-
Notifications
You must be signed in to change notification settings - Fork 4
/
inspect_data.py
412 lines (300 loc) · 14.6 KB
/
inspect_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import os
import sys
import itertools
import math
import logging
import json
import re
import random
from collections import OrderedDict
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.lines as lines
from matplotlib.patches import Polygon
# Root directory of the project
ROOT_DIR = os.path.abspath("../../")
# Import Mask RCNN
sys.path.append(ROOT_DIR) # To find local version of the library
from mrcnn import utils
from mrcnn import visualize
from mrcnn.visualize import display_images
import mrcnn.model as modellib
from mrcnn.model import log
# Run one of the code blocks
# Shapes toy dataset
# import shapes
# config = shapes.ShapesConfig()
# MS COCO Dataset
import table
config = table.TableConfig()
TABLE_DIR = os.path.abspath("") # TODO: enter value here
# Load dataset
dataset = table.TableDataset()
dataset.load_table(TABLE_DIR,"train")
# if config.NAME == 'table':
# dataset = shapes.ShapesDataset()
# dataset.load_shapes(500, config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1])
# elif config.NAME == "coco":
# dataset = coco.CocoDataset()
# dataset.load_coco(COCO_DIR, "train")
# Must call before using the dataset
dataset.prepare()
print("Image Count: {}".format(len(dataset.image_ids)))
print("Class Count: {}".format(dataset.num_classes))
for i, info in enumerate(dataset.class_info):
print("{:3}. {:50}".format(i, info['name']))
# Load and display random samples
image_ids = np.random.choice(dataset.image_ids, 4)
for image_id in image_ids:
image = dataset.load_image(image_id)
mask, class_ids = dataset.load_mask(image_id)
visualize.display_top_masks(image, mask, class_ids, dataset.class_names)
# # ## Bounding Boxes
# #
# # Rather than using bounding box coordinates provided by the source datasets, we compute the bounding boxes from masks instead. This allows us to handle bounding boxes consistently regardless of the source dataset, and it also makes it easier to resize, rotate, or crop images because we simply generate the bounding boxes from the updates masks rather than computing bounding box transformation for each type of image transformation.
# # In[20]:
# Load random image and mask.
# image_id = random.choice(dataset.image_ids)
# image = dataset.load_image(image_id)
# mask, class_ids = dataset.load_mask(image_id)
# # Compute Bounding box
# bbox = utils.extract_bboxes(mask)
# # Display image and additional stats
# print("image_id ", image_id, dataset.image_reference(image_id))
# log("image", image)
# log("mask", mask)
# log("class_ids", class_ids)
# log("bbox", bbox)
# # Display image and instances
# visualize.display_instances(image, bbox, mask, class_ids, dataset.class_names)
# # ## Resize Images
# #
# # To support multiple images per batch, images are resized to one size (1024x1024). Aspect ratio is preserved, though. If an image is not square, then zero padding is added at the top/bottom or right/left.
# # In[21]:
# # Load random image and mask.
# image_id = np.random.choice(dataset.image_ids, 1)[0]
# image = dataset.load_image(image_id)
# mask, class_ids = dataset.load_mask(image_id)
# original_shape = image.shape
# # Resize
# image, window, scale, padding, _ = utils.resize_image(
# image,
# min_dim=config.IMAGE_MIN_DIM,
# max_dim=config.IMAGE_MAX_DIM,
# mode=config.IMAGE_RESIZE_MODE)
# mask = utils.resize_mask(mask, scale, padding)
# # Compute Bounding box
# bbox = utils.extract_bboxes(mask)
# # Display image and additional stats
# print("image_id: ", image_id, dataset.image_reference(image_id))
# print("Original shape: ", original_shape)
# log("image", image)
# log("mask", mask)
# log("class_ids", class_ids)
# log("bbox", bbox)
# # Display image and instances
# visualize.display_instances(image, bbox, mask, class_ids, dataset.class_names)
# ## Mini Masks
#
# Instance binary masks can get large when training with high resolution images. For example, if training with 1024x1024 image then the mask of a single instance requires 1MB of memory (Numpy uses bytes for boolean values). If an image has 100 instances then that's 100MB for the masks alone.
#
# To improve training speed, we optimize masks by:
# * We store mask pixels that are inside the object bounding box, rather than a mask of the full image. Most objects are small compared to the image size, so we save space by not storing a lot of zeros around the object.
# * We resize the mask to a smaller size (e.g. 56x56). For objects that are larger than the selected size we lose a bit of accuracy. But most object annotations are not very accuracy to begin with, so this loss is negligable for most practical purposes. Thie size of the mini_mask can be set in the config class.
#
# To visualize the effect of mask resizing, and to verify the code correctness, we visualize some examples.
# In[22]:
# image_id = np.random.choice(dataset.image_ids, 1)[0]
# image, image_meta, class_ids, bbox, mask = modellib.load_image_gt(
# dataset, config, image_id, use_mini_mask=False)
# log("image", image)
# log("image_meta", image_meta)
# log("class_ids", class_ids)
# log("bbox", bbox)
# log("mask", mask)
# display_images([image]+[mask[:,:,i] for i in range(min(mask.shape[-1], 7))])
# # In[23]:
# visualize.display_instances(image, bbox, mask, class_ids, dataset.class_names)
# # In[24]:
# # Add augmentation and mask resizing.
# image, image_meta, class_ids, bbox, mask = modellib.load_image_gt(
# dataset, config, image_id, augment=True, use_mini_mask=True)
# log("mask", mask)
# display_images([image]+[mask[:,:,i] for i in range(min(mask.shape[-1], 7))])
# # In[25]:
# mask = utils.expand_mask(bbox, mask, image.shape)
# visualize.display_instances(image, bbox, mask, class_ids, dataset.class_names)
# # ## Anchors
# #
# # The order of anchors is important. Use the same order in training and prediction phases. And it must match the order of the convolution execution.
# #
# # For an FPN network, the anchors must be ordered in a way that makes it easy to match anchors to the output of the convolution layers that predict anchor scores and shifts.
# # * Sort by pyramid level first. All anchors of the first level, then all of the second and so on. This makes it easier to separate anchors by level.
# # * Within each level, sort anchors by feature map processing sequence. Typically, a convolution layer processes a feature map starting from top-left and moving right row by row.
# # * For each feature map cell, pick any sorting order for the anchors of different ratios. Here we match the order of ratios passed to the function.
# #
# # **Anchor Stride:**
# # In the FPN architecture, feature maps at the first few layers are high resolution. For example, if the input image is 1024x1024 then the feature meap of the first layer is 256x256, which generates about 200K anchors (256*256*3). These anchors are 32x32 pixels and their stride relative to image pixels is 4 pixels, so there is a lot of overlap. We can reduce the load significantly if we generate anchors for every other cell in the feature map. A stride of 2 will cut the number of anchors by 4, for example.
# #
# # In this implementation we use an anchor stride of 2, which is different from the paper.
# # In[26]:
# # Generate Anchors
# backbone_shapes = modellib.compute_backbone_shapes(config, config.IMAGE_SHAPE)
# anchors = utils.generate_pyramid_anchors(config.RPN_ANCHOR_SCALES,
# config.RPN_ANCHOR_RATIOS,
# backbone_shapes,
# config.BACKBONE_STRIDES,
# config.RPN_ANCHOR_STRIDE)
# # Print summary of anchors
# num_levels = len(backbone_shapes)
# anchors_per_cell = len(config.RPN_ANCHOR_RATIOS)
# print("Count: ", anchors.shape[0])
# print("Scales: ", config.RPN_ANCHOR_SCALES)
# print("ratios: ", config.RPN_ANCHOR_RATIOS)
# print("Anchors per Cell: ", anchors_per_cell)
# print("Levels: ", num_levels)
# anchors_per_level = []
# for l in range(num_levels):
# num_cells = backbone_shapes[l][0] * backbone_shapes[l][1]
# anchors_per_level.append(anchors_per_cell * num_cells // config.RPN_ANCHOR_STRIDE**2)
# print("Anchors in Level {}: {}".format(l, anchors_per_level[l]))
# # Visualize anchors of one cell at the center of the feature map of a specific level.
# # In[27]:
# ## Visualize anchors of one cell at the center of the feature map of a specific level
# # Load and draw random image
# image_id = np.random.choice(dataset.image_ids, 1)[0]
# image, image_meta, _, _, _ = modellib.load_image_gt(dataset, config, image_id)
# fig, ax = plt.subplots(1, figsize=(10, 10))
# ax.imshow(image)
# levels = len(backbone_shapes)
# for level in range(levels):
# colors = visualize.random_colors(levels)
# # Compute the index of the anchors at the center of the image
# level_start = sum(anchors_per_level[:level]) # sum of anchors of previous levels
# level_anchors = anchors[level_start:level_start+anchors_per_level[level]]
# print("Level {}. Anchors: {:6} Feature map Shape: {}".format(level, level_anchors.shape[0],
# backbone_shapes[level]))
# center_cell = backbone_shapes[level] // 2
# center_cell_index = (center_cell[0] * backbone_shapes[level][1] + center_cell[1])
# level_center = center_cell_index * anchors_per_cell
# center_anchor = anchors_per_cell * (
# (center_cell[0] * backbone_shapes[level][1] / config.RPN_ANCHOR_STRIDE**2) \
# + center_cell[1] / config.RPN_ANCHOR_STRIDE)
# level_center = int(center_anchor)
# # Draw anchors. Brightness show the order in the array, dark to bright.
# for i, rect in enumerate(level_anchors[level_center:level_center+anchors_per_cell]):
# y1, x1, y2, x2 = rect
# p = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=2, facecolor='none',
# edgecolor=(i+1)*np.array(colors[level]) / anchors_per_cell)
# ax.add_patch(p)
# # ## Data Generator
# #
# # In[28]:
# # Create data generator
# random_rois = 2000
# g = modellib.data_generator(
# dataset, config, shuffle=True, random_rois=random_rois,
# batch_size=4,
# detection_targets=True)
# # In[14]:
# # Uncomment to run the generator through a lot of images
# # to catch rare errors
# # for i in range(1000):
# # print(i)
# # _, _ = next(g)
# # In[29]:
# # Get Next Image
# if random_rois:
# [normalized_images, image_meta, rpn_match, rpn_bbox, gt_class_ids, gt_boxes, gt_masks, rpn_rois, rois], [mrcnn_class_ids, mrcnn_bbox, mrcnn_mask] = next(g)
# log("rois", rois)
# log("mrcnn_class_ids", mrcnn_class_ids)
# log("mrcnn_bbox", mrcnn_bbox)
# log("mrcnn_mask", mrcnn_mask)
# else:
# [normalized_images, image_meta, rpn_match, rpn_bbox, gt_boxes, gt_masks], _ = next(g)
# log("gt_class_ids", gt_class_ids)
# log("gt_boxes", gt_boxes)
# log("gt_masks", gt_masks)
# log("rpn_match", rpn_match, )
# log("rpn_bbox", rpn_bbox)
# image_id = modellib.parse_image_meta(image_meta)["image_id"][0]
# print("image_id: ", image_id, dataset.image_reference(image_id))
# # Remove the last dim in mrcnn_class_ids. It's only added
# # to satisfy Keras restriction on target shape.
# mrcnn_class_ids = mrcnn_class_ids[:,:,0]
# # In[30]:
# b = 0
# # Restore original image (reverse normalization)
# sample_image = modellib.unmold_image(normalized_images[b], config)
# # Compute anchor shifts.
# indices = np.where(rpn_match[b] == 1)[0]
# refined_anchors = utils.apply_box_deltas(anchors[indices], rpn_bbox[b, :len(indices)] * config.RPN_BBOX_STD_DEV)
# log("anchors", anchors)
# log("refined_anchors", refined_anchors)
# # Get list of positive anchors
# positive_anchor_ids = np.where(rpn_match[b] == 1)[0]
# print("Positive anchors: {}".format(len(positive_anchor_ids)))
# negative_anchor_ids = np.where(rpn_match[b] == -1)[0]
# print("Negative anchors: {}".format(len(negative_anchor_ids)))
# neutral_anchor_ids = np.where(rpn_match[b] == 0)[0]
# print("Neutral anchors: {}".format(len(neutral_anchor_ids)))
# # ROI breakdown by class
# for c, n in zip(dataset.class_names, np.bincount(mrcnn_class_ids[b].flatten())):
# if n:
# print("{:23}: {}".format(c[:20], n))
# # Show positive anchors
# fig, ax = plt.subplots(1, figsize=(16, 16))
# visualize.draw_boxes(sample_image, boxes=anchors[positive_anchor_ids],
# refined_boxes=refined_anchors, ax=ax)
# # In[31]:
# # Show negative anchors
# visualize.draw_boxes(sample_image, boxes=anchors[negative_anchor_ids])
# # In[18]:
# # Show neutral anchors. They don't contribute to training.
# visualize.draw_boxes(sample_image, boxes=anchors[np.random.choice(neutral_anchor_ids, 100)])
# # ## ROIs
# # In[32]:
# if random_rois:
# # Class aware bboxes
# bbox_specific = mrcnn_bbox[b, np.arange(mrcnn_bbox.shape[1]), mrcnn_class_ids[b], :]
# # Refined ROIs
# refined_rois = utils.apply_box_deltas(rois[b].astype(np.float32), bbox_specific[:,:4] * config.BBOX_STD_DEV)
# # Class aware masks
# mask_specific = mrcnn_mask[b, np.arange(mrcnn_mask.shape[1]), :, :, mrcnn_class_ids[b]]
# visualize.draw_rois(sample_image, rois[b], refined_rois, mask_specific, mrcnn_class_ids[b], dataset.class_names)
# # Any repeated ROIs?
# rows = np.ascontiguousarray(rois[b]).view(np.dtype((np.void, rois.dtype.itemsize * rois.shape[-1])))
# _, idx = np.unique(rows, return_index=True)
# print("Unique ROIs: {} out of {}".format(len(idx), rois.shape[1]))
# # In[33]:
# if random_rois:
# # Dispalay ROIs and corresponding masks and bounding boxes
# ids = random.sample(range(rois.shape[1]), 8)
# images = []
# titles = []
# for i in ids:
# image = visualize.draw_box(sample_image.copy(), rois[b,i,:4].astype(np.int32), [255, 0, 0])
# image = visualize.draw_box(image, refined_rois[i].astype(np.int64), [0, 255, 0])
# images.append(image)
# titles.append("ROI {}".format(i))
# images.append(mask_specific[i] * 255)
# titles.append(dataset.class_names[mrcnn_class_ids[b,i]][:20])
# display_images(images, titles, cols=4, cmap="Blues", interpolation="none")
# # In[34]:
# # Check ratio of positive ROIs in a set of images.
# if random_rois:
# limit = 10
# temp_g = modellib.data_generator(
# dataset, config, shuffle=True, random_rois=10000,
# batch_size=1, detection_targets=True)
# total = 0
# for i in range(limit):
# _, [ids, _, _] = next(temp_g)
# positive_rois = np.sum(ids[0] > 0)
# total += positive_rois
# print("{:5} {:5.2f}".format(positive_rois, positive_rois/ids.shape[1]))
# print("Average percent: {:.2f}".format(total/(limit*ids.shape[1])))
# # # In[ ]:
#