forked from ndrplz/self-driving-car
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize_data.py
84 lines (60 loc) · 2.85 KB
/
visualize_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from load_data import load_data_batch, split_train_val
import cv2
import numpy as np
import matplotlib.pyplot as plt
import os.path as path
def visualize_steering_distribution(train_data):
"""
Visualize the training ground truth distribution "as provided"
:param train_data: list of udacity training data
:return:
"""
train_steering = np.float32(np.array(train_data)[:, 3])
plt.title('Steering angle distribution in training data')
plt.hist(train_steering, 100, normed=0, facecolor='green', alpha=0.75)
plt.ylabel('# frames'), plt.xlabel('steering angle')
plt.show()
def visualize_bias_parameter_effect(train_data):
"""
Visualize how the 'bias' parameter influences the ground truth distribution
:param train_data:
:return:
"""
biases = np.linspace(start=0., stop=1., num=5)
fig, axarray = plt.subplots(len(biases))
plt.suptitle('Effect of bias parameter on steering angle distribution', fontsize=14, fontweight='bold')
for i, ax in enumerate(axarray.ravel()):
b = biases[i]
x_batch, y_batch = load_data_batch(train_data, batchsize=1024, augment_data=True, bias=b)
ax.hist(y_batch, 50, normed=1, facecolor='green', alpha=0.75)
ax.set_title('Bias: {:02f}'.format(b))
ax.axis([-1., 1., 0., 2.])
plt.tight_layout(pad=2, w_pad=0.5, h_pad=1.0)
plt.show()
if __name__ == '__main__':
train_data, val_data = split_train_val(csv_driving_data='data/driving_log.csv')
# visualize_steering_distribution(train_data)
# visualize_bias_parameter_effect(train_data)
# np.float(train_data[:, 3])
from load_data import preprocess
for i in range(len(train_data)):
central_frame = cv2.imread(path.join('data', train_data[i][0]))
steering = np.float32(train_data[i][3])
if train_data[i][0] == 'IMG/center_2016_12_01_13_34_43_116.jpg'\
or train_data[i][0] == 'IMG/center_2016_12_01_13_46_20_434.jpg'\
or train_data[i][0] == 'IMG/center_2016_12_01_13_39_48_531.jpg':
plt.close('all')
proc_frame = preprocess(central_frame)
plt.imshow(cv2.cvtColor(proc_frame.astype(np.uint8), code=cv2.COLOR_BGR2RGB))
print('{}'.format(train_data[i][0]))
plt.title('Steering: {:03f}'.format(steering))
plt.gca().set_axis_off()
filename = path.join('.', '{}.png'.format(train_data[i][0]))
plt.savefig(filename, facecolor='white', bbox_inches='tight')
plt.close('all')
plt.imshow(cv2.cvtColor(central_frame, code=cv2.COLOR_BGR2RGB))
print('{}'.format(train_data[i][0]))
plt.title('Steering: {:03f}'.format(steering))
plt.gca().set_axis_off()
filename = path.join('.', '{}'.format(train_data[i][0]))
plt.savefig(filename, facecolor='white', bbox_inches='tight')