forked from udacity/nd00333-capstone
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
51 lines (35 loc) · 1.77 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from sklearn.linear_model import LogisticRegression
import argparse
import os
import numpy as np
from sklearn.metrics import mean_squared_error
import joblib
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
import pandas as pd
from azureml.core.run import Run
from azureml.data.dataset_factory import TabularDatasetFactory
data_loc = "https://raw.githubusercontent.com/khalidw/Capstone-Project-Azure-Machine-Learning-Engineer/master/divorce.csv"
ds = TabularDatasetFactory.from_delimited_files(data_loc)
#Save model for current iteration
run = Run.get_context()
x_df = ds.to_pandas_dataframe().dropna()
y_df = x_df.pop("Class")
# TODO: Split data into train and test sets.
x_train, x_test, y_train, y_test = train_test_split(x_df, y_df, test_size=0.3, random_state=123)
def main():
# Add arguments to script
parser = argparse.ArgumentParser()
parser.add_argument('--C', type=float, default=1.0, help="Inverse of regularization strength. Smaller values cause stronger regularization")
parser.add_argument('--max_iter', type=int, default=100, help="Maximum number of iterations to converge")
args = parser.parse_args()
run.log("Regularization Strength:", np.float(args.C))
run.log("Max iterations:", np.int(args.max_iter))
model = LogisticRegression(C=args.C, max_iter=args.max_iter).fit(x_train, y_train)
accuracy = model.score(x_test, y_test)
run.log("Accuracy", np.float(accuracy))
#Save model for current iteration, also include the value for C and max_iter in filename, random_state=
os.makedirs('outputs', exist_ok=True)
joblib.dump(model, 'outputs/hyperDrive_{}_{}'.format(args.C,args.max_iter))
if __name__ == '__main__':
main()