forked from ml-lab/cnn_finetune
-
Notifications
You must be signed in to change notification settings - Fork 1
/
inception_v4.py
298 lines (217 loc) · 9.58 KB
/
inception_v4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# -*- coding: utf-8 -*-
from keras.models import Sequential
from keras.optimizers import SGD
from keras.layers import Input, Dense, Convolution2D, MaxPooling2D, AveragePooling2D, ZeroPadding2D, Dropout, Flatten, merge, Reshape, Activation
from keras.layers.normalization import BatchNormalization
from keras.models import Model
from keras import backend as K
from sklearn.metrics import log_loss
from load_cifar10 import load_cifar10_data
def conv2d_bn(x, nb_filter, nb_row, nb_col,
border_mode='same', subsample=(1, 1), bias=False):
"""
Utility function to apply conv + BN.
(Slightly modified from https://github.com/fchollet/keras/blob/master/keras/applications/inception_v3.py)
"""
if K.image_dim_ordering() == "th":
channel_axis = 1
else:
channel_axis = -1
x = Convolution2D(nb_filter, nb_row, nb_col,
subsample=subsample,
border_mode=border_mode,
bias=bias)(x)
x = BatchNormalization(axis=channel_axis)(x)
x = Activation('relu')(x)
return x
def block_inception_a(input):
if K.image_dim_ordering() == "th":
channel_axis = 1
else:
channel_axis = -1
branch_0 = conv2d_bn(input, 96, 1, 1)
branch_1 = conv2d_bn(input, 64, 1, 1)
branch_1 = conv2d_bn(branch_1, 96, 3, 3)
branch_2 = conv2d_bn(input, 64, 1, 1)
branch_2 = conv2d_bn(branch_2, 96, 3, 3)
branch_2 = conv2d_bn(branch_2, 96, 3, 3)
branch_3 = AveragePooling2D((3,3), strides=(1,1), border_mode='same')(input)
branch_3 = conv2d_bn(branch_3, 96, 1, 1)
x = merge([branch_0, branch_1, branch_2, branch_3], mode='concat', concat_axis=channel_axis)
return x
def block_reduction_a(input):
if K.image_dim_ordering() == "th":
channel_axis = 1
else:
channel_axis = -1
branch_0 = conv2d_bn(input, 384, 3, 3, subsample=(2,2), border_mode='valid')
branch_1 = conv2d_bn(input, 192, 1, 1)
branch_1 = conv2d_bn(branch_1, 224, 3, 3)
branch_1 = conv2d_bn(branch_1, 256, 3, 3, subsample=(2,2), border_mode='valid')
branch_2 = MaxPooling2D((3,3), strides=(2,2), border_mode='valid')(input)
x = merge([branch_0, branch_1, branch_2], mode='concat', concat_axis=channel_axis)
return x
def block_inception_b(input):
if K.image_dim_ordering() == "th":
channel_axis = 1
else:
channel_axis = -1
branch_0 = conv2d_bn(input, 384, 1, 1)
branch_1 = conv2d_bn(input, 192, 1, 1)
branch_1 = conv2d_bn(branch_1, 224, 1, 7)
branch_1 = conv2d_bn(branch_1, 256, 7, 1)
branch_2 = conv2d_bn(input, 192, 1, 1)
branch_2 = conv2d_bn(branch_2, 192, 7, 1)
branch_2 = conv2d_bn(branch_2, 224, 1, 7)
branch_2 = conv2d_bn(branch_2, 224, 7, 1)
branch_2 = conv2d_bn(branch_2, 256, 1, 7)
branch_3 = AveragePooling2D((3,3), strides=(1,1), border_mode='same')(input)
branch_3 = conv2d_bn(branch_3, 128, 1, 1)
x = merge([branch_0, branch_1, branch_2, branch_3], mode='concat', concat_axis=channel_axis)
return x
def block_reduction_b(input):
if K.image_dim_ordering() == "th":
channel_axis = 1
else:
channel_axis = -1
branch_0 = conv2d_bn(input, 192, 1, 1)
branch_0 = conv2d_bn(branch_0, 192, 3, 3, subsample=(2, 2), border_mode='valid')
branch_1 = conv2d_bn(input, 256, 1, 1)
branch_1 = conv2d_bn(branch_1, 256, 1, 7)
branch_1 = conv2d_bn(branch_1, 320, 7, 1)
branch_1 = conv2d_bn(branch_1, 320, 3, 3, subsample=(2,2), border_mode='valid')
branch_2 = MaxPooling2D((3, 3), strides=(2, 2), border_mode='valid')(input)
x = merge([branch_0, branch_1, branch_2], mode='concat', concat_axis=channel_axis)
return x
def block_inception_c(input):
if K.image_dim_ordering() == "th":
channel_axis = 1
else:
channel_axis = -1
branch_0 = conv2d_bn(input, 256, 1, 1)
branch_1 = conv2d_bn(input, 384, 1, 1)
branch_10 = conv2d_bn(branch_1, 256, 1, 3)
branch_11 = conv2d_bn(branch_1, 256, 3, 1)
branch_1 = merge([branch_10, branch_11], mode='concat', concat_axis=channel_axis)
branch_2 = conv2d_bn(input, 384, 1, 1)
branch_2 = conv2d_bn(branch_2, 448, 3, 1)
branch_2 = conv2d_bn(branch_2, 512, 1, 3)
branch_20 = conv2d_bn(branch_2, 256, 1, 3)
branch_21 = conv2d_bn(branch_2, 256, 3, 1)
branch_2 = merge([branch_20, branch_21], mode='concat', concat_axis=channel_axis)
branch_3 = AveragePooling2D((3, 3), strides=(1, 1), border_mode='same')(input)
branch_3 = conv2d_bn(branch_3, 256, 1, 1)
x = merge([branch_0, branch_1, branch_2, branch_3], mode='concat', concat_axis=channel_axis)
return x
def inception_v4_base(input):
if K.image_dim_ordering() == "th":
channel_axis = 1
else:
channel_axis = -1
# Input Shape is 299 x 299 x 3 (th) or 3 x 299 x 299 (th)
net = conv2d_bn(input, 32, 3, 3, subsample=(2,2), border_mode='valid')
net = conv2d_bn(net, 32, 3, 3, border_mode='valid')
net = conv2d_bn(net, 64, 3, 3)
branch_0 = MaxPooling2D((3,3), strides=(2,2), border_mode='valid')(net)
branch_1 = conv2d_bn(net, 96, 3, 3, subsample=(2,2), border_mode='valid')
net = merge([branch_0, branch_1], mode='concat', concat_axis=channel_axis)
branch_0 = conv2d_bn(net, 64, 1, 1)
branch_0 = conv2d_bn(branch_0, 96, 3, 3, border_mode='valid')
branch_1 = conv2d_bn(net, 64, 1, 1)
branch_1 = conv2d_bn(branch_1, 64, 1, 7)
branch_1 = conv2d_bn(branch_1, 64, 7, 1)
branch_1 = conv2d_bn(branch_1, 96, 3, 3, border_mode='valid')
net = merge([branch_0, branch_1], mode='concat', concat_axis=channel_axis)
branch_0 = conv2d_bn(net, 192, 3, 3, subsample=(2,2), border_mode='valid')
branch_1 = MaxPooling2D((3,3), strides=(2,2), border_mode='valid')(net)
net = merge([branch_0, branch_1], mode='concat', concat_axis=channel_axis)
# 35 x 35 x 384
# 4 x Inception-A blocks
for idx in xrange(4):
net = block_inception_a(net)
# 35 x 35 x 384
# Reduction-A block
net = block_reduction_a(net)
# 17 x 17 x 1024
# 7 x Inception-B blocks
for idx in xrange(7):
net = block_inception_b(net)
# 17 x 17 x 1024
# Reduction-B block
net = block_reduction_b(net)
# 8 x 8 x 1536
# 3 x Inception-C blocks
for idx in xrange(3):
net = block_inception_c(net)
return net
def inception_v4_model(img_rows, img_cols, color_type=1, num_classeses=None, dropout_keep_prob=0.2):
'''
Inception V4 Model for Keras
Model Schema is based on
https://github.com/kentsommer/keras-inceptionV4
ImageNet Pretrained Weights
Theano: https://github.com/kentsommer/keras-inceptionV4/releases/download/2.0/inception-v4_weights_th_dim_ordering_th_kernels.h5
TensorFlow: https://github.com/kentsommer/keras-inceptionV4/releases/download/2.0/inception-v4_weights_tf_dim_ordering_tf_kernels.h5
Parameters:
img_rows, img_cols - resolution of inputs
channel - 1 for grayscale, 3 for color
num_classes - number of class labels for our classification task
'''
# Input Shape is 299 x 299 x 3 (tf) or 3 x 299 x 299 (th)
if K.image_dim_ordering() == 'th':
inputs = Input((3, 299, 299))
else:
inputs = Input((299, 299, 3))
# Make inception base
net = inception_v4_base(inputs)
# Final pooling and prediction
# 8 x 8 x 1536
net_old = AveragePooling2D((8,8), border_mode='valid')(net)
# 1 x 1 x 1536
net_old = Dropout(dropout_keep_prob)(net_old)
net_old = Flatten()(net_old)
# 1536
predictions = Dense(output_dim=1001, activation='softmax')(net_old)
model = Model(inputs, predictions, name='inception_v4')
if K.image_dim_ordering() == 'th':
# Use pre-trained weights for Theano backend
weights_path = 'imagenet_models/inception-v4_weights_th_dim_ordering_th_kernels.h5'
else:
# Use pre-trained weights for Tensorflow backend
weights_path = 'imagenet_models/inception-v4_weights_tf_dim_ordering_tf_kernels.h5'
model.load_weights(weights_path, by_name=True)
# Truncate and replace softmax layer for transfer learning
# Cannot use model.layers.pop() since model is not of Sequential() type
# The method below works since pre-trained weights are stored in layers but not in the model
net_ft = AveragePooling2D((8,8), border_mode='valid')(net)
net_ft = Dropout(dropout_keep_prob)(net_ft)
net_ft = Flatten()(net_ft)
predictions_ft = Dense(output_dim=num_classes, activation='softmax')(net_ft)
model = Model(inputs, predictions_ft, name='inception_v4')
# Learning rate is changed to 0.001
sgd = SGD(lr=1e-3, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy'])
return model
if __name__ == '__main__':
# Example to fine-tune on 3000 samples from Cifar10
img_rows, img_cols = 299, 299 # Resolution of inputs
channel = 3
num_classes = 10
batch_size = 16
nb_epoch = 10
# Load Cifar10 data. Please implement your own load_data() module for your own dataset
X_train, Y_train, X_valid, Y_valid = load_cifar10_data(img_rows, img_cols)
# Load our model
model = inception_v4_model(img_rows, img_cols, channel, num_classes, dropout_keep_prob=0.2)
# Start Fine-tuning
model.fit(X_train, Y_train,
batch_size=batch_size,
nb_epoch=nb_epoch,
shuffle=True,
verbose=1,
validation_data=(X_valid, Y_valid),
)
# Make predictions
predictions_valid = model.predict(X_valid, batch_size=batch_size, verbose=1)
# Cross-entropy loss score
score = log_loss(Y_valid, predictions_valid)