/Mycodo-Client/index.html
index ba584810b..be27002e2 100644
--- a/Mycodo-Client/index.html
+++ b/Mycodo-Client/index.html
@@ -1,4 +1,4 @@
- Mycodo Client - Mycodo
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
The Mycodo client is a command-line tool used to communicate with the daemon.
pi@raspberry:~ $ mycodo-client--help
usage: mycodo-client [-h] [-c] [--activatecontroller CONTROLLER ID] [--deactivatecontroller CONTROLLER ID] [--ramuse] [-t] [--trigger_action ACTIONID]
@@ -77,4 +77,4 @@
--pid_set_kp ID KP Set the Kp gain of the PID controller. --pid_set_ki ID KI Set the Ki gain of the PID controller. --pid_set_kd ID KD Set the Kd gain of the PID controller.
-
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
Page: More -> Notes
Notes may be created that can then be displayed on graphs or referenced at a later time. All notes are timestamped with the date/time of creation or may be created with a custom date/time. Each note must have at least one tag selected. Tags are what are selected to be displayed on a graph and all notes with that tag will appear in the time frame selected on the graph.
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
Page: More -> Notes
Notes may be created that can then be displayed on graphs or referenced at a later time. All notes are timestamped with the date/time of creation or may be created with a custom date/time. Each note must have at least one tag selected. Tags are what are selected to be displayed on a graph and all notes with that tag will appear in the time frame selected on the graph.
Outputs are various signals that can be generated that operate devices. An output can be a HIGH/LOW signal on a GPIO pin, a pulse-width modulated (PWM) signal, a 315/433 MHz signal to switch a radio frequency-operated relay, driving of pumps and motors, or an execution of a linux or Python command, to name a few.
There is a Custom Output import system in Mycodo that allows user-created Outputs to be created an used in the Mycodo system. Custom Outputs can be uploaded and imported from the [Gear Icon] -> Configure -> Custom Outputs page. After import, they will be available to use on the Setup -> Output page.
If you develop a working module, please consider creating a new GitHub issue or pull request, and it may be included in the built-in set.
Open any of the built-in modules located in the directory Mycodo/mycodo/outputs for examples of the proper formatting. There are also example Custom Outputs in the directory Mycodo/mycodo/outputs/examples
For Outputs that require new measurements/units, they can be added on the [Gear Icon] -> Configure -> Measurements page.
This is the GPIO that will be the signal to the output, using BCM numbering.
WiringPi Pin
This is the GPIO that will be the signal to the output, using WiringPi numbering.
On State
This is the state of the GPIO to signal the output to turn the device on. HIGH will send a 3.3-volt signal and LOW will send a 0-volt signal. If you output completes the circuit (and the device powers on) when a 3.3-volt signal is sent, then set this to HIGH. If the device powers when a 0-volt signal is sent, set this to LOW.
Protocol
This is the protocol to use to transmit via 315/433 MHz. Default is 1, but if this doesn't work, increment the number.
UART Device
The UART device connected to the device.
Baud Rate
The baud rate of the UART device.
I2C Address
The I2C address of the device.
I2C Bus
The I2C bus the device is connected to.
Output Mode
The Output mode, if supported.
Flow Rate
The flow rate to dispense the volume (ml/min).
Pulse Length
This is the pulse length to transmit via 315/433 MHz. Default is 189 ms.
Bit Length
This is the bit length to transmit via 315/433 MHz. Default is 24-bit.
Execute as User
Select which user executes Linux Commands.
On Command
This is the command used to turn the output on. For wireless relays, this is the numerical command to be transmitted, and for command outputs this is the command to be executed. Commands may be for the linux terminal or Python 3 (depending on which output type selected).
Off Command
This is the command used to turn the output off. For wireless relays, this is the numerical command to be transmitted, and for command outputs this is the command to be executed. Commands may be for the linux terminal or Python 3 (depending on which output type selected).
Force Command
If an Output is already on, enabling this option will allow the On command to be executed rather than returning "Output is already On".
PWM Command
This is the command used to set the duty cycle. The string "((duty_cycle))" in the command will be replaced with the actual duty cycle before the command is executed. Ensure "((duty_cycle))" is included in your command for this feature to work correctly. Commands may be for the linux terminal or Python 3 (depending on which output type selected).
Current Draw (amps)
The is the amount of current the device powered by the output draws. Note: this value should be calculated based on the voltage set in the Energy Usage Settings.
Startup State
This specifies whether the output should be ON or OFF when mycodo initially starts. Some outputs have an additional options.
Startup Value
If the Startup State is set to User Set Value (such as for PWM Outputs), then this value will be set when Mycodo starts up.
Shutdown State
This specifies whether the output should be ON or OFF when mycodo initially shuts down. Some outputs have an additional options.
Shutdown Value
If the Shutdown State is set to User Set Value (such as for PWM Outputs), then this value will be set when Mycodo shuts down.
Trigger at Startup
Select to enable triggering Functions (such as Output Triggers) when Mycodo starts and if Start State is set to ON.
Seconds to turn On
This is a way to turn a output on for a specific duration of time. This can be useful for testing the outputs and powered devices or the measured effects a device may have on an environmental condition.
The On/Off (GPIO) output merely turns a GPIO pin High (3.3 volts) or Low (0 volts). This is useful for controlling things like electromechanical switches, such as relays, to turn electrical devices on and off.
Relays are electromechanical or solid-state devices that enable a small voltage signal (such as from a microprocessor) to activate a much larger voltage, without exposing the low-voltage system to the dangers of the higher voltage.
Add and configure outputs in the Output tab. Outputs must be properly set up before they can be used in the rest of the system.
To set up a wired relay, set the "GPIO Pin" (using BCM numbering) to the pin you would like to switch High (5 volts) and Low (0 volts), which can be used to activate relays and other devices. On Trigger should be set to the signal state (High or Low) that induces the device to turn on. For example, if your relay activates when the potential across the coil is 0-volts, set On Trigger to "Low", otherwise if your relay activates when the potential across the coil is 5 volts, set it to "High".
Pulse-width modulation (PWM) is a modulation technique used to encode a message into a pulsing signal, at a specific frequency in Hertz (Hz). The average value of voltage (and current) fed to the load is controlled by turning the switch between supply and load on and off at a fast rate. The longer the switch is on compared to the off periods, the higher the total power supplied to the load.
The PWM switching frequency has to be much higher than what would affect the load (the device that uses the power), which is to say that the resultant waveform perceived by the load must be as smooth as possible. The rate (or frequency) at which the power supply must switch can vary greatly depending on load and application, for example
Quote
Switching has to be done several times a minute in an electric stove; 120 Hz in a lamp dimmer; between a few kilohertz (kHz) to tens of kHz for a motor drive; and well into the tens or hundreds of kHz in audio amplifiers and computer power supplies.
The term duty cycle describes the proportion of 'on' time to the regular interval or 'period' of time; a low duty cycle corresponds to low power, because the power is off for most of the time. Duty cycle is expressed in percent, with 0% being always off, 50% being off for half of the time and on for half of the time, and 100% being always on.
Select the method for producing the PWM signal. Hardware pins can produce up to a 30 MHz PWM signal, while any other (non-hardware PWM) pin can produce up to a 40 kHz PWM signal. See the table, below, for the hardware pins on various Pi boards.
Pin (GPIO)
This is the GPIO pin that will output the PWM signal, using BCM numbering.
Frequency (Hertz)
This is frequency of the PWM signal.
Invert Signal
Send an inverted duty cycle to the output controller.
Duty Cycle
This is the proportion of the time on to the time off, expressed in percent (0 -100).
When using non-hardware PWM pins, there are only certain frequencies that can be used. These frequencies in Hertz are 40000, 20000, 10000, 8000, 5000, 4000, 2500, 2000, 1600, 1250, 1000, 800, 500, 400, 250, 200, 100, and 50 Hz. If you attempt to set a frequency that is not listed here, the nearest frequency from this list will be used.
The exact frequency may be set when using hardware PWM pins. The same PWM channel is available on multiple GPIO. The latest frequency and duty cycle setting will be used by all GPIO pins which share a PWM channel.
There are two peristaltic pump Output modules that Mycodo supports, a generic peristaltic pump Output, and the Atlas Scientific EZO-PMP peristaltic pump.
Any peristaltic pump can be used with the Generic Peristaltic Pump Output to dispense liquids. The most basic dispensing abilities are to start dispensing, stop dispensing, or dispense for a duration of time. If the pump rate has been measured, this value can be entered into the Fastest Rate (ml/min) setting and the Output controller will then be able to dispense specific volumes rather than merely for durations of time. In oder to dispense specific volumes, the Output Mode will also need to be set in addition to the Desired Flow Rate (ml/min), if the Output Mode has been set to Specify Flow Rate.
To determine your pump's flow rate, first purge all air from your pump's hose. Next, instruct the pump to dispense for 60 seconds and collect the liquid it dispenses. Once finished, measure the amount of liquid and enter this value, in milliliters into the Fastest Rate (ml/min) setting. Once your pump's flow rate is set, you can now start dispensing specific volumes rather than durations.
This Output module relies on switching a GPIO pin High and Low to switch the peristaltic pump on and off. This is most easily accomplished with the use of a relay in-line with your pump's power supply or using the GPIO as an input signal directly to the pump (if supported). When using a relay, it's important to develop your circuit to provide the fastest possible switching of the pump. Since the volume dispensed by the pump is dependent on time, the faster the pump switching can occur, the more accurate the dispensing will be. Many peristaltic pumps operate on DC voltage and require an AC-DC converter. These converters can take a significant amount of time to energize once power is applied as well as de-energize once power is removed, causing significant delays that can impact dispensing accuracy. To alleviate this issue, the DC power should be switched, rather than the AC power, which will remove this potential delay.
The Atlas Scientific peristaltic pump is a peristaltic pump and microcontroller combined that allows it to be communicated with via I2C or Serial and can accurately dispense specific volumes of fluid. There are several commands the pump can accept, including commands to calibrate, turn on, turn off, and dispense at a specific rate, among others. Atlas Scientific peristaltic pumps are good options, but are more expensive than generic peristaltic pumps.
"Fastest low Rate" will pump liquid at the fastest rate the pump can perform. "Specify Flow Rate" will pump liquid at the rate set by the "Flow Rate (ml/min)" option.
Flow Rate (ml/min)
This is how fast liquid will be pumped if the "Specify Flow Rate" option is selected for the Output Mode option.
Fastest Rate (ml/min)
This is the rate at which the pump dispenses liquid, in ml/min.
Minimum On (sec/min)
This is the minimum duration (seconds) the pump should be turned on for every 60 second period of pumping. This option is only used when Specify Flow Rate is selected as the output Mode.
Certain 315/433 MHz wireless relays may be used, however you will need to set the pin of the transmitter (using BCM numbering), pulse length, bit length, protocol, on command, and off command. To determine your On and Off commands, connect a 315/433 MHz receiver to your Pi, then run the receiver script, below, replacing 17 with the pin your receiver is connected to (using BCM numbering), and press one of the buttons on your remote (either on or off) to detect the numeric code associated with that button.
433 MHz wireless relays have been successfully tested with SMAKN 433MHz RF Transmitters/Receivers and Etekcity Wireless Remote Control Electrical Outlets (see Issue 88 for more information). If you have a 315/433 MHz transmitter/receiver and a wireless relay that does not work with the current code, submit a new issue with details of your hardware.
Another option for output control is to execute a terminal command when the output is turned on, off, or a duty cycle is set. Commands will be executed as the user 'root'. When a Linux Command output is created, example code is provided to demonstrate how to use the output.
The Python Command output operates similarly to the Linux Command output, however Python 3 code is being executed. When a Python Command output is created, example code is provided to demonstrate how to use the output.
Wireless and Command (Linux/Python) Outputs: Since the wireless protocol only allows 1-way communication to 315/433 MHz devices, wireless relays are assumed to be off until they are turned on, and therefore will appear red (off) when added. If a wireless relay is turned off or on outside Mycodo (by a remote, for instance), Mycodo will *not* be able to determine the state of the relay and will indicate whichever state the relay was last. This is, if Mycodo turns the wireless relay on, and a remote is used to turn the relay off, Mycodo will still assume the relay is on.
Outputs are various signals that can be generated that operate devices. An output can be a HIGH/LOW signal on a GPIO pin, a pulse-width modulated (PWM) signal, a 315/433 MHz signal to switch a radio frequency-operated relay, driving of pumps and motors, or an execution of a linux or Python command, to name a few.
There is a Custom Output import system in Mycodo that allows user-created Outputs to be created an used in the Mycodo system. Custom Outputs can be uploaded and imported from the [Gear Icon] -> Configure -> Custom Outputs page. After import, they will be available to use on the Setup -> Output page.
If you develop a working module, please consider creating a new GitHub issue or pull request, and it may be included in the built-in set.
Open any of the built-in modules located in the directory Mycodo/mycodo/outputs for examples of the proper formatting. There are also example Custom Outputs in the directory Mycodo/mycodo/outputs/examples
For Outputs that require new measurements/units, they can be added on the [Gear Icon] -> Configure -> Measurements page.
This is the GPIO that will be the signal to the output, using BCM numbering.
WiringPi Pin
This is the GPIO that will be the signal to the output, using WiringPi numbering.
On State
This is the state of the GPIO to signal the output to turn the device on. HIGH will send a 3.3-volt signal and LOW will send a 0-volt signal. If you output completes the circuit (and the device powers on) when a 3.3-volt signal is sent, then set this to HIGH. If the device powers when a 0-volt signal is sent, set this to LOW.
Protocol
This is the protocol to use to transmit via 315/433 MHz. Default is 1, but if this doesn't work, increment the number.
UART Device
The UART device connected to the device.
Baud Rate
The baud rate of the UART device.
I2C Address
The I2C address of the device.
I2C Bus
The I2C bus the device is connected to.
Output Mode
The Output mode, if supported.
Flow Rate
The flow rate to dispense the volume (ml/min).
Pulse Length
This is the pulse length to transmit via 315/433 MHz. Default is 189 ms.
Bit Length
This is the bit length to transmit via 315/433 MHz. Default is 24-bit.
Execute as User
Select which user executes Linux Commands.
On Command
This is the command used to turn the output on. For wireless relays, this is the numerical command to be transmitted, and for command outputs this is the command to be executed. Commands may be for the linux terminal or Python 3 (depending on which output type selected).
Off Command
This is the command used to turn the output off. For wireless relays, this is the numerical command to be transmitted, and for command outputs this is the command to be executed. Commands may be for the linux terminal or Python 3 (depending on which output type selected).
Force Command
If an Output is already on, enabling this option will allow the On command to be executed rather than returning "Output is already On".
PWM Command
This is the command used to set the duty cycle. The string "((duty_cycle))" in the command will be replaced with the actual duty cycle before the command is executed. Ensure "((duty_cycle))" is included in your command for this feature to work correctly. Commands may be for the linux terminal or Python 3 (depending on which output type selected).
Current Draw (amps)
The is the amount of current the device powered by the output draws. Note: this value should be calculated based on the voltage set in the Energy Usage Settings.
Startup State
This specifies whether the output should be ON or OFF when mycodo initially starts. Some outputs have an additional options.
Startup Value
If the Startup State is set to User Set Value (such as for PWM Outputs), then this value will be set when Mycodo starts up.
Shutdown State
This specifies whether the output should be ON or OFF when mycodo initially shuts down. Some outputs have an additional options.
Shutdown Value
If the Shutdown State is set to User Set Value (such as for PWM Outputs), then this value will be set when Mycodo shuts down.
Trigger at Startup
Select to enable triggering Functions (such as Output Triggers) when Mycodo starts and if Start State is set to ON.
Seconds to turn On
This is a way to turn a output on for a specific duration of time. This can be useful for testing the outputs and powered devices or the measured effects a device may have on an environmental condition.
The On/Off (GPIO) output merely turns a GPIO pin High (3.3 volts) or Low (0 volts). This is useful for controlling things like electromechanical switches, such as relays, to turn electrical devices on and off.
Relays are electromechanical or solid-state devices that enable a small voltage signal (such as from a microprocessor) to activate a much larger voltage, without exposing the low-voltage system to the dangers of the higher voltage.
Add and configure outputs in the Output tab. Outputs must be properly set up before they can be used in the rest of the system.
To set up a wired relay, set the "GPIO Pin" (using BCM numbering) to the pin you would like to switch High (5 volts) and Low (0 volts), which can be used to activate relays and other devices. On Trigger should be set to the signal state (High or Low) that induces the device to turn on. For example, if your relay activates when the potential across the coil is 0-volts, set On Trigger to "Low", otherwise if your relay activates when the potential across the coil is 5 volts, set it to "High".
Pulse-width modulation (PWM) is a modulation technique used to encode a message into a pulsing signal, at a specific frequency in Hertz (Hz). The average value of voltage (and current) fed to the load is controlled by turning the switch between supply and load on and off at a fast rate. The longer the switch is on compared to the off periods, the higher the total power supplied to the load.
The PWM switching frequency has to be much higher than what would affect the load (the device that uses the power), which is to say that the resultant waveform perceived by the load must be as smooth as possible. The rate (or frequency) at which the power supply must switch can vary greatly depending on load and application, for example
Quote
Switching has to be done several times a minute in an electric stove; 120 Hz in a lamp dimmer; between a few kilohertz (kHz) to tens of kHz for a motor drive; and well into the tens or hundreds of kHz in audio amplifiers and computer power supplies.
The term duty cycle describes the proportion of 'on' time to the regular interval or 'period' of time; a low duty cycle corresponds to low power, because the power is off for most of the time. Duty cycle is expressed in percent, with 0% being always off, 50% being off for half of the time and on for half of the time, and 100% being always on.
Select the method for producing the PWM signal. Hardware pins can produce up to a 30 MHz PWM signal, while any other (non-hardware PWM) pin can produce up to a 40 kHz PWM signal. See the table, below, for the hardware pins on various Pi boards.
Pin (GPIO)
This is the GPIO pin that will output the PWM signal, using BCM numbering.
Frequency (Hertz)
This is frequency of the PWM signal.
Invert Signal
Send an inverted duty cycle to the output controller.
Duty Cycle
This is the proportion of the time on to the time off, expressed in percent (0 -100).
When using non-hardware PWM pins, there are only certain frequencies that can be used. These frequencies in Hertz are 40000, 20000, 10000, 8000, 5000, 4000, 2500, 2000, 1600, 1250, 1000, 800, 500, 400, 250, 200, 100, and 50 Hz. If you attempt to set a frequency that is not listed here, the nearest frequency from this list will be used.
The exact frequency may be set when using hardware PWM pins. The same PWM channel is available on multiple GPIO. The latest frequency and duty cycle setting will be used by all GPIO pins which share a PWM channel.
There are two peristaltic pump Output modules that Mycodo supports, a generic peristaltic pump Output, and the Atlas Scientific EZO-PMP peristaltic pump.
Any peristaltic pump can be used with the Generic Peristaltic Pump Output to dispense liquids. The most basic dispensing abilities are to start dispensing, stop dispensing, or dispense for a duration of time. If the pump rate has been measured, this value can be entered into the Fastest Rate (ml/min) setting and the Output controller will then be able to dispense specific volumes rather than merely for durations of time. In oder to dispense specific volumes, the Output Mode will also need to be set in addition to the Desired Flow Rate (ml/min), if the Output Mode has been set to Specify Flow Rate.
To determine your pump's flow rate, first purge all air from your pump's hose. Next, instruct the pump to dispense for 60 seconds and collect the liquid it dispenses. Once finished, measure the amount of liquid and enter this value, in milliliters into the Fastest Rate (ml/min) setting. Once your pump's flow rate is set, you can now start dispensing specific volumes rather than durations.
This Output module relies on switching a GPIO pin High and Low to switch the peristaltic pump on and off. This is most easily accomplished with the use of a relay in-line with your pump's power supply or using the GPIO as an input signal directly to the pump (if supported). When using a relay, it's important to develop your circuit to provide the fastest possible switching of the pump. Since the volume dispensed by the pump is dependent on time, the faster the pump switching can occur, the more accurate the dispensing will be. Many peristaltic pumps operate on DC voltage and require an AC-DC converter. These converters can take a significant amount of time to energize once power is applied as well as de-energize once power is removed, causing significant delays that can impact dispensing accuracy. To alleviate this issue, the DC power should be switched, rather than the AC power, which will remove this potential delay.
The Atlas Scientific peristaltic pump is a peristaltic pump and microcontroller combined that allows it to be communicated with via I2C or Serial and can accurately dispense specific volumes of fluid. There are several commands the pump can accept, including commands to calibrate, turn on, turn off, and dispense at a specific rate, among others. Atlas Scientific peristaltic pumps are good options, but are more expensive than generic peristaltic pumps.
"Fastest low Rate" will pump liquid at the fastest rate the pump can perform. "Specify Flow Rate" will pump liquid at the rate set by the "Flow Rate (ml/min)" option.
Flow Rate (ml/min)
This is how fast liquid will be pumped if the "Specify Flow Rate" option is selected for the Output Mode option.
Fastest Rate (ml/min)
This is the rate at which the pump dispenses liquid, in ml/min.
Minimum On (sec/min)
This is the minimum duration (seconds) the pump should be turned on for every 60 second period of pumping. This option is only used when Specify Flow Rate is selected as the output Mode.
Certain 315/433 MHz wireless relays may be used, however you will need to set the pin of the transmitter (using BCM numbering), pulse length, bit length, protocol, on command, and off command. To determine your On and Off commands, connect a 315/433 MHz receiver to your Pi, then run the receiver script, below, replacing 17 with the pin your receiver is connected to (using BCM numbering), and press one of the buttons on your remote (either on or off) to detect the numeric code associated with that button.
433 MHz wireless relays have been successfully tested with SMAKN 433MHz RF Transmitters/Receivers and Etekcity Wireless Remote Control Electrical Outlets (see Issue 88 for more information). If you have a 315/433 MHz transmitter/receiver and a wireless relay that does not work with the current code, submit a new issue with details of your hardware.
Another option for output control is to execute a terminal command when the output is turned on, off, or a duty cycle is set. Commands will be executed as the user 'root'. When a Linux Command output is created, example code is provided to demonstrate how to use the output.
The Python Command output operates similarly to the Linux Command output, however Python 3 code is being executed. When a Python Command output is created, example code is provided to demonstrate how to use the output.
Wireless and Command (Linux/Python) Outputs: Since the wireless protocol only allows 1-way communication to 315/433 MHz devices, wireless relays are assumed to be off until they are turned on, and therefore will appear red (off) when added. If a wireless relay is turned off or on outside Mycodo (by a remote, for instance), Mycodo will *not* be able to determine the state of the relay and will indicate whichever state the relay was last. This is, if Mycodo turns the wireless relay on, and a remote is used to turn the relay off, Mycodo will still assume the relay is on.
\ No newline at end of file
diff --git a/Python-Code/index.html b/Python-Code/index.html
index c434d9b44..f878aed1d 100644
--- a/Python-Code/index.html
+++ b/Python-Code/index.html
@@ -1,4 +1,4 @@
- Python Code - Mycodo
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
There are numerous places where Python 3 code can be used within Mycodo, including the Python Code Input, the Python Code Output, and Conditional Function.
Here are a few example that demonstrates some useful ways to interact with Mycodo with Python 3 code.
In all the Mycodo environments where your code will be executed, the DaemonControl() Class of mycodo/mycodo_client.py is available to communicate with the daemon using the object "control".
Some PWM-controlled fans do not start spinning until a minimum duty cycle is set. Once the fan is spinning, the duty cycle can be set much lower and the fan will continue to spin. Because of this, there needs to be a "charging" step if the fan is turning on from a duty cycle of 0. This code detects if the requested duty cycle will need to execute the charging step prior to setting the duty cycle. For this, you will need A GPIO PWM Output and a Python Code PWM Output. The GPIO PWM Output will be configured for the fan, and the Python Code PWM Output will be configured with the following code:
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
There are numerous places where Python 3 code can be used within Mycodo, including the Python Code Input, the Python Code Output, and Conditional Function.
Here are a few example that demonstrates some useful ways to interact with Mycodo with Python 3 code.
In all the Mycodo environments where your code will be executed, the DaemonControl() Class of mycodo/mycodo_client.py is available to communicate with the daemon using the object "control".
Some PWM-controlled fans do not start spinning until a minimum duty cycle is set. Once the fan is spinning, the duty cycle can be set much lower and the fan will continue to spin. Because of this, there needs to be a "charging" step if the fan is turning on from a duty cycle of 0. This code detects if the requested duty cycle will need to execute the charging step prior to setting the duty cycle. For this, you will need A GPIO PWM Output and a Python Code PWM Output. The GPIO PWM Output will be configured for the fan, and the Python Code PWM Output will be configured with the following code:
importtime# Set the variables the first time the code is executedifnothasattr(self,"output_id_gpio_pwm"):
@@ -32,4 +32,4 @@
output_type='pwm',amount=duty_cycle,output_channel=0)
-
Set a delay between executing Actions when self.run_all_actions() is used.
Usage: Executing self.run_action("ACTION_ID") will create a pause for the set duration. When self.run_all_actions() is executed, this will add a pause in the sequential execution of all actions.
Usage: Executing self.run_action("ACTION_ID") will capture a photo with the selected Camera. Executing self.run_action("ACTION_ID", value={"camera_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will capture a photo with the Camera with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will pause the selected Camera time-lapse. Executing self.run_action("ACTION_ID", value={"camera_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will pause the Camera time-lapse with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will resume the selected Camera time-lapse. Executing self.run_action("ACTION_ID", value={"camera_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will resume the Camera time-lapse with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will activate the selected Controller. Executing self.run_action("ACTION_ID", value={"controller_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will activate the controller with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will deactivate the selected Controller. Executing self.run_action("ACTION_ID", value={"controller_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will deactivate the controller with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will create a note with the selected tag and note. Executing self.run_action("ACTION_ID", value={"tags": ["tag1", "tag2"], "name": "My Note", "note": "this is a message"}) will execute the action with the specified list of tag(s) and note. If using only one tag, make it the only element of the list (e.g. ["tag1"]). If note is not specified, then the action message will be used as the note.
Usage: Executing self.run_action("ACTION_ID") will execute the bash command.Executing self.run_action("ACTION_ID", value={"user": "mycodo", "command": "/home/pi/my_script.sh on"}) will execute the action with the specified command and user.
Clear the total volume saved for a flow meter Input. The Input must have the Clear Total Volume option.
Usage: Executing self.run_action("ACTION_ID") will clear the total volume for the selected flow meter Input. Executing self.run_action("ACTION_ID", value={"input_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will clear the total volume for the flow meter Input with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will force acquiring measurements for the selected Input. Executing self.run_action("ACTION_ID", value={"input_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will force acquiring measurements for the Input with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will publish the saved payload text options to the MQTT server. Executing self.run_action("ACTION_ID", value={"payload": 42}) will publish the specified payload (any type) to the MQTT server. You can also specify the topic (e.g. value={"topic": "my_topic", "payload": 42}). Warning: If using multiple MQTT Inputs or Functions, ensure the Client IDs are unique.
Usage: Executing self.run_action("ACTION_ID") will set the PWM output duty cycle. Executing self.run_action("ACTION_ID", value={"output_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "channel": 0, "duty_cycle": 42}) will set the duty cycle of the PWM output with the specified ID and channel.
Turn an On/Off Output On, Off, or On for a duration.
Usage: Executing self.run_action("ACTION_ID") will actuate an output. Executing self.run_action("ACTION_ID", value={"output_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "channel": 0, "state": "on", "duration": 300}) will set the state of the output with the specified ID and channel. If state is on and a duration is set, the output will turn off after the duration.
Ramp a PWM Output from one duty cycle to another duty cycle over a period of time.
Usage: Executing self.run_action("ACTION_ID") will ramp the PWM output duty cycle according to the settings. Executing self.run_action("ACTION_ID", value={"output_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "channel": 0, "start": 42, "end": 62, "increment": 1.0, "duration": 600}) will ramp the duty cycle of the PWM output with the specified ID and channel.
Usage: Executing self.run_action("ACTION_ID") will actuate a value output. Executing self.run_action("ACTION_ID", value={"output_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "channel": 0, "value": 42}) will send a value to the output with the specified ID and channel.
Usage: Executing self.run_action("ACTION_ID") will actuate a volume output. Executing self.run_action("ACTION_ID", value={"output_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "channel": 0, "volume": 42}) will send a volume to the output with the specified ID and channel.
Usage: Executing self.run_action("ACTION_ID") will lower the setpoint of the selected PID Controller. Executing self.run_action("ACTION_ID", value={"pid_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "amount": 2}) will lower the setpoint of the PID with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will pause the selected PID Controller. Executing self.run_action("ACTION_ID", value="959019d1-c1fa-41fe-a554-7be3366a9c5b") will pause the PID Controller with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will raise the setpoint of the selected PID Controller. Executing self.run_action("ACTION_ID", value={"pid_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "amount": 2}) will raise the setpoint of the PID with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will resume the selected PID Controller. Executing self.run_action("ACTION_ID", value="959019d1-c1fa-41fe-a554-7be3366a9c5b") will resume the PID Controller with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will pause the selected PID Controller. Executing self.run_action("ACTION_ID", value={"pid_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "method_id": "fe8b8f41-131b-448d-ba7b-00a044d24075"}) will set a method for the PID Controller with the specified IDs.
Usage: Executing self.run_action("ACTION_ID") will set the setpoint of the selected PID Controller. Executing self.run_action("ACTION_ID", value={"setpoint": 42}) will set the setpoint of the PID Controller (e.g. 42). You can also specify the PID ID (e.g. value={"setpoint": 42, "pid_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"})
Usage: Executing self.run_action("ACTION_ID") will email the specified recipient(s) using the SMTP credentials in the system configuration. Separate multiple recipients with commas. The body of the email will be the self-generated message. Executing self.run_action("ACTION_ID", value={"email_address": ["email1@email.com", "email2@email.com"], "message": "My message"}) will send an email to the specified recipient(s) with the specified message.
Usage: Executing self.run_action("ACTION_ID") will take a photo and email it to the specified recipient(s) using the SMTP credentials in the system configuration. Separate multiple recipients with commas. The body of the email will be the self-generated message. Executing self.run_action("ACTION_ID", value={"camera_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "email_address": ["email1@email.com", "email2@email.com"], "message": "My message"}) will capture a photo using the camera with the specified ID and send an email to the specified email(s) with message and attached photo.
Emits a HTTP request when triggered. The first line contains a HTTP verb (GET, POST, PUT, ...) followed by a space and the URL to call. Subsequent lines are optional "name: value"-header parameters. After a blank line, the body payload to be sent follows. {{{message}}} is a placeholder that gets replaced by the message, {{{quoted_message}}} is the message in an URL safe encoding.
Usage: Executing self.run_action("ACTION_ID") will run the Action.
Usage: Executing self.run_action("ACTION_ID") will change the backlight color on the selected display. Executing self.run_action("ACTION_ID", value={"display_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "color": "255,0,0"}) will change the backlight color on the controller with the specified ID and color.
Usage: Executing self.run_action("ACTION_ID") will turn the backlight off for the selected display. Executing self.run_action("ACTION_ID", value={"display_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will turn the backlight off for the controller with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will turn the backlight on for the selected display. Executing self.run_action("ACTION_ID", value={"display_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will turn the backlight on for the controller with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will stop the backlight flashing on the selected display. Executing self.run_action("ACTION_ID", value={"display_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will stop the backlight flashing on the controller with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will start the backlight flashing on the selected display. Executing self.run_action("ACTION_ID", value={"display_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will start the backlight flashing on the controller with the specified ID.
Set a delay between executing Actions when self.run_all_actions() is used.
Usage: Executing self.run_action("ACTION_ID") will create a pause for the set duration. When self.run_all_actions() is executed, this will add a pause in the sequential execution of all actions.
Usage: Executing self.run_action("ACTION_ID") will capture a photo with the selected Camera. Executing self.run_action("ACTION_ID", value={"camera_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will capture a photo with the Camera with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will pause the selected Camera time-lapse. Executing self.run_action("ACTION_ID", value={"camera_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will pause the Camera time-lapse with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will resume the selected Camera time-lapse. Executing self.run_action("ACTION_ID", value={"camera_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will resume the Camera time-lapse with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will activate the selected Controller. Executing self.run_action("ACTION_ID", value={"controller_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will activate the controller with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will deactivate the selected Controller. Executing self.run_action("ACTION_ID", value={"controller_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will deactivate the controller with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will create a note with the selected tag and note. Executing self.run_action("ACTION_ID", value={"tags": ["tag1", "tag2"], "name": "My Note", "note": "this is a message"}) will execute the action with the specified list of tag(s) and note. If using only one tag, make it the only element of the list (e.g. ["tag1"]). If note is not specified, then the action message will be used as the note.
Usage: Executing self.run_action("ACTION_ID") will execute the bash command.Executing self.run_action("ACTION_ID", value={"user": "mycodo", "command": "/home/pi/my_script.sh on"}) will execute the action with the specified command and user.
Clear the total volume saved for a flow meter Input. The Input must have the Clear Total Volume option.
Usage: Executing self.run_action("ACTION_ID") will clear the total volume for the selected flow meter Input. Executing self.run_action("ACTION_ID", value={"input_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will clear the total volume for the flow meter Input with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will force acquiring measurements for the selected Input. Executing self.run_action("ACTION_ID", value={"input_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will force acquiring measurements for the Input with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will publish the saved payload text options to the MQTT server. Executing self.run_action("ACTION_ID", value={"payload": 42}) will publish the specified payload (any type) to the MQTT server. You can also specify the topic (e.g. value={"topic": "my_topic", "payload": 42}). Warning: If using multiple MQTT Inputs or Functions, ensure the Client IDs are unique.
Usage: Executing self.run_action("ACTION_ID") will set the PWM output duty cycle. Executing self.run_action("ACTION_ID", value={"output_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "channel": 0, "duty_cycle": 42}) will set the duty cycle of the PWM output with the specified ID and channel.
Turn an On/Off Output On, Off, or On for a duration.
Usage: Executing self.run_action("ACTION_ID") will actuate an output. Executing self.run_action("ACTION_ID", value={"output_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "channel": 0, "state": "on", "duration": 300}) will set the state of the output with the specified ID and channel. If state is on and a duration is set, the output will turn off after the duration.
Ramp a PWM Output from one duty cycle to another duty cycle over a period of time.
Usage: Executing self.run_action("ACTION_ID") will ramp the PWM output duty cycle according to the settings. Executing self.run_action("ACTION_ID", value={"output_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "channel": 0, "start": 42, "end": 62, "increment": 1.0, "duration": 600}) will ramp the duty cycle of the PWM output with the specified ID and channel.
Usage: Executing self.run_action("ACTION_ID") will actuate a value output. Executing self.run_action("ACTION_ID", value={"output_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "channel": 0, "value": 42}) will send a value to the output with the specified ID and channel.
Usage: Executing self.run_action("ACTION_ID") will actuate a volume output. Executing self.run_action("ACTION_ID", value={"output_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "channel": 0, "volume": 42}) will send a volume to the output with the specified ID and channel.
Usage: Executing self.run_action("ACTION_ID") will lower the setpoint of the selected PID Controller. Executing self.run_action("ACTION_ID", value={"pid_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "amount": 2}) will lower the setpoint of the PID with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will pause the selected PID Controller. Executing self.run_action("ACTION_ID", value="959019d1-c1fa-41fe-a554-7be3366a9c5b") will pause the PID Controller with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will raise the setpoint of the selected PID Controller. Executing self.run_action("ACTION_ID", value={"pid_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "amount": 2}) will raise the setpoint of the PID with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will resume the selected PID Controller. Executing self.run_action("ACTION_ID", value="959019d1-c1fa-41fe-a554-7be3366a9c5b") will resume the PID Controller with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will pause the selected PID Controller. Executing self.run_action("ACTION_ID", value={"pid_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "method_id": "fe8b8f41-131b-448d-ba7b-00a044d24075"}) will set a method for the PID Controller with the specified IDs.
Usage: Executing self.run_action("ACTION_ID") will set the setpoint of the selected PID Controller. Executing self.run_action("ACTION_ID", value={"setpoint": 42}) will set the setpoint of the PID Controller (e.g. 42). You can also specify the PID ID (e.g. value={"setpoint": 42, "pid_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"})
Usage: Executing self.run_action("ACTION_ID") will email the specified recipient(s) using the SMTP credentials in the system configuration. Separate multiple recipients with commas. The body of the email will be the self-generated message. Executing self.run_action("ACTION_ID", value={"email_address": ["email1@email.com", "email2@email.com"], "message": "My message"}) will send an email to the specified recipient(s) with the specified message.
Usage: Executing self.run_action("ACTION_ID") will take a photo and email it to the specified recipient(s) using the SMTP credentials in the system configuration. Separate multiple recipients with commas. The body of the email will be the self-generated message. Executing self.run_action("ACTION_ID", value={"camera_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "email_address": ["email1@email.com", "email2@email.com"], "message": "My message"}) will capture a photo using the camera with the specified ID and send an email to the specified email(s) with message and attached photo.
Emits a HTTP request when triggered. The first line contains a HTTP verb (GET, POST, PUT, ...) followed by a space and the URL to call. Subsequent lines are optional "name: value"-header parameters. After a blank line, the body payload to be sent follows. {{{message}}} is a placeholder that gets replaced by the message, {{{quoted_message}}} is the message in an URL safe encoding.
Usage: Executing self.run_action("ACTION_ID") will run the Action.
Usage: Executing self.run_action("ACTION_ID") will change the backlight color on the selected display. Executing self.run_action("ACTION_ID", value={"display_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "color": "255,0,0"}) will change the backlight color on the controller with the specified ID and color.
Usage: Executing self.run_action("ACTION_ID") will turn the backlight off for the selected display. Executing self.run_action("ACTION_ID", value={"display_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will turn the backlight off for the controller with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will turn the backlight on for the selected display. Executing self.run_action("ACTION_ID", value={"display_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will turn the backlight on for the controller with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will stop the backlight flashing on the selected display. Executing self.run_action("ACTION_ID", value={"display_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will stop the backlight flashing on the controller with the specified ID.
Usage: Executing self.run_action("ACTION_ID") will start the backlight flashing on the selected display. Executing self.run_action("ACTION_ID", value={"display_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will start the backlight flashing on the controller with the specified ID.
This function acquires the last measurement of those that are selected, averages them, then stores the resulting value as the selected measurement and unit.
This function acquires the past measurements (within Max Age) for the selected measurement, averages them, then stores the resulting value as the selected measurement and unit. Note: There is a bug in InfluxDB 1.8.10 that prevents the mean() function from working properly. Therefore, if you are using Influxdb v1.x, the median() function will be used. InfluxDB 2.x is unaffected and uses mean(). To get the true mean, upgrade to InfluxDB 2.x.
This function will use rsync to back up assets on this system to a remote system. Your remote system needs to have an SSH server running and rsync installed. This system will need rsync installed and be able to access your remote system via SSH keyfile (login without a password). You can do this by creating an SSH key on this system running Mycodo with "ssh-keygen" (leave the password field empty), then run "ssh-copy-id -i ~/.ssh/id_rsa.pub pi@REMOTE_HOST_IP" to transfer your public SSH key to your remote system (changing pi and REMOTE_HOST_IP to the appropriate user and host of your remote system). You can test if this worked by trying to connect to your remote system with "ssh pi@REMOTE_HOST_IP" and you should log in without being asked for a password. Be careful not to set the Period too low, which could cause the function to begin running before the previous operation(s) complete. Therefore, it is recommended to set a relatively long Period (greater than 10 minutes). The default Period is 15 days. Note that the Period will reset if the system or the Mycodo daemon restarts and the Function will run, generating new settings and measurement archives that will be synced. There are two common ways to use this Function: 1) A short period (1 hour), only have Backup Camera Directories enabled, and use the Backup Settings Now and Backup Measurements Now buttons manually to perform a backup, and 2) A long period (15 days), only have Backup Settings and Backup Measurements enabled. You can even create two of these Functions with one set up to perform long-Period settings and measurement backups and the other set up to perform short-Period camera backups.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 1296000
The duration between measurements or actions
Start Offset (Seconds)
Integer - Default Value: 300
The duration to wait before the first operation
Local User
Text - Default Value: pi
The user on this system that will run rsync
Remote User
Text - Default Value: pi
The user to log in to the remote host
Remote Host
Text - Default Value: 192.168.0.50
The IP or host address to send the backup to
Remote Backup Path
Text - Default Value: /home/pi/backup_mycodo
The path to backup to on the remote host
Rsync Timeout (Seconds)
Integer - Default Value: 3600
How long to allow rsync to complete
Local Backup Path
Text
A local path to backup (leave blank to disable)
Backup Settings Export File
Boolean - Default Value: True
Create and backup exported settings file
Remove Local Settings Backups
Boolean
Remove local settings backups after successful transfer to remote host
Backup Measurements
Boolean - Default Value: True
Backup all influxdb measurements
Remove Local Measurements Backups
Boolean
Remove local measurements backups after successful transfer to remote host
Backup Camera Directories
Boolean - Default Value: True
Backup all camera directories
Remove Local Camera Images
Boolean
Remove local camera images after successful transfer to remote host
SSH Port
Integer - Default Value: 22
Specify a nonstandard SSH port
Commands
Backup of settings are only created if the Mycodo version or database versions change. This is due to this Function running periodically- if it created a new backup every Period, there would soon be many identical backups. Therefore, if you want to induce the backup of settings, measurements, or camera directories and sync them to your remote system, use the buttons below.
A simple bang-bang control for controlling one output from one input. Select an input, an output, enter a setpoint and a hysteresis, and select a direction. The output will turn on when the input is below (lower = setpoint - hysteresis) and turn off when the input is above (higher = setpoint + hysteresis). This is the behavior when Raise is selected, such as when heating. Lower direction has the opposite behavior - it will try to turn the output on in order to drive the input lower.
Option
Type
Description
Measurement
Select Measurement (Input, Function)
Select a measurement the selected output will affect
Measurement: Max Age (Seconds)
Integer - Default Value: 360
The maximum age of the measurement to use
Output
Select Device, Measurement, and Channel (Output)
Select an output to control that will affect the measurement
Setpoint
Decimal - Default Value: 50
The desired setpoint
Hysteresis
Decimal - Default Value: 1
The amount above and below the setpoint that defines the control band
Direction
Select(Options: [Raise | Lower] (Default in bold)
Raise means the measurement will increase when the control is on (heating). Lower means the measurement will decrease when the output is on (cooling)
A simple bang-bang control for controlling one or two outputs from one input. Select an input, a raise and/or lower output, enter a setpoint and a hysteresis, and select a direction. The output will turn on when the input is below (lower = setpoint - hysteresis) and turn off when the input is above (higher = setpoint + hysteresis). This is the behavior when Raise is selected, such as when heating. Lower direction has the opposite behavior - it will try to turn the output on in order to drive the input lower. The Both option will raise and lower. Note: This output will only work with On/Off Outputs.
Option
Type
Description
Measurement
Select Measurement (Input, Function)
Select a measurement the selected output will affect
Measurement: Max Age (Seconds)
Integer - Default Value: 360
The maximum age of the measurement to use
Output (Raise)
Select Device, Measurement, and Channel (Output)
Select an output to control that will raise the measurement
Output (Lower)
Select Device, Measurement, and Channel (Output)
Select an output to control that will lower the measurement
Setpoint
Decimal - Default Value: 50
The desired setpoint
Hysteresis
Decimal - Default Value: 1
The amount above and below the setpoint that defines the control band
Direction
Select(Options: [Raise | Lower | Both] (Default in bold)
Raise means the measurement will increase when the control is on (heating). Lower means the measurement will decrease when the output is on (cooling)
A simple bang-bang control for controlling one PWM output from one input. Select an input, a PWM output, enter a setpoint and a hysteresis, and select a direction. The output will turn on when the input is below below (lower = setpoint - hysteresis) and turn off when the input is above (higher = setpoint + hysteresis). This is the behavior when Raise is selected, such as when heating. Lower direction has the opposite behavior - it will try to turn the output on in order to drive the input lower. The Both option will raise and lower. Note: This output will only work with PWM Outputs.
Option
Type
Description
Measurement
Select Measurement (Input, Function)
Select a measurement the selected output will affect
Measurement: Max Age (Seconds)
Integer - Default Value: 360
The maximum age of the measurement to use
Output
Select Device, Measurement, and Channel (Output)
Select an output to control that will affect the measurement
Setpoint
Decimal - Default Value: 50
The desired setpoint
Hysteresis
Decimal - Default Value: 1
The amount above and below the setpoint that defines the control band
Direction
Select(Options: [Raise | Lower | Both] (Default in bold)
Raise means the measurement will increase when the control is on (heating). Lower means the measurement will decrease when the output is on (cooling)
Period (Seconds)
Decimal - Default Value: 5
The duration between measurements or actions
Duty Cycle (increase)
Decimal - Default Value: 90
The duty cycle to increase the measurement
Duty Cycle (maintain)
Decimal - Default Value: 55
The duty cycle to maintain the measurement
Duty Cycle (decrease)
Decimal - Default Value: 20
The duty cycle to decrease the measurement
Duty Cycle (shutdown)
Decimal
The duty cycle to set when the function shuts down
NOTE: THIS IS CURRENTLY EXPERIMENTAL - USE AT YOUR OWN RISK UNTIL THIS NOTICE IS REMOVED. Capture images and videos from a camera using libcamera-still and libcamera-vid. The Function must be activated in order to capture still and timelapse images and use the Camera Widget.
Option
Type
Description
Status Period (seconds)
Integer - Default Value: 60
The duration (seconds) to update the Function status on the UI
Image options.
Custom Image Path
Text
Set a non-default path for still images to be saved
Custom Timelapse Path
Text
Set a non-default path for timelapse images to be saved
This Function outputs to a generic 16x2 LCD display via I2C. Since this display can show 2 lines at a time, channels are added in sets of 2 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore, the first 2 lines that are displayed are channels 0 and 1, then 2 and 3, and so on. After all channels have been displayed, it will cycle back to the beginning.
This Function outputs to a generic 20x4 LCD display via I2C. Since this display can show 4 lines at a time, channels are added in sets of 4 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore, the first 4 lines that are displayed are channels 0, 1, 2, and 3, then 4, 5, 6, and 7, and so on. After all channels have been displayed, it will cycle back to the beginning.
This Function outputs to the Grove 16x2 LCD display via I2C. Since this display can show 2 lines at a time, channels are added in sets of 2 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore, the first 2 lines that are displayed are channels 0 and 1, then 2 and 3, and so on. After all channels have been displayed, it will cycle back to the beginning.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 10
The duration between measurements or actions
I2C Address
Text - Default Value: 0x3e
I2C Bus
Integer - Default Value: 1
Backlight I2C Address
Text - Default Value: 0x62
I2C address to control the backlight
Number of Line Sets
Integer - Default Value: 1
How many sets of lines to cycle on the LCD
Backlight Red (0 - 255)
Integer - Default Value: 255
Set the red color value of the backlight on startup.
Backlight Green (0 - 255)
Integer - Default Value: 255
Set the green color value of the backlight on startup.
Backlight Blue (0 - 255)
Integer - Default Value: 255
Set the blue color value of the backlight on startup.
Channel Options
Line Display Type
Select
What to display on the line
Measurement
Select Measurement (Input, Function, Output, PID)
Measurement to display on the line
Max Age (Seconds)
Integer - Default Value: 360
The maximum age of the measurement to use
Measurement Label
Text
Set to overwrite the default measurement label
Measurement Decimal
Integer - Default Value: 1
The number of digits after the decimal
Text
Text - Default Value: Text
Text to display
Display Unit
Boolean - Default Value: True
Display the measurement unit (if available)
Commands
Backlight On
Button
Backlight Off
Button
Color (RGB)
Text - Default Value: 255,0,0
Color as R,G,B values (e.g. "255,0,0" without quotes)
This Function outputs to a 128x32 SSD1306 OLED display via I2C. This display Function will show 2 lines at a time, so channels are added in sets of 2 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore, the first set of lines that are displayed are channels 0 - 1, then 2 - 3, and so on. After all channels have been displayed, it will cycle back to the beginning.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 10
The duration between measurements or actions
I2C Address
Text - Default Value: 0x3c
I2C Bus
Integer - Default Value: 1
Number of Line Sets
Integer - Default Value: 1
How many sets of lines to cycle on the LCD
Reset Pin
Integer - Default Value: 17
The pin (BCM numbering) connected to RST of the display
Characters Per Line
Integer - Default Value: 17
The maximum number of characters to display per line
Use Non-Default Font
Boolean
Don't use the default font. Enable to specify the path to a font to use.
Non-Default Font Path
Text - Default Value: /usr/share/fonts/truetype/dejavu//DejaVuSans.ttf
This Function outputs to a 128x32 SSD1306 OLED display via SPI. This display Function will show 2 lines at a time, so channels are added in sets of 2 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore, the first set of lines that are displayed are channels 0 - 1, then 2 - 3, and so on. After all channels have been displayed, it will cycle back to the beginning.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 10
The duration between measurements or actions
Number of Line Sets
Integer - Default Value: 1
How many sets of lines to cycle on the LCD
SPI Device
Integer
The SPI device
SPI Bus
Integer
The SPI bus
DC Pin
Integer - Default Value: 16
The pin (BCM numbering) connected to DC of the display
Reset Pin
Integer - Default Value: 19
The pin (BCM numbering) connected to RST of the display
CS Pin
Integer - Default Value: 17
The pin (BCM numbering) connected to CS of the display
Characters Per Line
Integer - Default Value: 17
The maximum number of characters to display per line
Use Non-Default Font
Boolean
Don't use the default font. Enable to specify the path to a font to use.
Non-Default Font Path
Text - Default Value: /usr/share/fonts/truetype/dejavu//DejaVuSans.ttf
This Function outputs to a 128x32 SSD1306 OLED display via I2C. This display Function will show 4 lines at a time, so channels are added in sets of 4 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore, the first set of lines that are displayed are channels 0 - 3, then 4 - 7, and so on. After all channels have been displayed, it will cycle back to the beginning.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 10
The duration between measurements or actions
I2C Address
Text - Default Value: 0x3c
I2C Bus
Integer - Default Value: 1
Number of Line Sets
Integer - Default Value: 1
How many sets of lines to cycle on the LCD
Reset Pin
Integer - Default Value: 17
The pin (BCM numbering) connected to RST of the display
Characters Per Line
Integer - Default Value: 21
The maximum number of characters to display per line
Use Non-Default Font
Boolean
Don't use the default font. Enable to specify the path to a font to use.
Non-Default Font Path
Text - Default Value: /usr/share/fonts/truetype/dejavu//DejaVuSans.ttf
This Function outputs to a 128x32 SSD1306 OLED display via SPI. This display Function will show 4 lines at a time, so channels are added in sets of 4 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore, the first set of lines that are displayed are channels 0 - 3, then 4 - 7, and so on. After all channels have been displayed, it will cycle back to the beginning.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 10
The duration between measurements or actions
Number of Line Sets
Integer - Default Value: 1
How many sets of lines to cycle on the LCD
SPI Device
Integer
The SPI device
SPI Bus
Integer
The SPI bus
DC Pin
Integer - Default Value: 16
The pin (BCM numbering) connected to DC of the display
Reset Pin
Integer - Default Value: 19
The pin (BCM numbering) connected to RST of the display
CS Pin
Integer - Default Value: 17
The pin (BCM numbering) connected to CS of the display
Characters Per Line
Integer - Default Value: 21
The maximum number of characters to display per line
Use Non-Default Font
Boolean
Don't use the default font. Enable to specify the path to a font to use.
Non-Default Font Path
Text - Default Value: /usr/share/fonts/truetype/dejavu//DejaVuSans.ttf
This Function outputs to a 128x64 SSD1306 OLED display via I2C. This display Function will show 4 lines at a time, so channels are added in sets of 4 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore, the first set of lines that are displayed are channels 0 - 3, then 4 - 7, and so on. After all channels have been displayed, it will cycle back to the beginning.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 10
The duration between measurements or actions
I2C Address
Text - Default Value: 0x3c
I2C Bus
Integer - Default Value: 1
Number of Line Sets
Integer - Default Value: 1
How many sets of lines to cycle on the LCD
Reset Pin
Integer - Default Value: 17
The pin (BCM numbering) connected to RST of the display
Characters Per Line
Integer - Default Value: 17
The maximum number of characters to display per line
Use Non-Default Font
Boolean
Don't use the default font. Enable to specify the path to a font to use.
Non-Default Font Path
Text - Default Value: /usr/share/fonts/truetype/dejavu//DejaVuSans.ttf
This Function outputs to a 128x64 SSD1306 OLED display via SPI. This display Function will show 4 lines at a time, so channels are added in sets of 4 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore, the first set of lines that are displayed are channels 0 - 3, then 4 - 7, and so on. After all channels have been displayed, it will cycle back to the beginning.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 10
The duration between measurements or actions
Number of Line Sets
Integer - Default Value: 1
How many sets of lines to cycle on the LCD
SPI Device
Integer
The SPI device
SPI Bus
Integer
The SPI bus
DC Pin
Integer - Default Value: 16
The pin (BCM numbering) connected to DC of the display
Reset Pin
Integer - Default Value: 19
The pin (BCM numbering) connected to RST of the display
CS Pin
Integer - Default Value: 17
The pin (BCM numbering) connected to CS of the display
Characters Per Line
Integer - Default Value: 17
The maximum number of characters to display per line
Use Non-Default Font
Boolean
Don't use the default font. Enable to specify the path to a font to use.
Non-Default Font Path
Text - Default Value: /usr/share/fonts/truetype/dejavu//DejaVuSans.ttf
This Function outputs to a 128x64 SSD1306 OLED display via I2C. This display Function will show 8 lines at a time, so channels are added in sets of 8 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore, the first set of lines that are displayed are channels 0 - 7, then 8 - 15, and so on. After all channels have been displayed, it will cycle back to the beginning.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 10
The duration between measurements or actions
I2C Address
Text - Default Value: 0x3c
I2C Bus
Integer - Default Value: 1
Number of Line Sets
Integer - Default Value: 1
How many sets of lines to cycle on the LCD
Reset Pin
Integer - Default Value: 17
The pin (BCM numbering) connected to RST of the display
Characters Per Line
Integer - Default Value: 21
The maximum number of characters to display per line
Use Non-Default Font
Boolean
Don't use the default font. Enable to specify the path to a font to use.
Non-Default Font Path
Text - Default Value: /usr/share/fonts/truetype/dejavu//DejaVuSans.ttf
This Function outputs to a 128x64 SSD1306 OLED display via SPI. This display Function will show 8 lines at a time, so channels are added in sets of 8 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore, the first set of lines that are displayed are channels 0 - 7, then 8 - 15, and so on. After all channels have been displayed, it will cycle back to the beginning.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 10
The duration between measurements or actions
Number of Line Sets
Integer - Default Value: 1
How many sets of lines to cycle on the LCD
SPI Device
Integer
The SPI device
SPI Bus
Integer
The SPI bus
DC Pin
Integer - Default Value: 16
The pin (BCM numbering) connected to DC of the display
Reset Pin
Integer - Default Value: 19
The pin (BCM numbering) connected to RST of the display
CS Pin
Integer - Default Value: 17
The pin (BCM numbering) connected to CS of the display
Characters Per Line
Integer - Default Value: 21
The maximum number of characters to display per line
Use Non-Default Font
Boolean
Don't use the default font. Enable to specify the path to a font to use.
Non-Default Font Path
Text - Default Value: /usr/share/fonts/truetype/dejavu//DejaVuSans.ttf
This Function outputs to a 128x64 SSD1309 OLED display via I2C. This display Function will show 8 lines at a time, so channels are added in sets of 8 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore, the first set of lines that are displayed are channels 0 - 7, then 8 - 15, and so on. After all channels have been displayed, it will cycle back to the beginning.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 10
The duration between measurements or actions
I2C Address
Text - Default Value: 0x3c
I2C Bus
Integer - Default Value: 1
Number of Line Sets
Integer - Default Value: 1
How many sets of lines to cycle on the LCD
Reset Pin
Integer - Default Value: 17
The pin (BCM numbering) connected to RST of the display
This is an example Function Module that showcases all the different type of UI options. It is not useful beyond showing how to develop new custom Function modules.This message will appear above the Function options. It will retrieve the last selected measurement, turn the selected output on for 15 seconds, then deactivate itself. Study the code to develop your own Function Module that can be imported on the Function Import page.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 60
The duration between measurements or actions
The following fields are for text, integers, and decimal inputs. This message will automatically create a new line for the options that come after it. Alternatively, a new line can be created instead without a message, which are what separates each of the following three inputs.
Text Input
Text - Default Value: Text_1
Type in text
Integer Input
Integer - Default Value: 100
Type in an Integer
Devimal Input
Decimal - Default Value: 50.2
Type in a decimal value
A boolean value can be made using a checkbox.
Boolean Value
Boolean - Default Value: True
Set to either True (checked) or False (Unchecked)
A dropdown selection can be made of any user-defined options, with any of the options selected by default when the Function is added by the user.
Select Option
Select(Options: [First Option Selected | Second Option Selected | Third Option Selected] (Default in bold)
Select an option from the dropdown
A specific measurement from an Input, Function, or PID Controller can be selected. The following dropdown will be populated if at least one Input, Function, or PID Controller has been created (as long as the Function has measurements, e.g. Statistics Function).
Controller Measurement
Select Measurement (Input, Function, PID)
Select a controller Measurement
An output channel measurement can be selected that will return the Output ID, Channel ID, and Measurement ID. This is useful if you need more than just the Output and Channel IDs and require the user to select the specific Measurement of a channel.
Output Channel Measurement
Select Device, Measurement, and Channel (Output)
Select an output channel and measurement
An output can be selected that will return the Output ID if only the output ID is needed.
Output Device
Select Device
Select an Output device
An Input, Output, Function, PID, or Trigger can be selected that will return the ID if only the controller ID is needed (e.g. for activating/deactivating a controller)
Controller Device
Select Device
Select an Input/Output/Function/PID/Trigger controller
Commands
Button One will pass the Button One Value to the button_one() function of this module. This allows functions to be executed with user-specified inputs. These can be text, integers, decimals, or boolean values.
Button One Value
Integer - Default Value: 650
Value for button one.
Button One
Button
Here is another action with another user input that will be passed to the function. Note that Button One Value will also be passed to this second function, so be sure to use unique ids for each input.
This Function executes actions when a key is pressed. Add actions at the bottom of this module, then enter one or more short action IDs for each key, separated by commas. The Action ID is found next to the Action (for example, the Action "[Action 0559689e] Controller: Activate" has an Action ID of 0559689e. When entering Action ID(s), separate multiple IDs by commas (for example, "asdf1234" or "asdf1234,qwer5678,zxcv0987"). Actions will be executed in the order they are entered in the text string. Enter Action IDs to execute those actions when the key is pressed. If enable Toggling Actions, every other key press will execute Actions listed in Toggled Action IDs. The LED color of the key before being pressed, after being pressed, and while the last action is running. Color is an RGB string, with 0-255 for each color. For example, red is "255, 0, 0" and blue is "0, 0, 255".
Option
Type
Description
I2C Address
Text - Default Value: 0x30
I2C Bus
Integer - Default Value: 1
LED Brightness (0.0-1.0)
Decimal - Default Value: 0.2
The brightness of the LEDs
LED Flash Period (Seconds)
Decimal - Default Value: 1.0
Set the period if the LED begins flashing
Channel Options
Name
Text
A name to distinguish this from others
LED Delay (Seconds)
Decimal - Default Value: 1.5
How long to leave the LED on after the last action executes.
Action ID(s)
Text
Set which action(s) execute when the key is pressed. Enter one or more Action IDs, separated by commas
Enable Toggling Actions
Boolean
Alternate between executing two sets of Actions
Toggled Action ID(s)
Text
Set which action(s) execute when the key is pressed on even presses. Enter one or more Action IDs, separated by commas
Resting LED Color (RGB)
Text - Default Value: 0, 0, 0
The RGB color while no actions are running (e.g 10, 0, 0)
Actions Running LED Color: (RGB)
Text - Default Value: 0, 255, 0
The RGB color while all but the last action is running (e.g 10, 0, 0)
Last Action LED Color (RGB)
Text - Default Value: 0, 0, 255
The RGB color while the last action is running (e.g 10, 0, 0)
Shutdown LED Color (RGB)
Text - Default Value: 0, 0, 0
The RGB color when the Function is disabled (e.g 10, 0, 0)
This function will attempt to perform a PID controller autotune. That is, an output will be powered and the response measured from a sensor several times to calculate the P, I, and D gains. Updates about the operation will be sent to the Daemon log. If the autotune successfully completes, a summary will be sent to the Daemon log as well. Currently, only raising a Measurement is supported, but lowering should be possible with some modification to the function controller code. It is recommended to create a graph on a dashboard with the Measurement and Output to monitor that the Output is successfully raising the Measurement beyond the Setpoint. Note: Autotune is an experimental feature, it is not well-developed, and it has a high likelihood of failing to generate PID gains. Do not rely on it for accurately tuning your PID controller.
Option
Type
Description
Measurement
Select Measurement (Input, Function)
Select a measurement the selected output will affect
Output
Select Device, Measurement, and Channel (Output)
Select an output to modulate that will affect the measurement
Period
Integer - Default Value: 30
The period between powering the output
Setpoint
Decimal - Default Value: 50
A value sufficiently far from the current measured value that the output is capable of pushing the measurement toward
Noise Band
Decimal - Default Value: 0.5
The amount above the setpoint the measurement must reach
Outstep
Decimal - Default Value: 10
How many seconds the output will turn on every Period
Currently, only autotuning to raise a condition (measurement) is supported.
Direction
Select(Options: [Raise] (Default in bold)
The direction the Output will push the Measurement
This function stores the first available measurement. This is useful if you have multiple sensors that you want to serve as backups in case one stops working, you can set them up in the order of importance. This function will check if a measurement exits, starting with the first measurement. If it doesn't, the next is checked, until a measurement is found. Once a measurement is found, it is stored in the database with the user-set measurement and unit. The output of this function can be used as an input throughout Mycodo. If you need more than 3 measurements to be checked, you can string multiple Redundancy Functions by creating a second Function and setting the first Function's output as the second Function's input.
This function regulates pH with 2 pumps (acid and base solutions) and electrical conductivity (EC) with up to 4 pumps (nutrient solutions A, B, C, and D). Set only the nutrient solution outputs you want to use. Any outputs not set will not dispense when EC is being adjusted, allowing as few as 1 pump or as many as 4 pumps. Outputs can be instructed to turn on for durations (seconds) or volumes (ml). Set each Output Type to the correct type for each selected Output Channel (only select on/off Output Channels for durations and volume Output Channels for volumes). The ratio of nutrient solutions being dispensed is defined by the duration or volume set for each EC output. If an e-mail address (or multiple addresses separated by commas) is entered into the E-Mail Notification field, a notification e-mail will be sent if 1) pH is outside the set danger range, 2) EC is too high and water needs to be added to the reservoir, or 3) a measurement could not be found in the database for the specific Max Age. Each e-mail notification type has its own timer that prevents e-mail spam, and will only allow sending for each notification type every set E-Mail Timer Duration. After this duration, the timer will automatically reset to allow new notifications to be sent. You may also manually reset e-mail timers at any time with the Custom Commands, below. When the Function is active, Status text will appear below indicating the regulation information and total duration/volume for each output.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 300
The duration between measurements or actions
Start Offset (Seconds)
Integer - Default Value: 10
The duration to wait before the first operation
Status Period (seconds)
Integer - Default Value: 60
The duration (seconds) to update the Function status on the UI
Measurement Options
pH Measurement
Select Measurement (Input, Function)
Measurement from the pH input
pH: Max Age (Seconds)
Integer - Default Value: 360
The maximum age of the measurement to use
EC Measurement
Select Measurement (Input, Function)
Measurement from the EC input
Electrical Conductivity: Max Age (Seconds)
Integer - Default Value: 360
The maximum age of the measurement to use
Output Options
Output: pH Dose Raise (Base)
Select Channel (Output_Channels)
Select an output to raise the pH
Output: pH Dose Lower (Acid)
Select Channel (Output_Channels)
Select an output to lower the pH
pH Output Type
Select(Options: [Duration (seconds) | Volume (ml)] (Default in bold)
Select the output type for the selected Output Channel
pH Output Amount
Decimal - Default Value: 2.0
The amount to send to the pH dosing pumps (duration or volume)
Output: EC Dose Nutrient A
Select Channel (Output_Channels)
Select an output to dose nutrient A
Nutrient A Output Type
Select(Options: [Duration (seconds) | Volume (ml)] (Default in bold)
Select the output type for the selected Output Channel
Nutrient A Output Amount
Decimal - Default Value: 2.0
The amount to send to the Nutrient A dosing pump (duration or volume)
Output: EC Dose Nutrient B
Select Channel (Output_Channels)
Select an output to dose nutrient B
Nutrient B Output Type
Select(Options: [Duration (seconds) | Volume (ml)] (Default in bold)
Select the output type for the selected Output Channel
Nutrient B Output Amount
Decimal - Default Value: 2.0
The amount to send to the Nutrient B dosing pump (duration or volume)
Output: EC Dose Nutrient C
Select Channel (Output_Channels)
Select an output to dose nutrient C
Nutrient C Output Type
Select(Options: [Duration (seconds) | Volume (ml)] (Default in bold)
Select the output type for the selected Output Channel
Nutrient C Output Amount
Decimal - Default Value: 2.0
The amount to send to the Nutrient C dosing pump (duration or volume)
Output: EC Dose Nutrient D
Select Channel (Output_Channels)
Select an output to dose nutrient D
Nutrient D Output Type
Select(Options: [Duration (seconds) | Volume (ml)] (Default in bold)
Select the output type for the selected Output Channel
Nutrient D Output Amount
Decimal - Default Value: 2.0
The amount to send to the Nutrient D dosing pump (duration or volume)
Setpoint Options
pH Setpoint
Decimal - Default Value: 5.85
The desired pH setpoint
pH Hysteresis
Decimal - Default Value: 0.35
The hysteresis to determine the pH range
EC Setpoint
Decimal - Default Value: 150.0
The desired electrical conductivity setpoint
EC Hysteresis
Decimal - Default Value: 50.0
The hysteresis to determine the EC range
pH Danger Range (High Value)
Decimal - Default Value: 7.0
This high pH value for the danger range
pH Danger Range (Low Value)
Decimal - Default Value: 5.0
This low pH value for the danger range
Alert Notification Options
Notification E-Mail
Text
E-mail to notify when there is an issue (blank to disable)
E-Mail Timer Duration (Hours)
Decimal - Default Value: 12.0
How long to wait between sending e-mail notifications
Commands
Each e-mail notification timer can be manually reset before the expiration.
Reset EC E-mail Timer
Button
Reset pH E-mail Timer
Button
Reset Measurement Issue E-mail Timer
Button
Reset All E-Mail Timers
Button
Each total duration and volume can be manually reset.
This function acquires the last measurement of those that are selected, sums them, then stores the resulting value as the selected measurement and unit.
This function acquires the past measurements (within Max Age) for the selected measurement, sums them, then stores the resulting value as the selected measurement and unit.
This function acquires 2 measurements, calculates the difference, and if the difference is not larger than the set threshold, the Measurement A value is stored. This enables verifying one sensor's measurement with another sensor's measurement. Only when they are both in agreement is a measurement stored. This stored measurement can be used in functions such as Conditional Functions that will notify the user if no measurement is available to indicate there may be an issue with a sensor.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 60
The duration between measurements or actions
Measurement A
Select Measurement (Input, Function)
Measurement A
Measurement A: Max Age (Seconds)
Integer - Default Value: 360
The maximum age of the measurement to use
Measurement B
Select Measurement (Input, Function)
Measurement B
Measurement B: Max Age (Seconds)
Integer - Default Value: 360
The maximum age of the measurement to use
Maximum Difference
Decimal - Default Value: 10.0
The maximum allowed difference between the measurements
Average Measurements
Boolean
Store the average of the measurements in the database
This function acquires the last measurement of those that are selected, averages them, then stores the resulting value as the selected measurement and unit.
This function acquires the past measurements (within Max Age) for the selected measurement, averages them, then stores the resulting value as the selected measurement and unit. Note: There is a bug in InfluxDB 1.8.10 that prevents the mean() function from working properly. Therefore, if you are using Influxdb v1.x, the median() function will be used. InfluxDB 2.x is unaffected and uses mean(). To get the true mean, upgrade to InfluxDB 2.x.
This function will use rsync to back up assets on this system to a remote system. Your remote system needs to have an SSH server running and rsync installed. This system will need rsync installed and be able to access your remote system via SSH keyfile (login without a password). You can do this by creating an SSH key on this system running Mycodo with "ssh-keygen" (leave the password field empty), then run "ssh-copy-id -i ~/.ssh/id_rsa.pub pi@REMOTE_HOST_IP" to transfer your public SSH key to your remote system (changing pi and REMOTE_HOST_IP to the appropriate user and host of your remote system). You can test if this worked by trying to connect to your remote system with "ssh pi@REMOTE_HOST_IP" and you should log in without being asked for a password. Be careful not to set the Period too low, which could cause the function to begin running before the previous operation(s) complete. Therefore, it is recommended to set a relatively long Period (greater than 10 minutes). The default Period is 15 days. Note that the Period will reset if the system or the Mycodo daemon restarts and the Function will run, generating new settings and measurement archives that will be synced. There are two common ways to use this Function: 1) A short period (1 hour), only have Backup Camera Directories enabled, and use the Backup Settings Now and Backup Measurements Now buttons manually to perform a backup, and 2) A long period (15 days), only have Backup Settings and Backup Measurements enabled. You can even create two of these Functions with one set up to perform long-Period settings and measurement backups and the other set up to perform short-Period camera backups.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 1296000
The duration between measurements or actions
Start Offset (Seconds)
Integer - Default Value: 300
The duration to wait before the first operation
Local User
Text - Default Value: pi
The user on this system that will run rsync
Remote User
Text - Default Value: pi
The user to log in to the remote host
Remote Host
Text - Default Value: 192.168.0.50
The IP or host address to send the backup to
Remote Backup Path
Text - Default Value: /home/pi/backup_mycodo
The path to backup to on the remote host
Rsync Timeout (Seconds)
Integer - Default Value: 3600
How long to allow rsync to complete
Local Backup Path
Text
A local path to backup (leave blank to disable)
Backup Settings Export File
Boolean - Default Value: True
Create and backup exported settings file
Remove Local Settings Backups
Boolean
Remove local settings backups after successful transfer to remote host
Backup Measurements
Boolean - Default Value: True
Backup all influxdb measurements
Remove Local Measurements Backups
Boolean
Remove local measurements backups after successful transfer to remote host
Backup Camera Directories
Boolean - Default Value: True
Backup all camera directories
Remove Local Camera Images
Boolean
Remove local camera images after successful transfer to remote host
SSH Port
Integer - Default Value: 22
Specify a nonstandard SSH port
Commands
Backup of settings are only created if the Mycodo version or database versions change. This is due to this Function running periodically- if it created a new backup every Period, there would soon be many identical backups. Therefore, if you want to induce the backup of settings, measurements, or camera directories and sync them to your remote system, use the buttons below.
A simple bang-bang control for controlling one output from one input. Select an input, an output, enter a setpoint and a hysteresis, and select a direction. The output will turn on when the input is below (lower = setpoint - hysteresis) and turn off when the input is above (higher = setpoint + hysteresis). This is the behavior when Raise is selected, such as when heating. Lower direction has the opposite behavior - it will try to turn the output on in order to drive the input lower.
Option
Type
Description
Measurement
Select Measurement (Input, Function)
Select a measurement the selected output will affect
Measurement: Max Age (Seconds)
Integer - Default Value: 360
The maximum age of the measurement to use
Output
Select Device, Measurement, and Channel (Output)
Select an output to control that will affect the measurement
Setpoint
Decimal - Default Value: 50
The desired setpoint
Hysteresis
Decimal - Default Value: 1
The amount above and below the setpoint that defines the control band
Direction
Select(Options: [Raise | Lower] (Default in bold)
Raise means the measurement will increase when the control is on (heating). Lower means the measurement will decrease when the output is on (cooling)
A simple bang-bang control for controlling one or two outputs from one input. Select an input, a raise and/or lower output, enter a setpoint and a hysteresis, and select a direction. The output will turn on when the input is below (lower = setpoint - hysteresis) and turn off when the input is above (higher = setpoint + hysteresis). This is the behavior when Raise is selected, such as when heating. Lower direction has the opposite behavior - it will try to turn the output on in order to drive the input lower. The Both option will raise and lower. Note: This output will only work with On/Off Outputs.
Option
Type
Description
Measurement
Select Measurement (Input, Function)
Select a measurement the selected output will affect
Measurement: Max Age (Seconds)
Integer - Default Value: 360
The maximum age of the measurement to use
Output (Raise)
Select Device, Measurement, and Channel (Output)
Select an output to control that will raise the measurement
Output (Lower)
Select Device, Measurement, and Channel (Output)
Select an output to control that will lower the measurement
Setpoint
Decimal - Default Value: 50
The desired setpoint
Hysteresis
Decimal - Default Value: 1
The amount above and below the setpoint that defines the control band
Direction
Select(Options: [Raise | Lower | Both] (Default in bold)
Raise means the measurement will increase when the control is on (heating). Lower means the measurement will decrease when the output is on (cooling)
A simple bang-bang control for controlling one PWM output from one input. Select an input, a PWM output, enter a setpoint and a hysteresis, and select a direction. The output will turn on when the input is below below (lower = setpoint - hysteresis) and turn off when the input is above (higher = setpoint + hysteresis). This is the behavior when Raise is selected, such as when heating. Lower direction has the opposite behavior - it will try to turn the output on in order to drive the input lower. The Both option will raise and lower. Note: This output will only work with PWM Outputs.
Option
Type
Description
Measurement
Select Measurement (Input, Function)
Select a measurement the selected output will affect
Measurement: Max Age (Seconds)
Integer - Default Value: 360
The maximum age of the measurement to use
Output
Select Device, Measurement, and Channel (Output)
Select an output to control that will affect the measurement
Setpoint
Decimal - Default Value: 50
The desired setpoint
Hysteresis
Decimal - Default Value: 1
The amount above and below the setpoint that defines the control band
Direction
Select(Options: [Raise | Lower | Both] (Default in bold)
Raise means the measurement will increase when the control is on (heating). Lower means the measurement will decrease when the output is on (cooling)
Period (Seconds)
Decimal - Default Value: 5
The duration between measurements or actions
Duty Cycle (increase)
Decimal - Default Value: 90
The duty cycle to increase the measurement
Duty Cycle (maintain)
Decimal - Default Value: 55
The duty cycle to maintain the measurement
Duty Cycle (decrease)
Decimal - Default Value: 20
The duty cycle to decrease the measurement
Duty Cycle (shutdown)
Decimal
The duty cycle to set when the function shuts down
NOTE: THIS IS CURRENTLY EXPERIMENTAL - USE AT YOUR OWN RISK UNTIL THIS NOTICE IS REMOVED. Capture images and videos from a camera using libcamera-still and libcamera-vid. The Function must be activated in order to capture still and timelapse images and use the Camera Widget.
Option
Type
Description
Status Period (seconds)
Integer - Default Value: 60
The duration (seconds) to update the Function status on the UI
Image options.
Custom Image Path
Text
Set a non-default path for still images to be saved
Custom Timelapse Path
Text
Set a non-default path for timelapse images to be saved
This Function outputs to a generic 16x2 LCD display via I2C. Since this display can show 2 lines at a time, channels are added in sets of 2 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore, the first 2 lines that are displayed are channels 0 and 1, then 2 and 3, and so on. After all channels have been displayed, it will cycle back to the beginning.
This Function outputs to a generic 20x4 LCD display via I2C. Since this display can show 4 lines at a time, channels are added in sets of 4 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore, the first 4 lines that are displayed are channels 0, 1, 2, and 3, then 4, 5, 6, and 7, and so on. After all channels have been displayed, it will cycle back to the beginning.
This Function outputs to the Grove 16x2 LCD display via I2C. Since this display can show 2 lines at a time, channels are added in sets of 2 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore, the first 2 lines that are displayed are channels 0 and 1, then 2 and 3, and so on. After all channels have been displayed, it will cycle back to the beginning.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 10
The duration between measurements or actions
I2C Address
Text - Default Value: 0x3e
I2C Bus
Integer - Default Value: 1
Backlight I2C Address
Text - Default Value: 0x62
I2C address to control the backlight
Number of Line Sets
Integer - Default Value: 1
How many sets of lines to cycle on the LCD
Backlight Red (0 - 255)
Integer - Default Value: 255
Set the red color value of the backlight on startup.
Backlight Green (0 - 255)
Integer - Default Value: 255
Set the green color value of the backlight on startup.
Backlight Blue (0 - 255)
Integer - Default Value: 255
Set the blue color value of the backlight on startup.
Channel Options
Line Display Type
Select
What to display on the line
Measurement
Select Measurement (Input, Function, Output, PID)
Measurement to display on the line
Max Age (Seconds)
Integer - Default Value: 360
The maximum age of the measurement to use
Measurement Label
Text
Set to overwrite the default measurement label
Measurement Decimal
Integer - Default Value: 1
The number of digits after the decimal
Text
Text - Default Value: Text
Text to display
Display Unit
Boolean - Default Value: True
Display the measurement unit (if available)
Commands
Backlight On
Button
Backlight Off
Button
Color (RGB)
Text - Default Value: 255,0,0
Color as R,G,B values (e.g. "255,0,0" without quotes)
This Function outputs to a 128x32 SSD1306 OLED display via I2C. This display Function will show 2 lines at a time, so channels are added in sets of 2 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore, the first set of lines that are displayed are channels 0 - 1, then 2 - 3, and so on. After all channels have been displayed, it will cycle back to the beginning.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 10
The duration between measurements or actions
I2C Address
Text - Default Value: 0x3c
I2C Bus
Integer - Default Value: 1
Number of Line Sets
Integer - Default Value: 1
How many sets of lines to cycle on the LCD
Reset Pin
Integer - Default Value: 17
The pin (BCM numbering) connected to RST of the display
Characters Per Line
Integer - Default Value: 17
The maximum number of characters to display per line
Use Non-Default Font
Boolean
Don't use the default font. Enable to specify the path to a font to use.
Non-Default Font Path
Text - Default Value: /usr/share/fonts/truetype/dejavu//DejaVuSans.ttf
This Function outputs to a 128x32 SSD1306 OLED display via SPI. This display Function will show 2 lines at a time, so channels are added in sets of 2 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore, the first set of lines that are displayed are channels 0 - 1, then 2 - 3, and so on. After all channels have been displayed, it will cycle back to the beginning.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 10
The duration between measurements or actions
Number of Line Sets
Integer - Default Value: 1
How many sets of lines to cycle on the LCD
SPI Device
Integer
The SPI device
SPI Bus
Integer
The SPI bus
DC Pin
Integer - Default Value: 16
The pin (BCM numbering) connected to DC of the display
Reset Pin
Integer - Default Value: 19
The pin (BCM numbering) connected to RST of the display
CS Pin
Integer - Default Value: 17
The pin (BCM numbering) connected to CS of the display
Characters Per Line
Integer - Default Value: 17
The maximum number of characters to display per line
Use Non-Default Font
Boolean
Don't use the default font. Enable to specify the path to a font to use.
Non-Default Font Path
Text - Default Value: /usr/share/fonts/truetype/dejavu//DejaVuSans.ttf
This Function outputs to a 128x32 SSD1306 OLED display via I2C. This display Function will show 4 lines at a time, so channels are added in sets of 4 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore, the first set of lines that are displayed are channels 0 - 3, then 4 - 7, and so on. After all channels have been displayed, it will cycle back to the beginning.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 10
The duration between measurements or actions
I2C Address
Text - Default Value: 0x3c
I2C Bus
Integer - Default Value: 1
Number of Line Sets
Integer - Default Value: 1
How many sets of lines to cycle on the LCD
Reset Pin
Integer - Default Value: 17
The pin (BCM numbering) connected to RST of the display
Characters Per Line
Integer - Default Value: 21
The maximum number of characters to display per line
Use Non-Default Font
Boolean
Don't use the default font. Enable to specify the path to a font to use.
Non-Default Font Path
Text - Default Value: /usr/share/fonts/truetype/dejavu//DejaVuSans.ttf
This Function outputs to a 128x32 SSD1306 OLED display via SPI. This display Function will show 4 lines at a time, so channels are added in sets of 4 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore, the first set of lines that are displayed are channels 0 - 3, then 4 - 7, and so on. After all channels have been displayed, it will cycle back to the beginning.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 10
The duration between measurements or actions
Number of Line Sets
Integer - Default Value: 1
How many sets of lines to cycle on the LCD
SPI Device
Integer
The SPI device
SPI Bus
Integer
The SPI bus
DC Pin
Integer - Default Value: 16
The pin (BCM numbering) connected to DC of the display
Reset Pin
Integer - Default Value: 19
The pin (BCM numbering) connected to RST of the display
CS Pin
Integer - Default Value: 17
The pin (BCM numbering) connected to CS of the display
Characters Per Line
Integer - Default Value: 21
The maximum number of characters to display per line
Use Non-Default Font
Boolean
Don't use the default font. Enable to specify the path to a font to use.
Non-Default Font Path
Text - Default Value: /usr/share/fonts/truetype/dejavu//DejaVuSans.ttf
This Function outputs to a 128x64 SSD1306 OLED display via I2C. This display Function will show 4 lines at a time, so channels are added in sets of 4 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore, the first set of lines that are displayed are channels 0 - 3, then 4 - 7, and so on. After all channels have been displayed, it will cycle back to the beginning.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 10
The duration between measurements or actions
I2C Address
Text - Default Value: 0x3c
I2C Bus
Integer - Default Value: 1
Number of Line Sets
Integer - Default Value: 1
How many sets of lines to cycle on the LCD
Reset Pin
Integer - Default Value: 17
The pin (BCM numbering) connected to RST of the display
Characters Per Line
Integer - Default Value: 17
The maximum number of characters to display per line
Use Non-Default Font
Boolean
Don't use the default font. Enable to specify the path to a font to use.
Non-Default Font Path
Text - Default Value: /usr/share/fonts/truetype/dejavu//DejaVuSans.ttf
This Function outputs to a 128x64 SSD1306 OLED display via SPI. This display Function will show 4 lines at a time, so channels are added in sets of 4 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore, the first set of lines that are displayed are channels 0 - 3, then 4 - 7, and so on. After all channels have been displayed, it will cycle back to the beginning.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 10
The duration between measurements or actions
Number of Line Sets
Integer - Default Value: 1
How many sets of lines to cycle on the LCD
SPI Device
Integer
The SPI device
SPI Bus
Integer
The SPI bus
DC Pin
Integer - Default Value: 16
The pin (BCM numbering) connected to DC of the display
Reset Pin
Integer - Default Value: 19
The pin (BCM numbering) connected to RST of the display
CS Pin
Integer - Default Value: 17
The pin (BCM numbering) connected to CS of the display
Characters Per Line
Integer - Default Value: 17
The maximum number of characters to display per line
Use Non-Default Font
Boolean
Don't use the default font. Enable to specify the path to a font to use.
Non-Default Font Path
Text - Default Value: /usr/share/fonts/truetype/dejavu//DejaVuSans.ttf
This Function outputs to a 128x64 SSD1306 OLED display via I2C. This display Function will show 8 lines at a time, so channels are added in sets of 8 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore, the first set of lines that are displayed are channels 0 - 7, then 8 - 15, and so on. After all channels have been displayed, it will cycle back to the beginning.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 10
The duration between measurements or actions
I2C Address
Text - Default Value: 0x3c
I2C Bus
Integer - Default Value: 1
Number of Line Sets
Integer - Default Value: 1
How many sets of lines to cycle on the LCD
Reset Pin
Integer - Default Value: 17
The pin (BCM numbering) connected to RST of the display
Characters Per Line
Integer - Default Value: 21
The maximum number of characters to display per line
Use Non-Default Font
Boolean
Don't use the default font. Enable to specify the path to a font to use.
Non-Default Font Path
Text - Default Value: /usr/share/fonts/truetype/dejavu//DejaVuSans.ttf
This Function outputs to a 128x64 SSD1306 OLED display via SPI. This display Function will show 8 lines at a time, so channels are added in sets of 8 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore, the first set of lines that are displayed are channels 0 - 7, then 8 - 15, and so on. After all channels have been displayed, it will cycle back to the beginning.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 10
The duration between measurements or actions
Number of Line Sets
Integer - Default Value: 1
How many sets of lines to cycle on the LCD
SPI Device
Integer
The SPI device
SPI Bus
Integer
The SPI bus
DC Pin
Integer - Default Value: 16
The pin (BCM numbering) connected to DC of the display
Reset Pin
Integer - Default Value: 19
The pin (BCM numbering) connected to RST of the display
CS Pin
Integer - Default Value: 17
The pin (BCM numbering) connected to CS of the display
Characters Per Line
Integer - Default Value: 21
The maximum number of characters to display per line
Use Non-Default Font
Boolean
Don't use the default font. Enable to specify the path to a font to use.
Non-Default Font Path
Text - Default Value: /usr/share/fonts/truetype/dejavu//DejaVuSans.ttf
This Function outputs to a 128x64 SSD1309 OLED display via I2C. This display Function will show 8 lines at a time, so channels are added in sets of 8 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore, the first set of lines that are displayed are channels 0 - 7, then 8 - 15, and so on. After all channels have been displayed, it will cycle back to the beginning.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 10
The duration between measurements or actions
I2C Address
Text - Default Value: 0x3c
I2C Bus
Integer - Default Value: 1
Number of Line Sets
Integer - Default Value: 1
How many sets of lines to cycle on the LCD
Reset Pin
Integer - Default Value: 17
The pin (BCM numbering) connected to RST of the display
This is an example Function Module that showcases all the different type of UI options. It is not useful beyond showing how to develop new custom Function modules.This message will appear above the Function options. It will retrieve the last selected measurement, turn the selected output on for 15 seconds, then deactivate itself. Study the code to develop your own Function Module that can be imported on the Function Import page.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 60
The duration between measurements or actions
The following fields are for text, integers, and decimal inputs. This message will automatically create a new line for the options that come after it. Alternatively, a new line can be created instead without a message, which are what separates each of the following three inputs.
Text Input
Text - Default Value: Text_1
Type in text
Integer Input
Integer - Default Value: 100
Type in an Integer
Devimal Input
Decimal - Default Value: 50.2
Type in a decimal value
A boolean value can be made using a checkbox.
Boolean Value
Boolean - Default Value: True
Set to either True (checked) or False (Unchecked)
A dropdown selection can be made of any user-defined options, with any of the options selected by default when the Function is added by the user.
Select Option
Select(Options: [First Option Selected | Second Option Selected | Third Option Selected] (Default in bold)
Select an option from the dropdown
A specific measurement from an Input, Function, or PID Controller can be selected. The following dropdown will be populated if at least one Input, Function, or PID Controller has been created (as long as the Function has measurements, e.g. Statistics Function).
Controller Measurement
Select Measurement (Input, Function, PID)
Select a controller Measurement
An output channel measurement can be selected that will return the Output ID, Channel ID, and Measurement ID. This is useful if you need more than just the Output and Channel IDs and require the user to select the specific Measurement of a channel.
Output Channel Measurement
Select Device, Measurement, and Channel (Output)
Select an output channel and measurement
An output can be selected that will return the Output ID if only the output ID is needed.
Output Device
Select Device
Select an Output device
An Input, Output, Function, PID, or Trigger can be selected that will return the ID if only the controller ID is needed (e.g. for activating/deactivating a controller)
Controller Device
Select Device
Select an Input/Output/Function/PID/Trigger controller
Commands
Button One will pass the Button One Value to the button_one() function of this module. This allows functions to be executed with user-specified inputs. These can be text, integers, decimals, or boolean values.
Button One Value
Integer - Default Value: 650
Value for button one.
Button One
Button
Here is another action with another user input that will be passed to the function. Note that Button One Value will also be passed to this second function, so be sure to use unique ids for each input.
This Function executes actions when a key is pressed. Add actions at the bottom of this module, then enter one or more short action IDs for each key, separated by commas. The Action ID is found next to the Action (for example, the Action "[Action 0559689e] Controller: Activate" has an Action ID of 0559689e. When entering Action ID(s), separate multiple IDs by commas (for example, "asdf1234" or "asdf1234,qwer5678,zxcv0987"). Actions will be executed in the order they are entered in the text string. Enter Action IDs to execute those actions when the key is pressed. If enable Toggling Actions, every other key press will execute Actions listed in Toggled Action IDs. The LED color of the key before being pressed, after being pressed, and while the last action is running. Color is an RGB string, with 0-255 for each color. For example, red is "255, 0, 0" and blue is "0, 0, 255".
Option
Type
Description
I2C Address
Text - Default Value: 0x30
I2C Bus
Integer - Default Value: 1
LED Brightness (0.0-1.0)
Decimal - Default Value: 0.2
The brightness of the LEDs
LED Flash Period (Seconds)
Decimal - Default Value: 1.0
Set the period if the LED begins flashing
Channel Options
Name
Text
A name to distinguish this from others
LED Delay (Seconds)
Decimal - Default Value: 1.5
How long to leave the LED on after the last action executes.
Action ID(s)
Text
Set which action(s) execute when the key is pressed. Enter one or more Action IDs, separated by commas
Enable Toggling Actions
Boolean
Alternate between executing two sets of Actions
Toggled Action ID(s)
Text
Set which action(s) execute when the key is pressed on even presses. Enter one or more Action IDs, separated by commas
Resting LED Color (RGB)
Text - Default Value: 0, 0, 0
The RGB color while no actions are running (e.g 10, 0, 0)
Actions Running LED Color: (RGB)
Text - Default Value: 0, 255, 0
The RGB color while all but the last action is running (e.g 10, 0, 0)
Last Action LED Color (RGB)
Text - Default Value: 0, 0, 255
The RGB color while the last action is running (e.g 10, 0, 0)
Shutdown LED Color (RGB)
Text - Default Value: 0, 0, 0
The RGB color when the Function is disabled (e.g 10, 0, 0)
This function will attempt to perform a PID controller autotune. That is, an output will be powered and the response measured from a sensor several times to calculate the P, I, and D gains. Updates about the operation will be sent to the Daemon log. If the autotune successfully completes, a summary will be sent to the Daemon log as well. Currently, only raising a Measurement is supported, but lowering should be possible with some modification to the function controller code. It is recommended to create a graph on a dashboard with the Measurement and Output to monitor that the Output is successfully raising the Measurement beyond the Setpoint. Note: Autotune is an experimental feature, it is not well-developed, and it has a high likelihood of failing to generate PID gains. Do not rely on it for accurately tuning your PID controller.
Option
Type
Description
Measurement
Select Measurement (Input, Function)
Select a measurement the selected output will affect
Output
Select Device, Measurement, and Channel (Output)
Select an output to modulate that will affect the measurement
Period
Integer - Default Value: 30
The period between powering the output
Setpoint
Decimal - Default Value: 50
A value sufficiently far from the current measured value that the output is capable of pushing the measurement toward
Noise Band
Decimal - Default Value: 0.5
The amount above the setpoint the measurement must reach
Outstep
Decimal - Default Value: 10
How many seconds the output will turn on every Period
Currently, only autotuning to raise a condition (measurement) is supported.
Direction
Select(Options: [Raise] (Default in bold)
The direction the Output will push the Measurement
This function stores the first available measurement. This is useful if you have multiple sensors that you want to serve as backups in case one stops working, you can set them up in the order of importance. This function will check if a measurement exits, starting with the first measurement. If it doesn't, the next is checked, until a measurement is found. Once a measurement is found, it is stored in the database with the user-set measurement and unit. The output of this function can be used as an input throughout Mycodo. If you need more than 3 measurements to be checked, you can string multiple Redundancy Functions by creating a second Function and setting the first Function's output as the second Function's input.
This function regulates pH with 2 pumps (acid and base solutions) and electrical conductivity (EC) with up to 4 pumps (nutrient solutions A, B, C, and D). Set only the nutrient solution outputs you want to use. Any outputs not set will not dispense when EC is being adjusted, allowing as few as 1 pump or as many as 4 pumps. Outputs can be instructed to turn on for durations (seconds) or volumes (ml). Set each Output Type to the correct type for each selected Output Channel (only select on/off Output Channels for durations and volume Output Channels for volumes). The ratio of nutrient solutions being dispensed is defined by the duration or volume set for each EC output. If an e-mail address (or multiple addresses separated by commas) is entered into the E-Mail Notification field, a notification e-mail will be sent if 1) pH is outside the set danger range, 2) EC is too high and water needs to be added to the reservoir, or 3) a measurement could not be found in the database for the specific Max Age. Each e-mail notification type has its own timer that prevents e-mail spam, and will only allow sending for each notification type every set E-Mail Timer Duration. After this duration, the timer will automatically reset to allow new notifications to be sent. You may also manually reset e-mail timers at any time with the Custom Commands, below. When the Function is active, Status text will appear below indicating the regulation information and total duration/volume for each output.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 300
The duration between measurements or actions
Start Offset (Seconds)
Integer - Default Value: 10
The duration to wait before the first operation
Status Period (seconds)
Integer - Default Value: 60
The duration (seconds) to update the Function status on the UI
Measurement Options
pH Measurement
Select Measurement (Input, Function)
Measurement from the pH input
pH: Max Age (Seconds)
Integer - Default Value: 360
The maximum age of the measurement to use
EC Measurement
Select Measurement (Input, Function)
Measurement from the EC input
Electrical Conductivity: Max Age (Seconds)
Integer - Default Value: 360
The maximum age of the measurement to use
Output Options
Output: pH Dose Raise (Base)
Select Channel (Output_Channels)
Select an output to raise the pH
Output: pH Dose Lower (Acid)
Select Channel (Output_Channels)
Select an output to lower the pH
pH Output Type
Select(Options: [Duration (seconds) | Volume (ml)] (Default in bold)
Select the output type for the selected Output Channel
pH Output Amount
Decimal - Default Value: 2.0
The amount to send to the pH dosing pumps (duration or volume)
Output: EC Dose Nutrient A
Select Channel (Output_Channels)
Select an output to dose nutrient A
Nutrient A Output Type
Select(Options: [Duration (seconds) | Volume (ml)] (Default in bold)
Select the output type for the selected Output Channel
Nutrient A Output Amount
Decimal - Default Value: 2.0
The amount to send to the Nutrient A dosing pump (duration or volume)
Output: EC Dose Nutrient B
Select Channel (Output_Channels)
Select an output to dose nutrient B
Nutrient B Output Type
Select(Options: [Duration (seconds) | Volume (ml)] (Default in bold)
Select the output type for the selected Output Channel
Nutrient B Output Amount
Decimal - Default Value: 2.0
The amount to send to the Nutrient B dosing pump (duration or volume)
Output: EC Dose Nutrient C
Select Channel (Output_Channels)
Select an output to dose nutrient C
Nutrient C Output Type
Select(Options: [Duration (seconds) | Volume (ml)] (Default in bold)
Select the output type for the selected Output Channel
Nutrient C Output Amount
Decimal - Default Value: 2.0
The amount to send to the Nutrient C dosing pump (duration or volume)
Output: EC Dose Nutrient D
Select Channel (Output_Channels)
Select an output to dose nutrient D
Nutrient D Output Type
Select(Options: [Duration (seconds) | Volume (ml)] (Default in bold)
Select the output type for the selected Output Channel
Nutrient D Output Amount
Decimal - Default Value: 2.0
The amount to send to the Nutrient D dosing pump (duration or volume)
Setpoint Options
pH Setpoint
Decimal - Default Value: 5.85
The desired pH setpoint
pH Hysteresis
Decimal - Default Value: 0.35
The hysteresis to determine the pH range
EC Setpoint
Decimal - Default Value: 150.0
The desired electrical conductivity setpoint
EC Hysteresis
Decimal - Default Value: 50.0
The hysteresis to determine the EC range
pH Danger Range (High Value)
Decimal - Default Value: 7.0
This high pH value for the danger range
pH Danger Range (Low Value)
Decimal - Default Value: 5.0
This low pH value for the danger range
Alert Notification Options
Notification E-Mail
Text
E-mail to notify when there is an issue (blank to disable)
E-Mail Timer Duration (Hours)
Decimal - Default Value: 12.0
How long to wait between sending e-mail notifications
Commands
Each e-mail notification timer can be manually reset before the expiration.
Reset EC E-mail Timer
Button
Reset pH E-mail Timer
Button
Reset Measurement Issue E-mail Timer
Button
Reset All E-Mail Timers
Button
Each total duration and volume can be manually reset.
This function acquires the last measurement of those that are selected, sums them, then stores the resulting value as the selected measurement and unit.
This function acquires the past measurements (within Max Age) for the selected measurement, sums them, then stores the resulting value as the selected measurement and unit.
This function acquires 2 measurements, calculates the difference, and if the difference is not larger than the set threshold, the Measurement A value is stored. This enables verifying one sensor's measurement with another sensor's measurement. Only when they are both in agreement is a measurement stored. This stored measurement can be used in functions such as Conditional Functions that will notify the user if no measurement is available to indicate there may be an issue with a sensor.
Option
Type
Description
Period (Seconds)
Decimal - Default Value: 60
The duration between measurements or actions
Measurement A
Select Measurement (Input, Function)
Measurement A
Measurement A: Max Age (Seconds)
Integer - Default Value: 360
The maximum age of the measurement to use
Measurement B
Select Measurement (Input, Function)
Measurement B
Measurement B: Max Age (Seconds)
Integer - Default Value: 360
The maximum age of the measurement to use
Maximum Difference
Decimal - Default Value: 10.0
The maximum allowed difference between the measurements
Average Measurements
Boolean
Store the average of the measurements in the database
\ No newline at end of file
diff --git a/Supported-Inputs-By-Measurement/index.html b/Supported-Inputs-By-Measurement/index.html
index 62df74abf..409361b6e 100644
--- a/Supported-Inputs-By-Measurement/index.html
+++ b/Supported-Inputs-By-Measurement/index.html
@@ -1 +1 @@
- Inputs Sorted by Measurement - Mycodo
This Input will execute a command in the shell and store the output as a float value. Perform any unit conversions within your script or command. A measurement/unit is required to be selected.
Option
Type
Description
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Command Timeout
Integer - Default Value: 60
How long to wait for the command to finish before killing the process.
User
Text - Default Value: mycodo
The user to execute the command
Current Working Directory
Text - Default Value: /home/pi
The current working directory of the shell environment.
All channels require a Measurement Unit to be selected and saved in order to store values to the database. Your code is executed from the same Python virtual environment that Mycodo runs from. Therefore, you must install Python libraries to this environment if you want them to be available to your code. This virtualenv is located at /opt/Mycodo/env and if you wanted to install a library, for example "my_library" using pip, you would execute "sudo /opt/Mycodo/env/bin/pip install my_library".
Option
Type
Description
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
This is an alternate Python 3 Code Input that uses a different method for storing values to the database. This was created because the Python 3 Code v1.0 Input does not allow the use of Input Actions. This method does allow the use of Input Actions. (11/21/2023 Update: The Python 3 Code (v1.0) Input now allows the execution of Actions). All channels require a Measurement Unit to be selected and saved in order to store values to the database. Your code is executed from the same Python virtual environment that Mycodo runs from. Therefore, you must install Python libraries to this environment if you want them to be available to your code. This virtualenv is located at /opt/Mycodo/env and if you wanted to install a library, for example "my_library" using pip, you would execute "sudo /opt/Mycodo/env/bin/pip install my_library".
Option
Type
Description
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Mycodo: Test Input: Save your own measurement value~
Manufacturer: Mycodo
Measurements: Variable measurements
This is a simple test Input that allows you to save any value as a measurement, that will be stored in the measurement database. It can be useful for testing other parts of Mycodo, such as PIDs, Bang-Bang, and Conditional Functions, since you can be completely in control of what values the input provides to the Functions. Note 1: Select and save the Name and Measurement Unit for each channel. Once the unit has been saved, you can convert to other units in the Convert Measurement section. Note 2: Activate the Input before storing measurements.
Option
Type
Description
Measurements Enabled
Multi-Select
The measurements to record
Channel Options
Name
Text
A name to distinguish this from others
Commands
Enter the Value you want to store as a measurement, then press Store Measurement.
Channel
Integer
This is the channel to save the measurement value to
Value
Decimal - Default Value: 10.0
This is the measurement value to save for this Input
This calculates RPM from pulses on a pin using pigpio, but has been found to be less accurate than the method #2 module. This is typically used to measure the speed of a fan from a tachometer pin, however this can be used to measure any 3.3-volt pulses from a wire. Use a resistor to pull the measurement pin to 3.3 volts, set pigpio to the lowest latency (1 ms) on the Configure -> Raspberry Pi page. Note 1: Not setting pigpio to the lowest latency will hinder accuracy. Note 2: accuracy decreases as RPM increases.
Option
Type
Description
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Raspberry Pi: Signal (Revolutions) (pigpio method #2)~
This is an alternate method to calculate RPM from pulses on a pin using pigpio, and has been found to be more accurate than the method #1 module. This is typically used to measure the speed of a fan from a tachometer pin, however this can be used to measure any 3.3-volt pulses from a wire. Use a resistor to pull the measurement pin to 3.3 volts, set pigpio to the lowest latency (1 ms) on the Configure -> Raspberry Pi page. Note 1: Not setting pigpio to the lowest latency will hinder accuracy. Note 2: accuracy decreases as RPM increases.
Option
Type
Description
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Pin: GPIO (BCM)
Integer
The pin to measure pulses from
Sample Time (Seconds)
Decimal - Default Value: 5.0
The duration of time to sample
Pulses Per Rev
Decimal - Default Value: 15.8
The number of pulses per revolution to calculate revolutions per minute (RPM)
The FTDI device connected to the input/output/etc.
UART Device
Text
The UART device location (e.g. /dev/ttyUSB1)
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Commands
A one- or two-point calibration can be performed. After exposing the probe to a concentration of CO2 between 3,000 and 5,000 ppmv until readings stabilize, press Calibrate (High). You can place the probe in a 0 CO2 environment until readings stabilize, then press Calibrate (Zero). You can also clear the currently-saved calibration by pressing Clear Calibration, returning to the factory-set calibration. Status messages will be sent to the Daemon Log, accessible from Config -> Mycodo Logs -> Daemon Log.
High Point CO2
Integer - Default Value: 3000
The high CO2 calibration point (3000 - 5000 ppmv)
Calibrate (High)
Button
Calibrate (Zero)
Button
Clear Calibration
Button
The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
The FTDI device connected to the input/output/etc.
UART Device
Text
The UART device location (e.g. /dev/ttyUSB1)
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
LED Only For Measure
Boolean - Default Value: True
Turn the LED on only during the measurement
LED Percentage
Integer - Default Value: 30
What percentage of power to supply to the LEDs during measurement
Gamma Correction
Decimal - Default Value: 1.0
Gamma correction between 0.01 and 4.99 (default is 1.0)
Commands
The EZO-RGB color sensor is designed to be calibrated to a white object at the maximum brightness the object will be viewed under. In order to get the best results, Atlas Scientific strongly recommends that the sensor is mounted into a fixed location. Holding the sensor in your hand during calibration will decrease performance. 1. Embed the EZO-RGB color sensor into its intended use location. 2. Set LED brightness to the desired level. 3. Place a white object in front of the target object and press the Calibration button. 4. A single color reading will be taken and the device will be fully calibrated.
Calibrate
Button
The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
The FTDI device connected to the input/output/etc.
UART Device
Text
The UART device location (e.g. /dev/ttyUSB1)
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Temperature Compensation: Measurement
Select Measurement (Input, Function)
Select a measurement for temperature compensation
Temperature Compensation: Max Age (Seconds)
Integer - Default Value: 120
The maximum age of the measurement to use
Commands
A one- or two-point calibration can be performed. After exposing the probe to air for 30 seconds until readings stabilize, press Calibrate (Air). If you require accuracy below 1.0 mg/L, you can place the probe in a 0 mg/L solution for 30 to 90 seconds until readings stabilize, then press Calibrate (0 mg/L). You can also clear the currently-saved calibration by pressing Clear Calibration. Status messages will be sent to the Daemon Log, accessible from Config -> Mycodo Logs -> Daemon Log.
Calibrate (Air)
Button
Calibrate (0 mg/L)
Button
Clear Calibration
Button
The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
The FTDI device connected to the input/output/etc.
UART Device
Text
The UART device location (e.g. /dev/ttyUSB1)
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Temperature Compensation: Measurement
Select Measurement (Input, Function)
Select a measurement for temperature compensation
Temperature Compensation: Max Age (Seconds)
Integer - Default Value: 120
The maximum age of the measurement to use
Commands
Calibration: a one- or two-point calibration can be performed. It's a good idea to clear the calibration before calibrating. Always perform a dry calibration with the probe in the air (not in any fluid). Then perform either a one- or two-point calibration with calibrated solutions. If performing a one-point calibration, use the Single Point Calibration field and button. If performing a two-point calibration, use the Low and High Point Calibration fields and buttons. Allow a minute or two after submerging your probe in a calibration solution for the measurements to equilibrate before calibrating to that solution. The EZO EC circuit default temperature compensation is set to 25 °C. If the temperature of the calibration solution is +/- 2 °C from 25 °C, consider setting the temperature compensation first. Note that at no point should you change the temperature compensation value during calibration. Therefore, if you have previously enabled temperature compensation, allow at least one measurement to occur (to set the compensation value), then disable the temperature compensation measurement while you calibrate. Status messages will be sent to the Daemon Log, accessible from Config -> Mycodo Logs -> Daemon Log.
Clear Calibration
Button
Calibrate Dry
Button
Single Point EC (µS)
Integer - Default Value: 84
The EC (µS) of the single point calibration solution
Calibrate Single Point
Button
Low Point EC (µS)
Integer - Default Value: 12880
The EC (µS) of the low point calibration solution
Calibrate Low Point
Button
High Point EC (µS)
Integer - Default Value: 80000
The EC (µS) of the high point calibration solution
Calibrate High Point
Button
The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
Set the Measurement Time Base to a value most appropriate for your anticipated flow (it will affect accuracy). This flow rate time base that is set and returned from the sensor will be converted to liters per minute, which is the default unit for this input module. If you desire a different rate to be stored in the database (such as liters per second or hour), then use the Convert to Unit option.
Option
Type
Description
I2C Address
Text
The address of the I2C device.
I2C Bus
Integer
The Bus the I2C device is connected.
FTDI Device
Text
The FTDI device connected to the input/output/etc.
UART Device
Text
The UART device location (e.g. /dev/ttyUSB1)
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Flow Meter Type
Select(Options: [Atlas Scientific 3/8" Flow Meter | Atlas Scientific 1/4" Flow Meter | Atlas Scientific 1/2" Flow Meter | Atlas Scientific 3/4" Flow Meter | Non-Atlas Scientific Flow Meter] (Default in bold)
Set the type of flow meter used
Atlas Meter Time Base
Select(Options: [Liters per Second | Liters per Minute | Liters per Hour] (Default in bold)
If using an Atlas Scientific flow meter, set the flow rate/time base
Internal Resistor
Select(Options: [Use Atlas Scientific Flow Meter | Disable Internal Resistor | 1 K Ω Pull-Up | 1 K Ω Pull-Down | 10 K Ω Pull-Up | 10 K Ω Pull-Down | 100 K Ω Pull-Up | 100 K Ω Pull-Down] (Default in bold)
Set an internal resistor for the flow meter
Custom K Value(s)
Text
If using a non-Atlas Scientific flow meter, enter the meter's K value(s). For a single K value, enter '[volume per pulse],[number of pulses]'. For multiple K values (up to 16), enter '[volume at frequency],[frequency in Hz];[volume at frequency],[frequency in Hz];...'. Leave blank to disable.
K Value Time Base
Select(Options: [Use Atlas Scientific Flow Meter | Liters per Second | Liters per Minute | Liters per Hour] (Default in bold)
If using a non-Atlas Scientific flow meter, set the flow rate/time base for the custom K values entered.
Commands
The total volume can be cleared with the following button or with the Clear Total Volume Function Action.
Clear Total: Volume
Button
The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
The FTDI device connected to the input/output/etc.
UART Device
Text
The UART device location (e.g. /dev/ttyUSB1)
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Temperature Compensation: Measurement
Select Measurement (Input, Function)
Select a measurement for temperature compensation
Temperature Compensation: Max Age (Seconds)
Integer - Default Value: 120
The maximum age of the measurement to use
Temperature Compensation: Manual
Decimal - Default Value: 20.0
If not using a measurement, set the temperature to compensate
LED Mode
Select(Options: [Always On | Always Off | Only On During Measure] (Default in bold)
When to turn the LED on
Commands
A one- or two-point calibration can be performed. After exposing the probe to a specific concentration of O2 until readings stabilize, press Calibrate (High). You can place the probe in a 0% O2 environment until readings stabilize, then press Calibrate (Zero). You can also clear the currently-saved calibration by pressing Clear Calibration, returning to the factory-set calibration. Status messages will be sent to the Daemon Log, accessible from Config -> Mycodo Logs -> Daemon Log.
High Point O2
Decimal - Default Value: 20.95
The high O2 calibration point (percent)
Calibrate (High)
Button
Calibrate (Zero)
Button
Clear Calibration
Button
The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
The FTDI device connected to the input/output/etc.
UART Device
Text
The UART device location (e.g. /dev/ttyUSB1)
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Temperature Compensation: Measurement
Select Measurement (Input, Function)
Select a measurement for temperature compensation
Temperature Compensation: Max Age (Seconds)
Integer - Default Value: 120
The maximum age of the measurement to use
Commands
A one-point calibration can be performed. Enter the solution's mV, set the probe in the solution, then press Calibrate. You can also clear the currently-saved calibration by pressing Clear Calibration. Status messages will be sent to the Daemon Log, accessible from Config -> Mycodo Logs -> Daemon Log.
Calibration Solution mV
Integer - Default Value: 225
The value of the calibration solution, in mV
Calibrate
Button
Clear Calibration
Button
The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
Calibration Measurement is an optional setting that provides a temperature measurement (in Celsius) of the water that the pH is being measured from.
Option
Type
Description
I2C Address
Text
The address of the I2C device.
I2C Bus
Integer
The Bus the I2C device is connected.
FTDI Device
Text
The FTDI device connected to the input/output/etc.
UART Device
Text
The UART device location (e.g. /dev/ttyUSB1)
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Temperature Compensation: Measurement
Select Measurement (Input, Function)
Select a measurement for temperature compensation
Temperature Compensation: Max Age (Seconds)
Integer - Default Value: 120
The maximum age of the measurement to use
Commands
Calibration: a one-, two- or three-point calibration can be performed. It's a good idea to clear the calibration before calibrating. The first calibration must be the Mid point. The second must be the Low point. And the third must be the High point. You can perform a one-, two- or three-point calibration, but they must be performed in this order. Allow a minute or two after submerging your probe in a calibration solution for the measurements to equilibrate before calibrating to that solution. The EZO pH circuit default temperature compensation is set to 25 °C. If the temperature of the calibration solution is +/- 2 °C from 25 °C, consider setting the temperature compensation first. Note that if you have a Temperature Compensation Measurement selected from the Options, this will overwrite the manual Temperature Compensation set here, so be sure to disable this option if you would like to specify the temperature to compensate with. Status messages will be sent to the Daemon Log, accessible from Config -> Mycodo Logs -> Daemon Log.
Compensation Temperature (°C)
Decimal - Default Value: 25.0
The temperature of the calibration solutions
Set Temperature Compensation
Button
Clear Calibration
Button
Mid Point pH
Decimal - Default Value: 7.0
The pH of the mid point calibration solution
Calibrate Mid
Button
Low Point pH
Decimal - Default Value: 4.0
The pH of the low point calibration solution
Calibrate Low
Button
High Point pH
Decimal - Default Value: 10.0
The pH of the high point calibration solution
Calibrate High
Button
Calibration Export/Import: Export calibration to a series of strings. These can later be imported to restore the calibration. Watch the Daemon Log for the output.
Export Calibration
Button
Calibration String
Text
The calibration string to import
Import Calibration
Button
The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
A higher oversampling value means more stable readings with less noise and jitter. However each step of oversampling adds ~2 ms latency, causing a slower response time to fast transients.
A higher oversampling value means more stable readings with less noise and jitter. However each step of oversampling adds ~2 ms latency, causing a slower response time to fast transients.
A higher oversampling value means more stable readings with less noise and jitter. However each step of oversampling adds ~2 ms latency, causing a slower response time to fast transients.
A higher oversampling value means more stable readings with less noise and jitter. However each step of oversampling adds ~2 ms latency, causing a slower response time to fast transients.
A higher oversampling value means more stable readings with less noise and jitter. However each step of oversampling adds ~2 ms latency, causing a slower response time to fast transients.
A higher oversampling value means more stable readings with less noise and jitter. However each step of oversampling adds ~2 ms latency, causing a slower response time to fast transients.
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Commands
The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Commands
Set the resolution, precision, and response time for the sensor. This setting will be written to the EEPROM to allow persistence after power loss. The EEPROM has a limited amount of writes (>50k).
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Commands
Set the resolution, precision, and response time for the sensor. This setting will be written to the EEPROM to allow persistence after power loss. The EEPROM has a limited amount of writes (>50k).
Warning: Counterfeit DS18B20 sensors are common and can cause a host of issues. Review the Additional URL for more information about how to determine if your sensor is authentic.
Option
Type
Description
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Warning: Counterfeit DS18B20 sensors are common and can cause a host of issues. Review the Additional URL for more information about how to determine if your sensor is authentic.
Option
Type
Description
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Temperature Offset
Decimal
The temperature offset (degrees Celsius) to apply
Commands
Set the resolution, precision, and response time for the sensor. This setting will be written to the EEPROM to allow persistence after power loss. The EEPROM has a limited amount of writes (>50k).
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Commands
Set the resolution, precision, and response time for the sensor. This setting will be written to the EEPROM to allow persistence after power loss. The EEPROM has a limited amount of writes (>50k).
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Commands
Set the resolution, precision, and response time for the sensor. This setting will be written to the EEPROM to allow persistence after power loss. The EEPROM has a limited amount of writes (>50k).
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Commands
Set the resolution, precision, and response time for the sensor. This setting will be written to the EEPROM to allow persistence after power loss. The EEPROM has a limited amount of writes (>50k).
Note: This module does not allow for multiple sensors to be connected at the same time. For multi-sensor support, use the MAX31865 CircuitPython Input.
Option
Type
Description
Pin: Cable Select
Integer
GPIO (using BCM numbering): Pin: Cable Select
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
A single topic is subscribed to and the returned JSON payload contains one or more key/value pairs. The given JSON Key is used as a JMESPATH expression to find the corresponding value that will be stored for that channel. Be sure you select and save the Measurement Unit for each channel. Once the unit has been saved, you can convert to other units in the Convert Measurement section. Example expressions for jmespath (https://jmespath.org) include temperature, sensors[0].temperature, and bathroom.temperature which refer to the temperature as a direct key within the first entry of sensors or as a subkey of bathroom, respectively. Jmespath elements and keys that contain special characters have to be enclosed in double quotes, e.g. "sensor-1".temperature. Warning: If using multiple MQTT Inputs or Functions, ensure the Client IDs are unique.
Option
Type
Description
Measurements Enabled
Multi-Select
The measurements to record
Host
Text - Default Value: localhost
Host or IP address
Port
Integer - Default Value: 1883
Host port number
Topic
Text - Default Value: mqtt/test/input
The topic to subscribe to
Keep Alive
Integer - Default Value: 60
Maximum amount of time between received signals. Set to 0 to disable.
Client ID
Text - Default Value: client_FGIg092m
Unique client ID for connecting to the server
Use Login
Boolean
Send login credentials
Use TLS
Boolean
Send login credentials using TLS
Username
Text - Default Value: user
Username for connecting to the server
Password
Text
Password for connecting to the server. Leave blank to disable.
Use Websockets
Boolean
Use websockets to connect to the server.
Channel Options
Name
Text
A name to distinguish this from others
JMESPATH Expression
Text
JMESPATH expression to find value in JSON response
A topic is subscribed to for each channel Subscription Topic and the returned payload value will be stored for that channel. Be sure you select and save the Measurement Unit for each of the channels. Once the unit has been saved, you can convert to other units in the Convert Measurement section. Warning: If using multiple MQTT Inputs or Functions, ensure the Client IDs are unique.
Option
Type
Description
Measurements Enabled
Multi-Select
The measurements to record
Host
Text - Default Value: localhost
Host or IP address
Port
Integer - Default Value: 1883
Host port number
Keep Alive
Integer - Default Value: 60
Maximum amount of time between received signals. Set to 0 to disable.
Client ID
Text - Default Value: client_mqUgXLvM
Unique client ID for connecting to the server
Use Login
Boolean
Send login credentials
Use TLS
Boolean
Send login credentials using TLS
Username
Text - Default Value: user
Username for connecting to the server
Password
Text
Password for connecting to the server. Leave blank to disable.
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Accuracy
Select(Options: [Good Accuracy (33 ms, 1.2 m range) | Better Accuracy (66 ms, 1.2 m range) | Best Accuracy (200 ms, 1.2 m range) | Long Range (33 ms, 2 m) | High Speed, Low Accuracy (20 ms, 1.2 m)] (Default in bold)
Set the accuracy. A longer measurement duration yields a more accurate measurement
Notes when setting a custom timing budget: A higher timing budget results in greater measurement accuracy, but also a higher power consumption. The inter measurement period must be >= the timing budget, otherwise it will be double the expected value.
Option
Type
Description
I2C Address
Text
The address of the I2C device.
I2C Bus
Integer
The Bus the I2C device is connected.
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Range
Select(Options: [Short Range | Medium Range | Long Range | Custom Timing Budget] (Default in bold)
Select a range or select to set a custom Timing Budget and Inter Measurement Period.
Timing Budget (microseconds)
Integer - Default Value: 66000
Set the timing budget. Must be less than or equal to the Inter Measurement Period.
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Timing Budget (ms)
Integer - Default Value: 50
Set the timing budget between 10 to 200 ms. A longer duration yields a more accurate measurement.
Inter-Measurement Period (ms)
Integer
Valid range between Timing Budget and 5000 ms (0 to disable)
Commands
The I2C address of the sensor can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate the Input and change the I2C address option after setting the new address.
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Temperature Offset
Decimal - Default Value: 4.0
Set the sensor temperature offset
Altitude (m)
Integer
Set the sensor altitude (meters)
Automatic Self-Calibration
Boolean
Set the sensor automatic self-calibration
Persist Settings
Boolean - Default Value: True
Settings will persist after powering off
Commands
You can force the CO2 calibration for a specific CO2 concentration value (in ppmv). The sensor needs to be active for at least 3 minutes prior to calibration.
CO2 Concentration (ppmv)
Decimal - Default Value: 400.0
Calibrate to this CO2 concentration that the sensor is being exposed to (in ppmv)
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
I2C Frequency: The SCD-30 has temperamental I2C with clock stretching. The datasheet recommends starting at 50,000 Hz.
I2C Frequency (Hz)
Integer - Default Value: 50000
Automatic Self Ccalibration (ASC): To work correctly, the sensor must be on and active for 7 days after enabling ASC, and exposed to fresh air for at least 1 hour per day. Consult the manufacturer’s documentation for more information.
Enable Automatic Self Calibration
Boolean
Temperature Offset: Specifies the offset to be added to the reported measurements to account for a bias in the measured signal. Must be a positive value, and will reduce the recorded temperature by that amount. Give the sensor adequate time to acclimate after setting this value. Value is in degrees Celsius with a resolution of 0.01 degrees and a maximum value of 655.35 C.
Temperature Offset
Decimal
Ambient Air Pressure (mBar): Specify the ambient air pressure at the measurement location in mBar. Setting this value adjusts the CO2 measurement calculations to account for the air pressure’s effect on readings. Values must be in mBar, from 700 to 1200 mBar.
Ambient Air Pressure (mBar)
Integer - Default Value: 1200
Altitude: Specifies the altitude at the measurement location in meters above sea level. Setting this value adjusts the CO2 measurement calculations to account for the air pressure’s effect on readings.
Altitude (m)
Integer - Default Value: 100
Commands
A soft reset restores factory default values.
Soft Reset
Button
Forced Re-Calibration: The SCD-30 is placed in an environment with a known CO2 concentration, this concentration value is entered in the CO2 Concentration (ppmv) field, then the Foce Calibration button is pressed. But how do you come up with that known value? That is a caveat of this approach and Sensirion suggests three approaches: 1. Using a separate secondary calibrated CO2 sensor to provide the value. 2. Exposing the SCD-30 to a controlled environment with a known value. 3. Exposing the SCD-30 to fresh outside air and using a value of 400 ppm.
CO2 Concentration (ppmv)
Integer - Default Value: 800
The CO2 concentration of the sensor environment when forcing calibration
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Automatic Self Ccalibration (ASC): To work correctly, the sensor must be on and active for 7 days after enabling ASC, and exposed to fresh air for at least 1 hour per day. Consult the manufacturer’s documentation for more information.
This Input module allows the use of any temperature/humidity sensor with the TH10/TH16. Changing the Sensor Name option changes the key that's queried from the returned dictionary of measurements. If you would like to use this module with a version of this device that uses the AM2301, change Sensor Name to AM2301.
Option
Type
Description
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
IP Address
Text - Default Value: 192.168.0.100
The IP address of the device
Sensor Name
Text - Default Value: SI7021
The name of the sensor connected to the device (specific key name in the returned dictionary)
This measures from several Kasa power devices (plugs/strips) capable of measuring energy consumption. These include, but are not limited to the KP115 and HS600.
Option
Type
Description
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Device Type
Select
The type of Kasa device
Host
Text - Default Value: 0.0.0.0
Host or IP address
Asyncio RPC Port
Integer - Default Value: 18108
The port to start the asyncio RPC server. Must be unique from other Kasa Outputs.
Commands
The total kWh can be cleared with the following button or with the Clear Total kWh Function Action. This will also clear all energy stats on the device, not just the total kWh.
This input queries the energy usage information from a WiFi outlet that is running the tasmota firmware. There are many WiFi outlets that support tasmota, and many of of those have energy monitoring capabilities. When used with an MQTT Output, you can both control your tasmota outlets as well as mionitor their energy usage.
Option
Type
Description
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
This input relies on an ADS1115 analog-to-digital converter (ADC) to measure pH and/or electrical conductivity (EC) from analog sensors. You can enable or disable either measurement if you want to only connect a pH sensor or an EC sensor by selecting which measurements you want to under Measurements Enabled. Select which channel each sensor is connected to on the ADC. There are default calibration values initially set for the Input. There are also functions to allow you to easily calibrate your sensors with calibration solutions. If you use the Calibrate Slot actions, these values will be calculated and will replace the currently-set values. You can use the Clear Calibration action to delete the database values and return to using the default values. If you delete the Input or create a new Input to use your ADC/sensors with, you will need to recalibrate in order to store new calibration data.
Option
Type
Description
I2C Address
Text
The address of the I2C device.
I2C Bus
Integer
The Bus the I2C device is connected.
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
pH Calibration Actions: Place your probe in a solution of known pH. Set the known pH value in the "Calibration buffer pH" field, and press "Calibrate pH, slot 1". Repeat with a second buffer, and press "Calibrate pH, slot 2". You don't need to change the values under "Custom Options".
Calibration buffer pH
Decimal - Default Value: 7.0
This is the nominal pH of the calibration buffer, usually labelled on the bottle.
Calibrate pH, slot 1
Button
Calibrate pH, slot 2
Button
Clear pH Calibration Slots
Button
EC Calibration Actions: Place your probe in a solution of known EC. Set the known EC value in the "Calibration standard EC" field, and press "Calibrate EC, slot 1". Repeat with a second standard, and press "Calibrate EC, slot 2". You don't need to change the values under "Custom Options".
Calibration standard EC
Decimal - Default Value: 1413.0
This is the nominal EC of the calibration standard, usually labelled on the bottle.
This input relies on an ADS1256 analog-to-digital converter (ADC) to measure pH and/or electrical conductivity (EC) from analog sensors. You can enable or disable either measurement if you want to only connect a pH sensor or an EC sensor by selecting which measurements you want to under Measurements Enabled. Select which channel each sensor is connected to on the ADC. There are default calibration values initially set for the Input. There are also functions to allow you to easily calibrate your sensors with calibration solutions. If you use the Calibrate Slot actions, these values will be calculated and will replace the currently-set values. You can use the Clear Calibration action to delete the database values and return to using the default values. If you delete the Input or create a new Input to use your ADC/sensors with, you will need to recalibrate in order to store new calibration data.
Option
Type
Description
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Set the calibration method to perform during Input activation
Commands
pH Calibration Actions: Place your probe in a solution of known pH. Set the known pH value in the `Calibration buffer pH` field, and press `Calibrate pH, slot 1`. Repeat with a second buffer, and press `Calibrate pH, slot 2`. You don't need to change the values under `Custom Options`.
Calibration buffer pH
Decimal - Default Value: 7.0
This is the nominal pH of the calibration buffer, usually labelled on the bottle.
Calibrate pH, slot 1
Button
Calibrate pH, slot 2
Button
Clear pH Calibration Slots
Button
EC Calibration Actions: Place your probe in a solution of known EC. Set the known EC value in the `Calibration standard EC` field, and press `Calibrate EC, slot 1`. Repeat with a second standard, and press `Calibrate EC, slot 2`. You don't need to change the values under `Custom Options`.
Calibration standard EC
Decimal - Default Value: 1413.0
This is the nominal EC of the calibration standard, usually labelled on the bottle.
This Input receives and stores measurements from the Data Storage Integration on The Things Network. If you have key/value pairs as your payload, enter the key name in Variable Name and the corresponding value for that key will be stored in the measurement database.
Option
Type
Description
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Start Offset (Seconds)
Integer
The duration to wait before the first operation
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Application ID
Text
The Things Network Application ID
App API Key
Text
The Things Network Application API Key
Device ID
Text
The Things Network Device ID
Channel Options
Name
Text
A name to distinguish this from others
Variable Name
Text
The TTN variable name
The Things Network: The Things Network: Data Storage (TTN v3, Payload jmespath Expression)~
This Input receives and stores measurements from the Data Storage Integration on The Things Network. The given Payload jmespath Expression is used as a JMESPATH expression to find the corresponding value that will be stored for that channel. Be sure you select and save the Measurement Unit for each channel. Once the unit has been saved, you can convert to other units in the Convert Measurement section. Example expressions for jmespath (https://jmespath.org) include temperature, sensors[0].temperature, and bathroom.temperature which refer to the temperature as a direct key within the first entry of sensors or as a subkey of bathroom, respectively. Jmespath elements and keys that contain special characters have to be enclosed in double quotes, e.g. "sensor-1".temperature.
Option
Type
Description
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Start Offset (Seconds)
Integer
The duration to wait before the first operation
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Application ID
Text
The Things Network Application ID
App API Key
Text
The Things Network Application API Key
Device ID
Text
The Things Network Device ID
Channel Options
Name
Text
A name to distinguish this from others
Payload jmespath Expression
Text
The TTN jmespath expression to return the value to store
Obtain a free API key at openweathermap.org. If the city you enter does not return measurements, try another city. Note: the free API subscription is limited to 60 calls per minute
Option
Type
Description
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Obtain a free API key at openweathermap.org. Notes: The free API subscription is limited to 60 calls per minute. If a Day (Future) time is selected, Minimum and Maximum temperatures are available as measurements.
Option
Type
Description
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
The CO2 measurement can also be obtained using PWM via a GPIO pin. Enter the pin number below or leave blank to disable this option. This also makes it possible to obtain measurements even if the UART interface is not available (note that the sensor can't be configured / calibrated without a working UART interface).
GPIO Override
Text
Obtain readings using PWM on this GPIO pin instead of via UART
Commands
Calibrate Zero Point
Button
Span Point (ppmv)
Integer - Default Value: 2000
The ppmv concentration for a span point calibration
This is the version of the sensor that does not include the ability to conduct automatic baseline correction (ABC). See the B version of the sensor if you wish to use ABC.
Option
Type
Description
UART Device
Text
The UART device location (e.g. /dev/ttyUSB1)
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
This Input will execute a command in the shell and store the output as a float value. Perform any unit conversions within your script or command. A measurement/unit is required to be selected.
Option
Type
Description
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Command Timeout
Integer - Default Value: 60
How long to wait for the command to finish before killing the process.
User
Text - Default Value: mycodo
The user to execute the command
Current Working Directory
Text - Default Value: /home/pi
The current working directory of the shell environment.
All channels require a Measurement Unit to be selected and saved in order to store values to the database. Your code is executed from the same Python virtual environment that Mycodo runs from. Therefore, you must install Python libraries to this environment if you want them to be available to your code. This virtualenv is located at /opt/Mycodo/env and if you wanted to install a library, for example "my_library" using pip, you would execute "sudo /opt/Mycodo/env/bin/pip install my_library".
Option
Type
Description
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
This is an alternate Python 3 Code Input that uses a different method for storing values to the database. This was created because the Python 3 Code v1.0 Input does not allow the use of Input Actions. This method does allow the use of Input Actions. (11/21/2023 Update: The Python 3 Code (v1.0) Input now allows the execution of Actions). All channels require a Measurement Unit to be selected and saved in order to store values to the database. Your code is executed from the same Python virtual environment that Mycodo runs from. Therefore, you must install Python libraries to this environment if you want them to be available to your code. This virtualenv is located at /opt/Mycodo/env and if you wanted to install a library, for example "my_library" using pip, you would execute "sudo /opt/Mycodo/env/bin/pip install my_library".
Option
Type
Description
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Mycodo: Test Input: Save your own measurement value~
Manufacturer: Mycodo
Measurements: Variable measurements
This is a simple test Input that allows you to save any value as a measurement, that will be stored in the measurement database. It can be useful for testing other parts of Mycodo, such as PIDs, Bang-Bang, and Conditional Functions, since you can be completely in control of what values the input provides to the Functions. Note 1: Select and save the Name and Measurement Unit for each channel. Once the unit has been saved, you can convert to other units in the Convert Measurement section. Note 2: Activate the Input before storing measurements.
Option
Type
Description
Measurements Enabled
Multi-Select
The measurements to record
Channel Options
Name
Text
A name to distinguish this from others
Commands
Enter the Value you want to store as a measurement, then press Store Measurement.
Channel
Integer
This is the channel to save the measurement value to
Value
Decimal - Default Value: 10.0
This is the measurement value to save for this Input
This calculates RPM from pulses on a pin using pigpio, but has been found to be less accurate than the method #2 module. This is typically used to measure the speed of a fan from a tachometer pin, however this can be used to measure any 3.3-volt pulses from a wire. Use a resistor to pull the measurement pin to 3.3 volts, set pigpio to the lowest latency (1 ms) on the Configure -> Raspberry Pi page. Note 1: Not setting pigpio to the lowest latency will hinder accuracy. Note 2: accuracy decreases as RPM increases.
Option
Type
Description
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Raspberry Pi: Signal (Revolutions) (pigpio method #2)~
This is an alternate method to calculate RPM from pulses on a pin using pigpio, and has been found to be more accurate than the method #1 module. This is typically used to measure the speed of a fan from a tachometer pin, however this can be used to measure any 3.3-volt pulses from a wire. Use a resistor to pull the measurement pin to 3.3 volts, set pigpio to the lowest latency (1 ms) on the Configure -> Raspberry Pi page. Note 1: Not setting pigpio to the lowest latency will hinder accuracy. Note 2: accuracy decreases as RPM increases.
Option
Type
Description
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Pin: GPIO (BCM)
Integer
The pin to measure pulses from
Sample Time (Seconds)
Decimal - Default Value: 5.0
The duration of time to sample
Pulses Per Rev
Decimal - Default Value: 15.8
The number of pulses per revolution to calculate revolutions per minute (RPM)
The FTDI device connected to the input/output/etc.
UART Device
Text
The UART device location (e.g. /dev/ttyUSB1)
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Commands
A one- or two-point calibration can be performed. After exposing the probe to a concentration of CO2 between 3,000 and 5,000 ppmv until readings stabilize, press Calibrate (High). You can place the probe in a 0 CO2 environment until readings stabilize, then press Calibrate (Zero). You can also clear the currently-saved calibration by pressing Clear Calibration, returning to the factory-set calibration. Status messages will be sent to the Daemon Log, accessible from Config -> Mycodo Logs -> Daemon Log.
High Point CO2
Integer - Default Value: 3000
The high CO2 calibration point (3000 - 5000 ppmv)
Calibrate (High)
Button
Calibrate (Zero)
Button
Clear Calibration
Button
The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
The FTDI device connected to the input/output/etc.
UART Device
Text
The UART device location (e.g. /dev/ttyUSB1)
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
LED Only For Measure
Boolean - Default Value: True
Turn the LED on only during the measurement
LED Percentage
Integer - Default Value: 30
What percentage of power to supply to the LEDs during measurement
Gamma Correction
Decimal - Default Value: 1.0
Gamma correction between 0.01 and 4.99 (default is 1.0)
Commands
The EZO-RGB color sensor is designed to be calibrated to a white object at the maximum brightness the object will be viewed under. In order to get the best results, Atlas Scientific strongly recommends that the sensor is mounted into a fixed location. Holding the sensor in your hand during calibration will decrease performance. 1. Embed the EZO-RGB color sensor into its intended use location. 2. Set LED brightness to the desired level. 3. Place a white object in front of the target object and press the Calibration button. 4. A single color reading will be taken and the device will be fully calibrated.
Calibrate
Button
The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
The FTDI device connected to the input/output/etc.
UART Device
Text
The UART device location (e.g. /dev/ttyUSB1)
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Temperature Compensation: Measurement
Select Measurement (Input, Function)
Select a measurement for temperature compensation
Temperature Compensation: Max Age (Seconds)
Integer - Default Value: 120
The maximum age of the measurement to use
Commands
A one- or two-point calibration can be performed. After exposing the probe to air for 30 seconds until readings stabilize, press Calibrate (Air). If you require accuracy below 1.0 mg/L, you can place the probe in a 0 mg/L solution for 30 to 90 seconds until readings stabilize, then press Calibrate (0 mg/L). You can also clear the currently-saved calibration by pressing Clear Calibration. Status messages will be sent to the Daemon Log, accessible from Config -> Mycodo Logs -> Daemon Log.
Calibrate (Air)
Button
Calibrate (0 mg/L)
Button
Clear Calibration
Button
The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
The FTDI device connected to the input/output/etc.
UART Device
Text
The UART device location (e.g. /dev/ttyUSB1)
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Temperature Compensation: Measurement
Select Measurement (Input, Function)
Select a measurement for temperature compensation
Temperature Compensation: Max Age (Seconds)
Integer - Default Value: 120
The maximum age of the measurement to use
Commands
Calibration: a one- or two-point calibration can be performed. It's a good idea to clear the calibration before calibrating. Always perform a dry calibration with the probe in the air (not in any fluid). Then perform either a one- or two-point calibration with calibrated solutions. If performing a one-point calibration, use the Single Point Calibration field and button. If performing a two-point calibration, use the Low and High Point Calibration fields and buttons. Allow a minute or two after submerging your probe in a calibration solution for the measurements to equilibrate before calibrating to that solution. The EZO EC circuit default temperature compensation is set to 25 °C. If the temperature of the calibration solution is +/- 2 °C from 25 °C, consider setting the temperature compensation first. Note that at no point should you change the temperature compensation value during calibration. Therefore, if you have previously enabled temperature compensation, allow at least one measurement to occur (to set the compensation value), then disable the temperature compensation measurement while you calibrate. Status messages will be sent to the Daemon Log, accessible from Config -> Mycodo Logs -> Daemon Log.
Clear Calibration
Button
Calibrate Dry
Button
Single Point EC (µS)
Integer - Default Value: 84
The EC (µS) of the single point calibration solution
Calibrate Single Point
Button
Low Point EC (µS)
Integer - Default Value: 12880
The EC (µS) of the low point calibration solution
Calibrate Low Point
Button
High Point EC (µS)
Integer - Default Value: 80000
The EC (µS) of the high point calibration solution
Calibrate High Point
Button
The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
Set the Measurement Time Base to a value most appropriate for your anticipated flow (it will affect accuracy). This flow rate time base that is set and returned from the sensor will be converted to liters per minute, which is the default unit for this input module. If you desire a different rate to be stored in the database (such as liters per second or hour), then use the Convert to Unit option.
Option
Type
Description
I2C Address
Text
The address of the I2C device.
I2C Bus
Integer
The Bus the I2C device is connected.
FTDI Device
Text
The FTDI device connected to the input/output/etc.
UART Device
Text
The UART device location (e.g. /dev/ttyUSB1)
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Flow Meter Type
Select(Options: [Atlas Scientific 3/8" Flow Meter | Atlas Scientific 1/4" Flow Meter | Atlas Scientific 1/2" Flow Meter | Atlas Scientific 3/4" Flow Meter | Non-Atlas Scientific Flow Meter] (Default in bold)
Set the type of flow meter used
Atlas Meter Time Base
Select(Options: [Liters per Second | Liters per Minute | Liters per Hour] (Default in bold)
If using an Atlas Scientific flow meter, set the flow rate/time base
Internal Resistor
Select(Options: [Use Atlas Scientific Flow Meter | Disable Internal Resistor | 1 K Ω Pull-Up | 1 K Ω Pull-Down | 10 K Ω Pull-Up | 10 K Ω Pull-Down | 100 K Ω Pull-Up | 100 K Ω Pull-Down] (Default in bold)
Set an internal resistor for the flow meter
Custom K Value(s)
Text
If using a non-Atlas Scientific flow meter, enter the meter's K value(s). For a single K value, enter '[volume per pulse],[number of pulses]'. For multiple K values (up to 16), enter '[volume at frequency],[frequency in Hz];[volume at frequency],[frequency in Hz];...'. Leave blank to disable.
K Value Time Base
Select(Options: [Use Atlas Scientific Flow Meter | Liters per Second | Liters per Minute | Liters per Hour] (Default in bold)
If using a non-Atlas Scientific flow meter, set the flow rate/time base for the custom K values entered.
Commands
The total volume can be cleared with the following button or with the Clear Total Volume Function Action.
Clear Total: Volume
Button
The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
The FTDI device connected to the input/output/etc.
UART Device
Text
The UART device location (e.g. /dev/ttyUSB1)
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Temperature Compensation: Measurement
Select Measurement (Input, Function)
Select a measurement for temperature compensation
Temperature Compensation: Max Age (Seconds)
Integer - Default Value: 120
The maximum age of the measurement to use
Temperature Compensation: Manual
Decimal - Default Value: 20.0
If not using a measurement, set the temperature to compensate
LED Mode
Select(Options: [Always On | Always Off | Only On During Measure] (Default in bold)
When to turn the LED on
Commands
A one- or two-point calibration can be performed. After exposing the probe to a specific concentration of O2 until readings stabilize, press Calibrate (High). You can place the probe in a 0% O2 environment until readings stabilize, then press Calibrate (Zero). You can also clear the currently-saved calibration by pressing Clear Calibration, returning to the factory-set calibration. Status messages will be sent to the Daemon Log, accessible from Config -> Mycodo Logs -> Daemon Log.
High Point O2
Decimal - Default Value: 20.95
The high O2 calibration point (percent)
Calibrate (High)
Button
Calibrate (Zero)
Button
Clear Calibration
Button
The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
The FTDI device connected to the input/output/etc.
UART Device
Text
The UART device location (e.g. /dev/ttyUSB1)
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Temperature Compensation: Measurement
Select Measurement (Input, Function)
Select a measurement for temperature compensation
Temperature Compensation: Max Age (Seconds)
Integer - Default Value: 120
The maximum age of the measurement to use
Commands
A one-point calibration can be performed. Enter the solution's mV, set the probe in the solution, then press Calibrate. You can also clear the currently-saved calibration by pressing Clear Calibration. Status messages will be sent to the Daemon Log, accessible from Config -> Mycodo Logs -> Daemon Log.
Calibration Solution mV
Integer - Default Value: 225
The value of the calibration solution, in mV
Calibrate
Button
Clear Calibration
Button
The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
Calibration Measurement is an optional setting that provides a temperature measurement (in Celsius) of the water that the pH is being measured from.
Option
Type
Description
I2C Address
Text
The address of the I2C device.
I2C Bus
Integer
The Bus the I2C device is connected.
FTDI Device
Text
The FTDI device connected to the input/output/etc.
UART Device
Text
The UART device location (e.g. /dev/ttyUSB1)
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Temperature Compensation: Measurement
Select Measurement (Input, Function)
Select a measurement for temperature compensation
Temperature Compensation: Max Age (Seconds)
Integer - Default Value: 120
The maximum age of the measurement to use
Commands
Calibration: a one-, two- or three-point calibration can be performed. It's a good idea to clear the calibration before calibrating. The first calibration must be the Mid point. The second must be the Low point. And the third must be the High point. You can perform a one-, two- or three-point calibration, but they must be performed in this order. Allow a minute or two after submerging your probe in a calibration solution for the measurements to equilibrate before calibrating to that solution. The EZO pH circuit default temperature compensation is set to 25 °C. If the temperature of the calibration solution is +/- 2 °C from 25 °C, consider setting the temperature compensation first. Note that if you have a Temperature Compensation Measurement selected from the Options, this will overwrite the manual Temperature Compensation set here, so be sure to disable this option if you would like to specify the temperature to compensate with. Status messages will be sent to the Daemon Log, accessible from Config -> Mycodo Logs -> Daemon Log.
Compensation Temperature (°C)
Decimal - Default Value: 25.0
The temperature of the calibration solutions
Set Temperature Compensation
Button
Clear Calibration
Button
Mid Point pH
Decimal - Default Value: 7.0
The pH of the mid point calibration solution
Calibrate Mid
Button
Low Point pH
Decimal - Default Value: 4.0
The pH of the low point calibration solution
Calibrate Low
Button
High Point pH
Decimal - Default Value: 10.0
The pH of the high point calibration solution
Calibrate High
Button
Calibration Export/Import: Export calibration to a series of strings. These can later be imported to restore the calibration. Watch the Daemon Log for the output.
Export Calibration
Button
Calibration String
Text
The calibration string to import
Import Calibration
Button
The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
A higher oversampling value means more stable readings with less noise and jitter. However each step of oversampling adds ~2 ms latency, causing a slower response time to fast transients.
A higher oversampling value means more stable readings with less noise and jitter. However each step of oversampling adds ~2 ms latency, causing a slower response time to fast transients.
A higher oversampling value means more stable readings with less noise and jitter. However each step of oversampling adds ~2 ms latency, causing a slower response time to fast transients.
A higher oversampling value means more stable readings with less noise and jitter. However each step of oversampling adds ~2 ms latency, causing a slower response time to fast transients.
A higher oversampling value means more stable readings with less noise and jitter. However each step of oversampling adds ~2 ms latency, causing a slower response time to fast transients.
A higher oversampling value means more stable readings with less noise and jitter. However each step of oversampling adds ~2 ms latency, causing a slower response time to fast transients.
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Commands
The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Commands
Set the resolution, precision, and response time for the sensor. This setting will be written to the EEPROM to allow persistence after power loss. The EEPROM has a limited amount of writes (>50k).
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Commands
Set the resolution, precision, and response time for the sensor. This setting will be written to the EEPROM to allow persistence after power loss. The EEPROM has a limited amount of writes (>50k).
Warning: Counterfeit DS18B20 sensors are common and can cause a host of issues. Review the Additional URL for more information about how to determine if your sensor is authentic.
Option
Type
Description
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Warning: Counterfeit DS18B20 sensors are common and can cause a host of issues. Review the Additional URL for more information about how to determine if your sensor is authentic.
Option
Type
Description
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Temperature Offset
Decimal
The temperature offset (degrees Celsius) to apply
Commands
Set the resolution, precision, and response time for the sensor. This setting will be written to the EEPROM to allow persistence after power loss. The EEPROM has a limited amount of writes (>50k).
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Commands
Set the resolution, precision, and response time for the sensor. This setting will be written to the EEPROM to allow persistence after power loss. The EEPROM has a limited amount of writes (>50k).
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Commands
Set the resolution, precision, and response time for the sensor. This setting will be written to the EEPROM to allow persistence after power loss. The EEPROM has a limited amount of writes (>50k).
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Commands
Set the resolution, precision, and response time for the sensor. This setting will be written to the EEPROM to allow persistence after power loss. The EEPROM has a limited amount of writes (>50k).
Note: This module does not allow for multiple sensors to be connected at the same time. For multi-sensor support, use the MAX31865 CircuitPython Input.
Option
Type
Description
Pin: Cable Select
Integer
GPIO (using BCM numbering): Pin: Cable Select
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
A single topic is subscribed to and the returned JSON payload contains one or more key/value pairs. The given JSON Key is used as a JMESPATH expression to find the corresponding value that will be stored for that channel. Be sure you select and save the Measurement Unit for each channel. Once the unit has been saved, you can convert to other units in the Convert Measurement section. Example expressions for jmespath (https://jmespath.org) include temperature, sensors[0].temperature, and bathroom.temperature which refer to the temperature as a direct key within the first entry of sensors or as a subkey of bathroom, respectively. Jmespath elements and keys that contain special characters have to be enclosed in double quotes, e.g. "sensor-1".temperature. Warning: If using multiple MQTT Inputs or Functions, ensure the Client IDs are unique.
Option
Type
Description
Measurements Enabled
Multi-Select
The measurements to record
Host
Text - Default Value: localhost
Host or IP address
Port
Integer - Default Value: 1883
Host port number
Topic
Text - Default Value: mqtt/test/input
The topic to subscribe to
Keep Alive
Integer - Default Value: 60
Maximum amount of time between received signals. Set to 0 to disable.
Client ID
Text - Default Value: client_FGIg092m
Unique client ID for connecting to the server
Use Login
Boolean
Send login credentials
Use TLS
Boolean
Send login credentials using TLS
Username
Text - Default Value: user
Username for connecting to the server
Password
Text
Password for connecting to the server. Leave blank to disable.
Use Websockets
Boolean
Use websockets to connect to the server.
Channel Options
Name
Text
A name to distinguish this from others
JMESPATH Expression
Text
JMESPATH expression to find value in JSON response
A topic is subscribed to for each channel Subscription Topic and the returned payload value will be stored for that channel. Be sure you select and save the Measurement Unit for each of the channels. Once the unit has been saved, you can convert to other units in the Convert Measurement section. Warning: If using multiple MQTT Inputs or Functions, ensure the Client IDs are unique.
Option
Type
Description
Measurements Enabled
Multi-Select
The measurements to record
Host
Text - Default Value: localhost
Host or IP address
Port
Integer - Default Value: 1883
Host port number
Keep Alive
Integer - Default Value: 60
Maximum amount of time between received signals. Set to 0 to disable.
Client ID
Text - Default Value: client_mqUgXLvM
Unique client ID for connecting to the server
Use Login
Boolean
Send login credentials
Use TLS
Boolean
Send login credentials using TLS
Username
Text - Default Value: user
Username for connecting to the server
Password
Text
Password for connecting to the server. Leave blank to disable.
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Accuracy
Select(Options: [Good Accuracy (33 ms, 1.2 m range) | Better Accuracy (66 ms, 1.2 m range) | Best Accuracy (200 ms, 1.2 m range) | Long Range (33 ms, 2 m) | High Speed, Low Accuracy (20 ms, 1.2 m)] (Default in bold)
Set the accuracy. A longer measurement duration yields a more accurate measurement
Notes when setting a custom timing budget: A higher timing budget results in greater measurement accuracy, but also a higher power consumption. The inter measurement period must be >= the timing budget, otherwise it will be double the expected value.
Option
Type
Description
I2C Address
Text
The address of the I2C device.
I2C Bus
Integer
The Bus the I2C device is connected.
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Range
Select(Options: [Short Range | Medium Range | Long Range | Custom Timing Budget] (Default in bold)
Select a range or select to set a custom Timing Budget and Inter Measurement Period.
Timing Budget (microseconds)
Integer - Default Value: 66000
Set the timing budget. Must be less than or equal to the Inter Measurement Period.
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Timing Budget (ms)
Integer - Default Value: 50
Set the timing budget between 10 to 200 ms. A longer duration yields a more accurate measurement.
Inter-Measurement Period (ms)
Integer
Valid range between Timing Budget and 5000 ms (0 to disable)
Commands
The I2C address of the sensor can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate the Input and change the I2C address option after setting the new address.
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Temperature Offset
Decimal - Default Value: 4.0
Set the sensor temperature offset
Altitude (m)
Integer
Set the sensor altitude (meters)
Automatic Self-Calibration
Boolean
Set the sensor automatic self-calibration
Persist Settings
Boolean - Default Value: True
Settings will persist after powering off
Commands
You can force the CO2 calibration for a specific CO2 concentration value (in ppmv). The sensor needs to be active for at least 3 minutes prior to calibration.
CO2 Concentration (ppmv)
Decimal - Default Value: 400.0
Calibrate to this CO2 concentration that the sensor is being exposed to (in ppmv)
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
I2C Frequency: The SCD-30 has temperamental I2C with clock stretching. The datasheet recommends starting at 50,000 Hz.
I2C Frequency (Hz)
Integer - Default Value: 50000
Automatic Self Ccalibration (ASC): To work correctly, the sensor must be on and active for 7 days after enabling ASC, and exposed to fresh air for at least 1 hour per day. Consult the manufacturer’s documentation for more information.
Enable Automatic Self Calibration
Boolean
Temperature Offset: Specifies the offset to be added to the reported measurements to account for a bias in the measured signal. Must be a positive value, and will reduce the recorded temperature by that amount. Give the sensor adequate time to acclimate after setting this value. Value is in degrees Celsius with a resolution of 0.01 degrees and a maximum value of 655.35 C.
Temperature Offset
Decimal
Ambient Air Pressure (mBar): Specify the ambient air pressure at the measurement location in mBar. Setting this value adjusts the CO2 measurement calculations to account for the air pressure’s effect on readings. Values must be in mBar, from 700 to 1200 mBar.
Ambient Air Pressure (mBar)
Integer - Default Value: 1200
Altitude: Specifies the altitude at the measurement location in meters above sea level. Setting this value adjusts the CO2 measurement calculations to account for the air pressure’s effect on readings.
Altitude (m)
Integer - Default Value: 100
Commands
A soft reset restores factory default values.
Soft Reset
Button
Forced Re-Calibration: The SCD-30 is placed in an environment with a known CO2 concentration, this concentration value is entered in the CO2 Concentration (ppmv) field, then the Foce Calibration button is pressed. But how do you come up with that known value? That is a caveat of this approach and Sensirion suggests three approaches: 1. Using a separate secondary calibrated CO2 sensor to provide the value. 2. Exposing the SCD-30 to a controlled environment with a known value. 3. Exposing the SCD-30 to fresh outside air and using a value of 400 ppm.
CO2 Concentration (ppmv)
Integer - Default Value: 800
The CO2 concentration of the sensor environment when forcing calibration
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Automatic Self Ccalibration (ASC): To work correctly, the sensor must be on and active for 7 days after enabling ASC, and exposed to fresh air for at least 1 hour per day. Consult the manufacturer’s documentation for more information.
This Input module allows the use of any temperature/humidity sensor with the TH10/TH16. Changing the Sensor Name option changes the key that's queried from the returned dictionary of measurements. If you would like to use this module with a version of this device that uses the AM2301, change Sensor Name to AM2301.
Option
Type
Description
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
IP Address
Text - Default Value: 192.168.0.100
The IP address of the device
Sensor Name
Text - Default Value: SI7021
The name of the sensor connected to the device (specific key name in the returned dictionary)
This measures from several Kasa power devices (plugs/strips) capable of measuring energy consumption. These include, but are not limited to the KP115 and HS600.
Option
Type
Description
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Device Type
Select
The type of Kasa device
Host
Text - Default Value: 0.0.0.0
Host or IP address
Asyncio RPC Port
Integer - Default Value: 18108
The port to start the asyncio RPC server. Must be unique from other Kasa Outputs.
Commands
The total kWh can be cleared with the following button or with the Clear Total kWh Function Action. This will also clear all energy stats on the device, not just the total kWh.
This input queries the energy usage information from a WiFi outlet that is running the tasmota firmware. There are many WiFi outlets that support tasmota, and many of of those have energy monitoring capabilities. When used with an MQTT Output, you can both control your tasmota outlets as well as mionitor their energy usage.
Option
Type
Description
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
This input relies on an ADS1115 analog-to-digital converter (ADC) to measure pH and/or electrical conductivity (EC) from analog sensors. You can enable or disable either measurement if you want to only connect a pH sensor or an EC sensor by selecting which measurements you want to under Measurements Enabled. Select which channel each sensor is connected to on the ADC. There are default calibration values initially set for the Input. There are also functions to allow you to easily calibrate your sensors with calibration solutions. If you use the Calibrate Slot actions, these values will be calculated and will replace the currently-set values. You can use the Clear Calibration action to delete the database values and return to using the default values. If you delete the Input or create a new Input to use your ADC/sensors with, you will need to recalibrate in order to store new calibration data.
Option
Type
Description
I2C Address
Text
The address of the I2C device.
I2C Bus
Integer
The Bus the I2C device is connected.
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
pH Calibration Actions: Place your probe in a solution of known pH. Set the known pH value in the "Calibration buffer pH" field, and press "Calibrate pH, slot 1". Repeat with a second buffer, and press "Calibrate pH, slot 2". You don't need to change the values under "Custom Options".
Calibration buffer pH
Decimal - Default Value: 7.0
This is the nominal pH of the calibration buffer, usually labelled on the bottle.
Calibrate pH, slot 1
Button
Calibrate pH, slot 2
Button
Clear pH Calibration Slots
Button
EC Calibration Actions: Place your probe in a solution of known EC. Set the known EC value in the "Calibration standard EC" field, and press "Calibrate EC, slot 1". Repeat with a second standard, and press "Calibrate EC, slot 2". You don't need to change the values under "Custom Options".
Calibration standard EC
Decimal - Default Value: 1413.0
This is the nominal EC of the calibration standard, usually labelled on the bottle.
This input relies on an ADS1256 analog-to-digital converter (ADC) to measure pH and/or electrical conductivity (EC) from analog sensors. You can enable or disable either measurement if you want to only connect a pH sensor or an EC sensor by selecting which measurements you want to under Measurements Enabled. Select which channel each sensor is connected to on the ADC. There are default calibration values initially set for the Input. There are also functions to allow you to easily calibrate your sensors with calibration solutions. If you use the Calibrate Slot actions, these values will be calculated and will replace the currently-set values. You can use the Clear Calibration action to delete the database values and return to using the default values. If you delete the Input or create a new Input to use your ADC/sensors with, you will need to recalibrate in order to store new calibration data.
Option
Type
Description
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Set the calibration method to perform during Input activation
Commands
pH Calibration Actions: Place your probe in a solution of known pH. Set the known pH value in the `Calibration buffer pH` field, and press `Calibrate pH, slot 1`. Repeat with a second buffer, and press `Calibrate pH, slot 2`. You don't need to change the values under `Custom Options`.
Calibration buffer pH
Decimal - Default Value: 7.0
This is the nominal pH of the calibration buffer, usually labelled on the bottle.
Calibrate pH, slot 1
Button
Calibrate pH, slot 2
Button
Clear pH Calibration Slots
Button
EC Calibration Actions: Place your probe in a solution of known EC. Set the known EC value in the `Calibration standard EC` field, and press `Calibrate EC, slot 1`. Repeat with a second standard, and press `Calibrate EC, slot 2`. You don't need to change the values under `Custom Options`.
Calibration standard EC
Decimal - Default Value: 1413.0
This is the nominal EC of the calibration standard, usually labelled on the bottle.
This Input receives and stores measurements from the Data Storage Integration on The Things Network. If you have key/value pairs as your payload, enter the key name in Variable Name and the corresponding value for that key will be stored in the measurement database.
Option
Type
Description
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Start Offset (Seconds)
Integer
The duration to wait before the first operation
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Application ID
Text
The Things Network Application ID
App API Key
Text
The Things Network Application API Key
Device ID
Text
The Things Network Device ID
Channel Options
Name
Text
A name to distinguish this from others
Variable Name
Text
The TTN variable name
The Things Network: The Things Network: Data Storage (TTN v3, Payload jmespath Expression)~
This Input receives and stores measurements from the Data Storage Integration on The Things Network. The given Payload jmespath Expression is used as a JMESPATH expression to find the corresponding value that will be stored for that channel. Be sure you select and save the Measurement Unit for each channel. Once the unit has been saved, you can convert to other units in the Convert Measurement section. Example expressions for jmespath (https://jmespath.org) include temperature, sensors[0].temperature, and bathroom.temperature which refer to the temperature as a direct key within the first entry of sensors or as a subkey of bathroom, respectively. Jmespath elements and keys that contain special characters have to be enclosed in double quotes, e.g. "sensor-1".temperature.
Option
Type
Description
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Start Offset (Seconds)
Integer
The duration to wait before the first operation
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Application ID
Text
The Things Network Application ID
App API Key
Text
The Things Network Application API Key
Device ID
Text
The Things Network Device ID
Channel Options
Name
Text
A name to distinguish this from others
Payload jmespath Expression
Text
The TTN jmespath expression to return the value to store
Obtain a free API key at openweathermap.org. If the city you enter does not return measurements, try another city. Note: the free API subscription is limited to 60 calls per minute
Option
Type
Description
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
Obtain a free API key at openweathermap.org. Notes: The free API subscription is limited to 60 calls per minute. If a Day (Future) time is selected, Minimum and Maximum temperatures are available as measurements.
Option
Type
Description
Measurements Enabled
Multi-Select
The measurements to record
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
The CO2 measurement can also be obtained using PWM via a GPIO pin. Enter the pin number below or leave blank to disable this option. This also makes it possible to obtain measurements even if the UART interface is not available (note that the sensor can't be configured / calibrated without a working UART interface).
GPIO Override
Text
Obtain readings using PWM on this GPIO pin instead of via UART
Commands
Calibrate Zero Point
Button
Span Point (ppmv)
Integer - Default Value: 2000
The ppmv concentration for a span point calibration
This is the version of the sensor that does not include the ability to conduct automatic baseline correction (ABC). See the B version of the sensor if you wish to use ABC.
Option
Type
Description
UART Device
Text
The UART device location (e.g. /dev/ttyUSB1)
Period (Seconds)
Decimal
The duration between measurements or actions
Pre Output
Select
Turn the selected output on before taking every measurement
Pre Out Duration (Seconds)
Decimal
If a Pre Output is selected, set the duration to turn the Pre Output on for before every measurement is acquired.
Pre During Measure
Boolean
Check to turn the output off after (opposed to before) the measurement is complete
The DS3502 can generate a 0 - 10k Ohm resistance with 7-bit precision. This equates to 128 possible steps. A value, in Ohms, is passed to this output controller and the step value is calculated and passed to the device. Select whether to round up or down to the nearest step.
This is a generic module for bipolar stepper motor drivers such as the DRV8825, A4988, and others. The value passed to the output is the number of steps. A positive value turns clockwise and a negative value turns counter-clockwise.
Option
Type
Description
Channel Options
If the Direction or Enable pins are not used, make sure you pull the appropriate pins on your driver high or low to set the proper direction and enable the stepper motor to be energized. Note: For Enable Mode, always having the motor energized will use more energy and produce more heat.
Step Pin
Integer
The Step pin of the controller (BCM numbering)
Full Step Delay
Decimal - Default Value: 0.005
The Full Step Delay of the controller
Direction Pin
Integer
The Direction pin of the controller (BCM numbering). Set to None to disable.
Enable Pin
Integer
The Enable pin of the controller (BCM numbering). Set to None to disable.
Enable Mode
Select(Options: [Only When Turning | Always] (Default in bold)
Choose when to pull the enable pin high to energize the motor.
Enable at Shutdown
Select(Options: [Enable | Disable] (Default in bold)
Choose whether the enable pin in pulled high (Enable) or low (Disable) when Mycodo shuts down.
If using a Step Resolution other than Full, and all three Mode Pins are set, they will be set high (1) or how (0) according to the values in parentheses to the right of the selected Step Resolution, e.g. (Mode Pin 1, Mode Pin 2, Mode Pin 3).
This output controls the 6 outlets of the Kasa HS300 Smart WiFi Power Strip. This module uses an outdated python library and is deprecated. Do not use it. You will break the current Kasa modules if you do not delete this deprecated Output.
Option
Type
Description
Host
Text - Default Value: 192.168.0.50
Host or IP address
Status Update (Seconds)
Integer - Default Value: 60
The period between checking if connected and output states.
Channel Options
Name
Text - Default Value: Outlet Name
A name to distinguish this from others
Startup State
Select
Set the state when Mycodo starts
Shutdown State
Select
Set the state when Mycodo shuts down
Trigger Functions at Startup
Boolean
Whether to trigger functions when the output switches at startup
Force Command
Boolean
Always send the command if instructed, regardless of the current state
This output controls the 6 outlets of the Kasa HS300 Smart WiFi Power Strip. This is a variant that uses the latest python-kasa library. Note: if you see errors in the daemon log about the server starting, try changing the Asyncio RPC Port to another port.
Option
Type
Description
Host
Text - Default Value: 0.0.0.0
Host or IP address
Status Update (Seconds)
Integer - Default Value: 300
The period between checking if connected and output states. 0 disables.
Asyncio RPC Port
Integer - Default Value: 18308
The port to start the asyncio RPC server. Must be unique from other Kasa Outputs.
Channel Options
Name
Text - Default Value: Outlet Name
A name to distinguish this from others
Startup State
Select
Set the state when Mycodo starts
Shutdown State
Select
Set the state when Mycodo shuts down
Trigger Functions at Startup
Boolean
Whether to trigger functions when the output switches at startup
Force Command
Boolean
Always send the command if instructed, regardless of the current state
Current (Amps)
Decimal
The current draw of the device being controlled
On/Off: Kasa KP303 3-Outlet WiFi Power Strip (old library, deprecated)~
This output controls the 3 outlets of the Kasa KP303 Smart WiFi Power Strip. This module uses an outdated python library and is deprecated. Do not use it. You will break the current Kasa modules if you do not delete this deprecated Output.
Option
Type
Description
Host
Text - Default Value: 192.168.0.50
Host or IP address
Status Update (Seconds)
Integer - Default Value: 60
The period between checking if connected and output states.
Channel Options
Name
Text - Default Value: Outlet Name
A name to distinguish this from others
Startup State
Select
Set the state when Mycodo starts
Shutdown State
Select
Set the state when Mycodo shuts down
Trigger Functions at Startup
Boolean
Whether to trigger functions when the output switches at startup
Force Command
Boolean
Always send the command if instructed, regardless of the current state
This output controls the 3 outlets of the Kasa KP303 Smart WiFi Power Strip. This is a variant that uses the latest python-kasa library. Note: if you see errors in the daemon log about the server starting, try changing the Asyncio RPC Port to another port.
Option
Type
Description
Host
Text - Default Value: 0.0.0.0
Host or IP address
Status Update (Seconds)
Integer - Default Value: 300
The period between checking if connected and output states. 0 disables.
Asyncio RPC Port
Integer - Default Value: 18575
The port to start the asyncio RPC server. Must be unique from other Kasa Outputs.
Channel Options
Name
Text - Default Value: Outlet Name
A name to distinguish this from others
Startup State
Select
Set the state when Mycodo starts
Shutdown State
Select
Set the state when Mycodo shuts down
Trigger Functions at Startup
Boolean
Whether to trigger functions when the output switches at startup
Force Command
Boolean
Always send the command if instructed, regardless of the current state
This output controls Kasa WiFi Power Plugs, including the KP105, KP115, KP125, KP401, HS100, HS103, HS105, HS107, and HS110. Note: if you see errors in the daemon log about the server starting, try changing the Asyncio RPC Port to another port.
Option
Type
Description
Host
Text - Default Value: 0.0.0.0
Host or IP address
Status Update (Seconds)
Integer - Default Value: 300
The period between checking if connected and output states. 0 disables.
Asyncio RPC Port
Integer - Default Value: 18331
The port to start the asyncio RPC server. Must be unique from other Kasa Outputs.
Channel Options
Startup State
Select
Set the state when Mycodo starts
Shutdown State
Select
Set the state when Mycodo shuts down
Trigger Functions at Startup
Boolean
Whether to trigger functions when the output switches at startup
Force Command
Boolean
Always send the command if instructed, regardless of the current state
This output controls the the Kasa WiFi Light Bulbs, including the KL125, KL130, and KL135. Note: if you see errors in the daemon log about the server starting, try changing the Asyncio RPC Port to another port.
Option
Type
Description
Host
Text - Default Value: 0.0.0.0
Host or IP address
Status Update (Seconds)
Integer - Default Value: 300
The period between checking if connected and output states. 0 disables.
Asyncio RPC Port
Integer - Default Value: 18299
The port to start the asyncio RPC server. Must be unique from other Kasa Outputs.
Channel Options
Startup State
Select
Set the state when Mycodo starts
Shutdown State
Select
Set the state when Mycodo shuts down
Trigger Functions at Startup
Boolean
Whether to trigger functions when the output switches at startup
Force Command
Boolean
Always send the command if instructed, regardless of the current state
Current (Amps)
Decimal
The current draw of the device being controlled
Commands
Transition (Milliseconds)
Integer - Default Value: 0
The hsv transition period
Brightness (Percent)
Integer
The brightness to set, in percent (0 - 100)
Set
Button
Transition (Milliseconds)
Integer - Default Value: 0
The hsv transition period
Hue (Degree)
Integer
The hue to set, in degrees (0 - 360)
Set
Button
Transition (Milliseconds)
Integer - Default Value: 0
The hsv transition period
Saturation (Percent)
Integer
The saturation to set, in percent (0 - 100)
Set
Button
Transition (Milliseconds)
Integer - Default Value: 0
The hsv transition period
Color Temperature (Kelvin)
Integer
The color temperature to set, in degrees Kelvin
Set
Button
Transition (Milliseconds)
Integer - Default Value: 0
The hsv transition period
HSV
Text - Default Value: 220, 20, 45
The hue, saturation, brightness to set, e.g. "200, 20, 50"
Control the LEDs of a neopixel light strip. USE WITH CAUTION: This library uses the Hardware-PWM0 bus. Only GPIO pins 12 or 18 will work. If you use one of these pins for a NeoPixel strip, you can not use the other for Hardware-PWM control of another output or there will be conflicts that can cause the Mycodo Daemon to crash and the Pi to become unresponsive. If you need to control another PWM output like a servo, fan, or dimmable grow lights, you will need to use the Software-PWM by setting the Output PWM: Raspberry Pi GPIO and set the "Library" field to "Any Pin, <=40kHz". If you select the "Hardware Pin, <=30MHz" option, it will cause conflicts. This output is best used with Actions to control individual LED color and brightness.
Option
Type
Description
Data Pin
Integer - Default Value: 18
Enter the GPIO Pin connected to your device data wire (BCM numbering).
Number of LEDs
Integer - Default Value: 1
How many LEDs in the string?
On Mode
Select(Options: [Single Color | Rainbow] (Default in bold)
The color mode when turned on
Single Color
Text - Default Value: 30, 30, 30
The Color when turning on in Single Color Mode, RGB format (red, green, blue), 0 - 255 each.
Rainbow Speed (Seconds)
Decimal - Default Value: 0.01
The speed to change colors in Rainbow Mode
Rainbow Brightness
Integer - Default Value: 20
The maximum brightness of LEDs in Rainbow Mode (1 - 255)
Rainbow Mode
Select(Options: [All LEDs change at once | One LED Changes at a time] (Default in bold)
How the rainbow is displayed
Channel Options
Startup State
Select
Set the state when Mycodo starts
Shutdown State
Select
Set the state when Mycodo shuts down
Trigger Functions at Startup
Boolean
Whether to trigger functions when the output switches at startup
Force Command
Boolean
Always send the command if instructed, regardless of the current state
Controls the 8 relays of the 8-relay HAT made by Sequent Microsystems. 8 of these boards can be used simultaneously, allowing 64 relays to be controlled.
Option
Type
Description
I2C Address
Text
The address of the I2C device.
I2C Bus
Integer
The Bus the I2C device is connected.
Board Stack Number
Select
Select the board stack number when multiple boards are used
Channel Options
Name
Text
A name to distinguish this from others
Startup State
Select
Set the state of the GPIO when Mycodo starts
Shutdown State
Select
Set the state of the GPIO when Mycodo shuts down
On State
Select(Options: [HIGH | LOW] (Default in bold)
The state of the GPIO that corresponds to an On state
Trigger Functions at Startup
Boolean
Whether to trigger functions when the output switches at startup
This output uses a 315 or 433 MHz transmitter to turn wireless power outlets on or off. Run /opt/Mycodo/mycodo/devices/wireless_rpi_rf.py with a receiver to discover the codes produced from your remote.
Option
Type
Description
Channel Options
Pin: GPIO (BCM)
Integer
The pin to control the state of
On Command
Text - Default Value: 22559
Command to execute when the output is instructed to turn on
Off Command
Text - Default Value: 22558
Command to execute when the output is instructed to turn off
Python 3 code will be executed when this output is turned on or off. The "duty_cycle" object is a float value that represents the duty cycle that has been set.
Option
Type
Description
Analyze Python Code with Pylint
Boolean - Default Value: True
Analyze your Python code with pylint when saving
Channel Options
Python 3 Code
Python code to execute to set the PWM duty cycle (%)
User
Text - Default Value: mycodo
The user to execute the command
Startup State
Select
Set the state when Mycodo starts
Startup Value
Decimal
The value when Mycodo starts
Shutdown State
Select
Set the state when Mycodo shuts down
Shutdown Value
Decimal
The value when Mycodo shuts down
Invert Signal
Boolean
Invert the PWM signal
Invert Stored Signal
Boolean
Invert the value that is saved to the measurement database
Force Command
Boolean
Always send the command if instructed, regardless of the current state
Commands will be executed in the Linux shell by the specified user when the duty cycle is set for this output. The string "((duty_cycle))" in the command will be replaced with the duty cycle being set prior to execution.
Option
Type
Description
Channel Options
Bash Command
Text - Default Value: /home/pi/script_pwm.sh ((duty_cycle))
Command to execute to set the PWM duty cycle (%)
User
Text - Default Value: mycodo
The user to execute the command
Startup State
Select
Set the state when Mycodo starts
Startup Value
Decimal
The value when Mycodo starts
Shutdown State
Select
Set the state when Mycodo shuts down
Shutdown Value
Decimal
The value when Mycodo shuts down
Invert Signal
Boolean
Invert the PWM signal
Invert Stored Signal
Boolean
Invert the value that is saved to the measurement database
Force Command
Boolean
Always send the command if instructed, regardless of the current state
Atlas Scientific peristaltic pumps can be set to dispense at their maximum rate or a rate can be specified. Their minimum flow rate is 0.5 ml/min and their maximum is 105 ml/min.
Option
Type
Description
I2C Address
Text
The address of the I2C device.
I2C Bus
Integer
The Bus the I2C device is connected.
FTDI Device
Text
The FTDI device connected to the input/output/etc.
Desired flow rate in ml/minute when Specify Flow Rate set
Current (Amps)
Decimal
The current draw of the device being controlled
Commands
Calibration: a calibration can be performed to increase the accuracy of the pump. It's a good idea to clear the calibration before calibrating. First, remove all air from the line by pumping the fluid you would like to calibrate to through the pump hose. Next, press Dispense Amount and the pump will be instructed to dispense 10 ml (unless you changed the default value). Measure how much fluid was actually dispensed, enter this value in the Actual Volume Dispensed (ml) field, and press Calibrate to Dispensed Amount. Now any further pump volumes dispensed should be accurate.
Clear Calibration
Button
Volume to Dispense (ml)
Decimal - Default Value: 10.0
The volume (ml) that is instructed to be dispensed
Dispense Amount
Button
Actual Volume Dispensed (ml)
Decimal - Default Value: 10.0
The actual volume (ml) that was dispensed
Calibrate to Dispensed Amount
Button
The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
New I2C Address
Text - Default Value: 0x67
The new I2C to set the device to
Set I2C Address
Button
Peristaltic Pump: Grove I2C Motor Driver (Board v1.3)~
Controls the Grove I2C Motor Driver Board (v1.3). Both motors will turn at the same time. This output can also dispense volumes of fluid if the motors are attached to peristaltic pumps.
Controls the Grove I2C Motor Driver Board (v1.3). Both motors will turn at the same time. This output can also dispense volumes of fluid if the motors are attached to peristaltic pumps.
The L298N can control 2 DC motors, both speed and direction. If these motors control peristaltic pumps, set the Flow Rate and the output can can be instructed to dispense volumes accurately in addition to being turned on for durations.
Option
Type
Description
Channel Options
Name
Text
A name to distinguish this from others
Input Pin 1
Integer
The Input Pin 1 of the controller (BCM numbering)
Input Pin 2
Integer
The Input Pin 2 of the controller (BCM numbering)
Use Enable Pin
Boolean - Default Value: True
Enable the use of the Enable Pin
Enable Pin
Integer
The Enable pin of the controller (BCM numbering)
Enable Pin Duty Cycle
Integer - Default Value: 50
The duty cycle to apply to the Enable Pin (percent, 1 - 100)
Direction
Select(Options: [Forward | Backward] (Default in bold)
The direction to turn the motor
Volume Rate (ml/min)
Decimal - Default Value: 150.0
If a pump, the measured flow rate (ml/min) at the set Duty Cycle
This output turns a GPIO pin HIGH and LOW to control power to a generic peristaltic pump. The peristaltic pump can then be turned on for a duration or, after determining the pump's maximum flow rate, instructed to dispense a specific volume at the maximum rate or at a specified rate.
Option
Type
Description
Channel Options
Pin: GPIO (BCM)
Integer
The pin to control the state of
On State
Select(Options: [HIGH | LOW] (Default in bold)
The state of the GPIO that corresponds to an On state
Fastest Rate (ml/min)
Decimal - Default Value: 150.0
The fastest rate that the pump can dispense (ml/min)
Minimum On (Seconds)
Decimal - Default Value: 1.0
The minimum duration the pump should be turned on for every 60 second period
The DS3502 can generate a 0 - 10k Ohm resistance with 7-bit precision. This equates to 128 possible steps. A value, in Ohms, is passed to this output controller and the step value is calculated and passed to the device. Select whether to round up or down to the nearest step.
This is a generic module for bipolar stepper motor drivers such as the DRV8825, A4988, and others. The value passed to the output is the number of steps. A positive value turns clockwise and a negative value turns counter-clockwise.
Option
Type
Description
Channel Options
If the Direction or Enable pins are not used, make sure you pull the appropriate pins on your driver high or low to set the proper direction and enable the stepper motor to be energized. Note: For Enable Mode, always having the motor energized will use more energy and produce more heat.
Step Pin
Integer
The Step pin of the controller (BCM numbering)
Full Step Delay
Decimal - Default Value: 0.005
The Full Step Delay of the controller
Direction Pin
Integer
The Direction pin of the controller (BCM numbering). Set to None to disable.
Enable Pin
Integer
The Enable pin of the controller (BCM numbering). Set to None to disable.
Enable Mode
Select(Options: [Only When Turning | Always] (Default in bold)
Choose when to pull the enable pin high to energize the motor.
Enable at Shutdown
Select(Options: [Enable | Disable] (Default in bold)
Choose whether the enable pin in pulled high (Enable) or low (Disable) when Mycodo shuts down.
If using a Step Resolution other than Full, and all three Mode Pins are set, they will be set high (1) or how (0) according to the values in parentheses to the right of the selected Step Resolution, e.g. (Mode Pin 1, Mode Pin 2, Mode Pin 3).
This output controls the 6 outlets of the Kasa HS300 Smart WiFi Power Strip. This module uses an outdated python library and is deprecated. Do not use it. You will break the current Kasa modules if you do not delete this deprecated Output.
Option
Type
Description
Host
Text - Default Value: 192.168.0.50
Host or IP address
Status Update (Seconds)
Integer - Default Value: 60
The period between checking if connected and output states.
Channel Options
Name
Text - Default Value: Outlet Name
A name to distinguish this from others
Startup State
Select
Set the state when Mycodo starts
Shutdown State
Select
Set the state when Mycodo shuts down
Trigger Functions at Startup
Boolean
Whether to trigger functions when the output switches at startup
Force Command
Boolean
Always send the command if instructed, regardless of the current state
This output controls the 6 outlets of the Kasa HS300 Smart WiFi Power Strip. This is a variant that uses the latest python-kasa library. Note: if you see errors in the daemon log about the server starting, try changing the Asyncio RPC Port to another port.
Option
Type
Description
Host
Text - Default Value: 0.0.0.0
Host or IP address
Status Update (Seconds)
Integer - Default Value: 300
The period between checking if connected and output states. 0 disables.
Asyncio RPC Port
Integer - Default Value: 18308
The port to start the asyncio RPC server. Must be unique from other Kasa Outputs.
Channel Options
Name
Text - Default Value: Outlet Name
A name to distinguish this from others
Startup State
Select
Set the state when Mycodo starts
Shutdown State
Select
Set the state when Mycodo shuts down
Trigger Functions at Startup
Boolean
Whether to trigger functions when the output switches at startup
Force Command
Boolean
Always send the command if instructed, regardless of the current state
Current (Amps)
Decimal
The current draw of the device being controlled
On/Off: Kasa KP303 3-Outlet WiFi Power Strip (old library, deprecated)~
This output controls the 3 outlets of the Kasa KP303 Smart WiFi Power Strip. This module uses an outdated python library and is deprecated. Do not use it. You will break the current Kasa modules if you do not delete this deprecated Output.
Option
Type
Description
Host
Text - Default Value: 192.168.0.50
Host or IP address
Status Update (Seconds)
Integer - Default Value: 60
The period between checking if connected and output states.
Channel Options
Name
Text - Default Value: Outlet Name
A name to distinguish this from others
Startup State
Select
Set the state when Mycodo starts
Shutdown State
Select
Set the state when Mycodo shuts down
Trigger Functions at Startup
Boolean
Whether to trigger functions when the output switches at startup
Force Command
Boolean
Always send the command if instructed, regardless of the current state
This output controls the 3 outlets of the Kasa KP303 Smart WiFi Power Strip. This is a variant that uses the latest python-kasa library. Note: if you see errors in the daemon log about the server starting, try changing the Asyncio RPC Port to another port.
Option
Type
Description
Host
Text - Default Value: 0.0.0.0
Host or IP address
Status Update (Seconds)
Integer - Default Value: 300
The period between checking if connected and output states. 0 disables.
Asyncio RPC Port
Integer - Default Value: 18575
The port to start the asyncio RPC server. Must be unique from other Kasa Outputs.
Channel Options
Name
Text - Default Value: Outlet Name
A name to distinguish this from others
Startup State
Select
Set the state when Mycodo starts
Shutdown State
Select
Set the state when Mycodo shuts down
Trigger Functions at Startup
Boolean
Whether to trigger functions when the output switches at startup
Force Command
Boolean
Always send the command if instructed, regardless of the current state
This output controls Kasa WiFi Power Plugs, including the KP105, KP115, KP125, KP401, HS100, HS103, HS105, HS107, and HS110. Note: if you see errors in the daemon log about the server starting, try changing the Asyncio RPC Port to another port.
Option
Type
Description
Host
Text - Default Value: 0.0.0.0
Host or IP address
Status Update (Seconds)
Integer - Default Value: 300
The period between checking if connected and output states. 0 disables.
Asyncio RPC Port
Integer - Default Value: 18331
The port to start the asyncio RPC server. Must be unique from other Kasa Outputs.
Channel Options
Startup State
Select
Set the state when Mycodo starts
Shutdown State
Select
Set the state when Mycodo shuts down
Trigger Functions at Startup
Boolean
Whether to trigger functions when the output switches at startup
Force Command
Boolean
Always send the command if instructed, regardless of the current state
This output controls the the Kasa WiFi Light Bulbs, including the KL125, KL130, and KL135. Note: if you see errors in the daemon log about the server starting, try changing the Asyncio RPC Port to another port.
Option
Type
Description
Host
Text - Default Value: 0.0.0.0
Host or IP address
Status Update (Seconds)
Integer - Default Value: 300
The period between checking if connected and output states. 0 disables.
Asyncio RPC Port
Integer - Default Value: 18299
The port to start the asyncio RPC server. Must be unique from other Kasa Outputs.
Channel Options
Startup State
Select
Set the state when Mycodo starts
Shutdown State
Select
Set the state when Mycodo shuts down
Trigger Functions at Startup
Boolean
Whether to trigger functions when the output switches at startup
Force Command
Boolean
Always send the command if instructed, regardless of the current state
Current (Amps)
Decimal
The current draw of the device being controlled
Commands
Transition (Milliseconds)
Integer - Default Value: 0
The hsv transition period
Brightness (Percent)
Integer
The brightness to set, in percent (0 - 100)
Set
Button
Transition (Milliseconds)
Integer - Default Value: 0
The hsv transition period
Hue (Degree)
Integer
The hue to set, in degrees (0 - 360)
Set
Button
Transition (Milliseconds)
Integer - Default Value: 0
The hsv transition period
Saturation (Percent)
Integer
The saturation to set, in percent (0 - 100)
Set
Button
Transition (Milliseconds)
Integer - Default Value: 0
The hsv transition period
Color Temperature (Kelvin)
Integer
The color temperature to set, in degrees Kelvin
Set
Button
Transition (Milliseconds)
Integer - Default Value: 0
The hsv transition period
HSV
Text - Default Value: 220, 20, 45
The hue, saturation, brightness to set, e.g. "200, 20, 50"
Control the LEDs of a neopixel light strip. USE WITH CAUTION: This library uses the Hardware-PWM0 bus. Only GPIO pins 12 or 18 will work. If you use one of these pins for a NeoPixel strip, you can not use the other for Hardware-PWM control of another output or there will be conflicts that can cause the Mycodo Daemon to crash and the Pi to become unresponsive. If you need to control another PWM output like a servo, fan, or dimmable grow lights, you will need to use the Software-PWM by setting the Output PWM: Raspberry Pi GPIO and set the "Library" field to "Any Pin, <=40kHz". If you select the "Hardware Pin, <=30MHz" option, it will cause conflicts. This output is best used with Actions to control individual LED color and brightness.
Option
Type
Description
Data Pin
Integer - Default Value: 18
Enter the GPIO Pin connected to your device data wire (BCM numbering).
Number of LEDs
Integer - Default Value: 1
How many LEDs in the string?
On Mode
Select(Options: [Single Color | Rainbow] (Default in bold)
The color mode when turned on
Single Color
Text - Default Value: 30, 30, 30
The Color when turning on in Single Color Mode, RGB format (red, green, blue), 0 - 255 each.
Rainbow Speed (Seconds)
Decimal - Default Value: 0.01
The speed to change colors in Rainbow Mode
Rainbow Brightness
Integer - Default Value: 20
The maximum brightness of LEDs in Rainbow Mode (1 - 255)
Rainbow Mode
Select(Options: [All LEDs change at once | One LED Changes at a time] (Default in bold)
How the rainbow is displayed
Channel Options
Startup State
Select
Set the state when Mycodo starts
Shutdown State
Select
Set the state when Mycodo shuts down
Trigger Functions at Startup
Boolean
Whether to trigger functions when the output switches at startup
Force Command
Boolean
Always send the command if instructed, regardless of the current state
Controls the 8 relays of the 8-relay HAT made by Sequent Microsystems. 8 of these boards can be used simultaneously, allowing 64 relays to be controlled.
Option
Type
Description
I2C Address
Text
The address of the I2C device.
I2C Bus
Integer
The Bus the I2C device is connected.
Board Stack Number
Select
Select the board stack number when multiple boards are used
Channel Options
Name
Text
A name to distinguish this from others
Startup State
Select
Set the state of the GPIO when Mycodo starts
Shutdown State
Select
Set the state of the GPIO when Mycodo shuts down
On State
Select(Options: [HIGH | LOW] (Default in bold)
The state of the GPIO that corresponds to an On state
Trigger Functions at Startup
Boolean
Whether to trigger functions when the output switches at startup
This output uses a 315 or 433 MHz transmitter to turn wireless power outlets on or off. Run /opt/Mycodo/mycodo/devices/wireless_rpi_rf.py with a receiver to discover the codes produced from your remote.
Option
Type
Description
Channel Options
Pin: GPIO (BCM)
Integer
The pin to control the state of
On Command
Text - Default Value: 22559
Command to execute when the output is instructed to turn on
Off Command
Text - Default Value: 22558
Command to execute when the output is instructed to turn off
Python 3 code will be executed when this output is turned on or off. The "duty_cycle" object is a float value that represents the duty cycle that has been set.
Option
Type
Description
Analyze Python Code with Pylint
Boolean - Default Value: True
Analyze your Python code with pylint when saving
Channel Options
Python 3 Code
Python code to execute to set the PWM duty cycle (%)
User
Text - Default Value: mycodo
The user to execute the command
Startup State
Select
Set the state when Mycodo starts
Startup Value
Decimal
The value when Mycodo starts
Shutdown State
Select
Set the state when Mycodo shuts down
Shutdown Value
Decimal
The value when Mycodo shuts down
Invert Signal
Boolean
Invert the PWM signal
Invert Stored Signal
Boolean
Invert the value that is saved to the measurement database
Force Command
Boolean
Always send the command if instructed, regardless of the current state
Commands will be executed in the Linux shell by the specified user when the duty cycle is set for this output. The string "((duty_cycle))" in the command will be replaced with the duty cycle being set prior to execution.
Option
Type
Description
Channel Options
Bash Command
Text - Default Value: /home/pi/script_pwm.sh ((duty_cycle))
Command to execute to set the PWM duty cycle (%)
User
Text - Default Value: mycodo
The user to execute the command
Startup State
Select
Set the state when Mycodo starts
Startup Value
Decimal
The value when Mycodo starts
Shutdown State
Select
Set the state when Mycodo shuts down
Shutdown Value
Decimal
The value when Mycodo shuts down
Invert Signal
Boolean
Invert the PWM signal
Invert Stored Signal
Boolean
Invert the value that is saved to the measurement database
Force Command
Boolean
Always send the command if instructed, regardless of the current state
Atlas Scientific peristaltic pumps can be set to dispense at their maximum rate or a rate can be specified. Their minimum flow rate is 0.5 ml/min and their maximum is 105 ml/min.
Option
Type
Description
I2C Address
Text
The address of the I2C device.
I2C Bus
Integer
The Bus the I2C device is connected.
FTDI Device
Text
The FTDI device connected to the input/output/etc.
Desired flow rate in ml/minute when Specify Flow Rate set
Current (Amps)
Decimal
The current draw of the device being controlled
Commands
Calibration: a calibration can be performed to increase the accuracy of the pump. It's a good idea to clear the calibration before calibrating. First, remove all air from the line by pumping the fluid you would like to calibrate to through the pump hose. Next, press Dispense Amount and the pump will be instructed to dispense 10 ml (unless you changed the default value). Measure how much fluid was actually dispensed, enter this value in the Actual Volume Dispensed (ml) field, and press Calibrate to Dispensed Amount. Now any further pump volumes dispensed should be accurate.
Clear Calibration
Button
Volume to Dispense (ml)
Decimal - Default Value: 10.0
The volume (ml) that is instructed to be dispensed
Dispense Amount
Button
Actual Volume Dispensed (ml)
Decimal - Default Value: 10.0
The actual volume (ml) that was dispensed
Calibrate to Dispensed Amount
Button
The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
New I2C Address
Text - Default Value: 0x67
The new I2C to set the device to
Set I2C Address
Button
Peristaltic Pump: Grove I2C Motor Driver (Board v1.3)~
Controls the Grove I2C Motor Driver Board (v1.3). Both motors will turn at the same time. This output can also dispense volumes of fluid if the motors are attached to peristaltic pumps.
Controls the Grove I2C Motor Driver Board (v1.3). Both motors will turn at the same time. This output can also dispense volumes of fluid if the motors are attached to peristaltic pumps.
The L298N can control 2 DC motors, both speed and direction. If these motors control peristaltic pumps, set the Flow Rate and the output can can be instructed to dispense volumes accurately in addition to being turned on for durations.
Option
Type
Description
Channel Options
Name
Text
A name to distinguish this from others
Input Pin 1
Integer
The Input Pin 1 of the controller (BCM numbering)
Input Pin 2
Integer
The Input Pin 2 of the controller (BCM numbering)
Use Enable Pin
Boolean - Default Value: True
Enable the use of the Enable Pin
Enable Pin
Integer
The Enable pin of the controller (BCM numbering)
Enable Pin Duty Cycle
Integer - Default Value: 50
The duty cycle to apply to the Enable Pin (percent, 1 - 100)
Direction
Select(Options: [Forward | Backward] (Default in bold)
The direction to turn the motor
Volume Rate (ml/min)
Decimal - Default Value: 150.0
If a pump, the measured flow rate (ml/min) at the set Duty Cycle
This output turns a GPIO pin HIGH and LOW to control power to a generic peristaltic pump. The peristaltic pump can then be turned on for a duration or, after determining the pump's maximum flow rate, instructed to dispense a specific volume at the maximum rate or at a specified rate.
Option
Type
Description
Channel Options
Pin: GPIO (BCM)
Integer
The pin to control the state of
On State
Select(Options: [HIGH | LOW] (Default in bold)
The state of the GPIO that corresponds to an On state
Fastest Rate (ml/min)
Decimal - Default Value: 150.0
The fastest rate that the pump can dispense (ml/min)
Minimum On (Seconds)
Decimal - Default Value: 1.0
The minimum duration the pump should be turned on for every 60 second period
Displays and allows control of an output channel. All output options and measurements for the selected channel will be displayed. E.g. pumps will have seconds on and volume as measurements, and can be turned on for a duration (Seconds) or amount (Volume). If NO DATA or TOO OLD is displayed, the Max Age is not sufficiently long enough to find a current measurement.
Displays and allows control of an output channel. All output options and measurements for the selected channel will be displayed. E.g. pumps will have seconds on and volume as measurements, and can be turned on for a duration (Seconds) or amount (Volume). If NO DATA or TOO OLD is displayed, the Max Age is not sufficiently long enough to find a current measurement.
A simple widget to use as a spacer, which includes the ability to set text in its contents.
\ No newline at end of file
diff --git a/System-Information/index.html b/System-Information/index.html
index e74d3091e..6df0acc09 100644
--- a/System-Information/index.html
+++ b/System-Information/index.html
@@ -1 +1 @@
- System Information - Mycodo
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
Page: [Gear Icon] -> System Information
This page serves to provide information about the Mycodo frontend and backend as well as the linux system it's running on. Several commands and their output are listed to give the user information about how their system is running.
Command
Description
Mycodo Version
The current version of Mycodo, reported by the configuration file.
Python Version
The version of python currently running the web user interface.
Database Version
The current version of the settings database. If the current version is different from what it should be, an error will appear indicating the issue and a link to find out more information about the issue.
Daemon Status
This will be a green "Running" or a red "Stopped". Additionally, the Mycodo version and hostname text at the top-left of the screen May be Green, Yellow, or Red to indicate the status. Green = daemon running, yellow = unable to connect, and red = daemon not running.
...
Several other status indicators and commands are listed to provide information about the health of the system. Use these in addition to others to investigate software or hardware issues.
Deutsche: Deze pagina is niet vertaald naar het Duits.
Español: Esta página no está traducida al castellano.
Français: Cette page n'est pas traduite en français.
Bahasa Indonesia: Halaman ini tidak diterjemahkan ke bahasa Indonesia.
Italiano: Questa pagina non è tradotta in italiano.
Norsk: Denne siden er ikke oversatt til norsk.
Polski: Ta strona nie jest przetłumaczona na język polski.
Português: Esta página não está traduzida para o português.
русский язык: Эта страница не переведена на русский язык.
српски: Ова страница није преведена на српски.
Svenska: Denna sida är inte översatt till svenska.
Türkçe: Bu sayfa Türkçe'ye çevrilmemiştir.
中文: 此页面未翻译成中文.
Page: [Gear Icon] -> System Information
This page serves to provide information about the Mycodo frontend and backend as well as the linux system it's running on. Several commands and their output are listed to give the user information about how their system is running.
Command
Description
Mycodo Version
The current version of Mycodo, reported by the configuration file.
Python Version
The version of python currently running the web user interface.
Database Version
The current version of the settings database. If the current version is different from what it should be, an error will appear indicating the issue and a link to find out more information about the issue.
Daemon Status
This will be a green "Running" or a red "Stopped". Additionally, the Mycodo version and hostname text at the top-left of the screen May be Green, Yellow, or Red to indicate the status. Green = daemon running, yellow = unable to connect, and red = daemon not running.
...
Several other status indicators and commands are listed to provide information about the health of the system. Use these in addition to others to investigate software or hardware issues.
\ No newline at end of file
diff --git a/Troubleshooting/index.html b/Troubleshooting/index.html
index fe38a983d..8c1e7161c 100644
--- a/Troubleshooting/index.html
+++ b/Troubleshooting/index.html
@@ -1,4 +1,4 @@
- Troubleshooting - Mycodo
There are many reasons why the web UI would be inaccessible following an upgrade. Bugs are also continually fixed as they are discovered. Therefore, do not rely on old GitHub Issues or forum posts that have a solution for a similar effect, since the cause of the effect can be something completely different. The first thing that should be done is to review the upgrade log (/var/log/mycodo/mycodoupgrade.log) for any errors. Next, you can attempt to rerun the upgrade by issuing the following command:
There are many reasons why the web UI would be inaccessible following an upgrade. Bugs are also continually fixed as they are discovered. Therefore, do not rely on old GitHub Issues or forum posts that have a solution for a similar effect, since the cause of the effect can be something completely different. The first thing that should be done is to review the upgrade log (/var/log/mycodo/mycodoupgrade.log) for any errors. Next, you can attempt to rerun the upgrade by issuing the following command:
Check the color of the top left time/version text. Green indicates the daemon is running, while orange or red can indicate an issue.
Determine if the Daemon is Running: Execute ps aux | grep mycodo_daemon.py in a terminal and look for an entry to be returned.
Check the Logs: From the [Gear Icon] -> Mycodo Logs page or /var/log/mycodo/, check the daemon log for any errors. If the issue began after an upgrade, also check the upgrade log for indications of an issue.
If a solution could not be found after investigating the above suggestions, search the GitHub issues for any open issues or the forum for any recent issues.
If the "Database Version" is green, it is the correct version. An incorrect version wil lbe colored red and indicate the version is incorrect.
An incorrect database version means the version stored in the Mycodo settings database (/opt/Mycodo/databases/mycodo.db) is not correct for the latest version of Mycodo, determined in the Mycodo config file (/opt/Mycodo/mycodo/config.py).
This can be caused by an error in the upgrade process from an older database version to a newer version, or from a database that did not upgrade during the Mycodo upgrade process.
Check the Upgrade Log for any issues that may have occurred. The log is located at /var/log/mycodo/mycodoupgrade.log but may also be accessed from the web UI (if you're able to): select [Gear Icon] -> Mycodo Logs -> Upgrade Log.
Sometimes issues may not immediately present themselves. It is not uncommon to be experiencing a database issue that was actually introduced several Mycodo versions ago, before the latest upgrade.
Because of the nature of how many versions the database can be in, correcting a database issue may be very difficult.
It may be much easier to delete your database and start fresh without any configuration. Use the following commands to rename your database and restart the web UI. If both commands are successful, refresh your web UI page in your browser in order to generate a new database and create a new Admin user.
If the web UI is inaccessible, because of an error, for example, you can restore a backup from the command line. See Backup and Restore for more information.
If the web UI is inaccessible, because of an error, for example, you can restore a backup from the command line. See Backup and Restore for more information.
If you already have Mycodo installed, you can perform an upgrade to the latest Mycodo Release by either using the Upgrade option in the web interface (recommended) or by issuing the following command in a terminal. A log of the upgrade process is created at /var/log/mycodo/mycodoupgrade.log and is also available from the [Gear Icon] -> Mycodo Logs page.
If you already have Mycodo installed, you can perform an upgrade to the latest Mycodo Release by either using the Upgrade option in the web interface (recommended) or by issuing the following command in a terminal. A log of the upgrade process is created at /var/log/mycodo/mycodoupgrade.log and is also available from the [Gear Icon] -> Mycodo Logs page.
A backup is made to /var/Mycodo-backups when the system is upgraded or instructed to do so from the web interface on the [Gear Icon] -> Backup Restore page.
If you need to restore a backup, this can be done on the [Gear Icon] -> Backup Restore page (recommended). Find the backup you would like restored and press the Restore button beside it. If you're unable to access the web interface, a restore can also be initialized through the command line. Use the following command to initialize a restore. The [backup_location] must be the full path to the backup to be restored (e.g. "/var/Mycodo-backups/Mycodo-backup-2018-03-11_21-19-15-5.6.4/" without quotes).