forked from maum-ai/voicefilter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer.py
59 lines (47 loc) · 2.15 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import os
import time
import logging
import argparse
from utils.train import train
from utils.hparams import HParam
from utils.writer import MyWriter
from datasets.dataloader import create_dataloader
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-b', '--base_dir', type=str, default='.',
help="Root directory of run.")
parser.add_argument('-c', '--config', type=str, required=True,
help="yaml file for configuration")
parser.add_argument('-e', '--embedder_path', type=str, required=True,
help="path of embedder model pt file")
parser.add_argument('--checkpoint_path', type=str, default=None,
help="path of checkpoint pt file")
parser.add_argument('-m', '--model', type=str, required=True,
help="Name of the model. Used for both logging and saving checkpoints.")
args = parser.parse_args()
hp = HParam(args.config)
with open(args.config, 'r') as f:
# store hparams as string
hp_str = ''.join(f.readlines())
pt_dir = os.path.join(args.base_dir, hp.log.chkpt_dir, args.model)
os.makedirs(pt_dir, exist_ok=True)
log_dir = os.path.join(args.base_dir, hp.log.log_dir, args.model)
os.makedirs(log_dir, exist_ok=True)
chkpt_path = args.checkpoint_path if args.checkpoint_path is not None else None
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(os.path.join(log_dir,
'%s-%d.log' % (args.model, time.time()))),
logging.StreamHandler()
]
)
logger = logging.getLogger()
if hp.data.train_dir == '' or hp.data.test_dir == '':
logger.error("train_dir, test_dir cannot be empty.")
raise Exception("Please specify directories of data in %s" % args.config)
writer = MyWriter(hp, log_dir)
trainloader = create_dataloader(hp, args, train=True)
testloader = create_dataloader(hp, args, train=False)
train(args, pt_dir, chkpt_path, trainloader, testloader, writer, logger, hp, hp_str)