-
Notifications
You must be signed in to change notification settings - Fork 1
/
environment.py
291 lines (234 loc) · 11.6 KB
/
environment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import gc
import numpy as np
import pandas as pd
import tensorflow as tf
import data_engineering.data_engineering as data_engineering
import model_loading
from buy_order_agent import BuyOrderAgent
from buy_signal_agent import BuySignalAgent
from model import Model
from sell_order_agent import SellOrderAgent
from sell_signal_agent import SellSignalAgent
class Environment:
class State:
def __init__(self, date, value):
self.date = date
self.value = value
__buy_signal_agent = None
__sell_signal_agent = None
__buy_order_agent = None
__sell_order_agent = None
# env variable
__evaluation_mode = False
__iteration = 0
__terminated = None
__date = None # current date on training
__bp = None
__running_agent = None # the active agent in the trading process
max_tau = 1000 # Tau is the C step where we update our target network
def __init__(self, csv_file, progress_recorder, num_train, transaction_cost=0.01):
self.data = data_engineering.load_data(csv_file)
self.transaction_cost = transaction_cost
self.data = data_engineering.clean_data(self.data)
self.turning_point_max, self.turning_point_min = data_engineering.create_turning_point_3d_matrix(self.data)
self.tech_indicator_matrix = data_engineering.create_technical_indicator_3d_matrix(self.data)
# add new cols, and truncate data so same row as above matrices
self.data = data_engineering.enrich_market_data(self.data)
# split data to train, test
self.train_index, self.test_index = data_engineering.split_data_set_index(self.data)
self.progress_recorder = progress_recorder
# env variable
self.__num_train = num_train
# simulate data for testing
# test_len = 5
# self.data = pd.DataFrame(
# {'date': [i for i in range(test_len)], 'Low': [2 * i for i in range(test_len)],
# 'High': [7 * i for i in range(test_len)], 'rate_of_close': [2 * i for i in range(test_len)],
# 'ma5': [3 * i for i in range(test_len)], 'Close': [5 * i for i in range(test_len)]}).set_index('date')
# self.turning_point_max = pd.DataFrame(
# {'date': [i for i in range(test_len)], 'col2': [2 * i for i in range(test_len)]}).set_index('date')
# self.turning_point_min = pd.DataFrame(
# {'date': [i for i in range(test_len)], 'col2': [2 * i for i in range(test_len)]}).set_index('date')
# self.tech_indicator_matrix = pd.DataFrame(
# {'date': [i for i in range(test_len)], 'col2': [2 * i for i in range(test_len)]}).set_index('date')
self.assert_data_consistency()
# reset tensorflow graph
tf.reset_default_graph()
def get_sell_signal_states_by_date(self, bp, date):
# get next day state, if next day state is not available, throws error
try:
td_market_data = self.data.loc[date]['Close']
profit = (td_market_data - bp) / bp
temp_series = pd.Series([profit])
profit_bin = pd.get_dummies(pd.cut(temp_series, data_engineering.bins, labels=data_engineering.names))
if profit == 0.0:
profit_bin[:] = 0
tp_max = self.turning_point_max.loc[date]
tp_min = self.turning_point_min.loc[date]
tech_indicator = self.tech_indicator_matrix.loc[date]
s = np.concatenate((tp_max.values.flatten(), tp_min.values.flatten(), tech_indicator.values.flatten(),
profit_bin.values.flatten()), axis=0)
state = self.State(date, s)
# print("generated sellSignalStates, date " + str(date))
return state
except KeyError:
print("ERROR getting sell signal state for date " + str(date))
return None
def get_buy_signal_states_by_date(self, date):
try:
tp_max = self.turning_point_max.loc[date]
tp_min = self.turning_point_min.loc[date]
tech_indicator = self.tech_indicator_matrix.loc[date]
s = np.concatenate((tp_max.values.flatten(), tp_min.values.flatten(), tech_indicator.values.flatten()),
axis=0)
state = self.State(date, s)
# print("generated buySignalStates, date " + str(date))
return state
except KeyError:
print("ERROR getting buy signal state for date " + str(date))
return None
def get_sell_order_states_by_date(self, date):
# get next day state, if next day state is not available, throws error
try:
tech_indicator = self.tech_indicator_matrix.loc[date]
s = tech_indicator.values.flatten()
state = self.State(date, s)
# print("generated sellOrderStates, date " + str(date))
return state
except KeyError:
print("ERROR getting sell order state for date " + str(date))
return None
def get_buy_order_states_by_date(self, date):
# get next day state, if next day state is not available, throws error
try:
tech_indicator = self.tech_indicator_matrix.loc[date]
s = tech_indicator.values.flatten()
state = self.State(date, s)
# print("generated buyOrderStates, date " + str(date))
return state
except KeyError:
print("ERROR getting buy order state for date " + str(date))
return None
def get_market_data_by_date(self, date):
market_data = self.data.loc[date]
# print("Getting market data, date: " + str(date) + " , \n" + str(market_data))
return market_data
def produce_state(self, agent, date):
s = None
if isinstance(agent, BuyOrderAgent):
s = self.get_buy_order_states_by_date(date)
elif isinstance(agent, SellOrderAgent):
s = self.get_sell_order_states_by_date(date)
elif isinstance(agent, SellSignalAgent):
s = self.get_sell_signal_states_by_date(self.__bp, date)
elif isinstance(agent, BuySignalAgent):
s = self.get_buy_signal_states_by_date(date)
return s
def get_evaluation_mode(self):
return self.__evaluation_mode
def get_buy_signal_agent(self):
return self.__buy_signal_agent
def set_agents(self, buy_signal_agent, sell_signal_agent, buy_order_agent, sell_order_agent):
self.__buy_signal_agent = buy_signal_agent
self.__sell_signal_agent = sell_signal_agent
self.__buy_order_agent = buy_order_agent
self.__sell_order_agent = sell_order_agent
def record(self, **data):
self.progress_recorder.process_recorded_data(**data)
def evaluate(self, evaluation_write_file=False):
print("Evaluation started.")
self.progress_recorder.reset(evaluation_write_file)
self.__evaluation_mode = True
self.__date = self.test_index[0]
while self.__evaluation_mode:
# able to get next date's market data, continue to trade in evaluation mode
self.start_new_epoch()
gc.collect()
def start_new_epoch(self):
# from buy (open position) to sell(close position) is considered an epoch
self.__running_agent = self.__buy_signal_agent
self.__bp = None
self.__terminated = False
if not self.__evaluation_mode:
self.__date = pd.Series(self.train_index).sample().values[0]
while not self.__terminated:
self.__running_agent.process_next_state(self.__date)
if not self.__terminated:
self.__date = self.get_next_day(self.__date)
if self.__date is None:
self.process_epoch_end(None, True)
def fill_up_memory(self):
while not self.__buy_signal_agent.model.memory.is_full() or not self.__sell_signal_agent.model.memory.is_full() \
or not self.__buy_order_agent.model.memory.is_full() or not self.__sell_order_agent.model.memory.is_full():
self.start_new_epoch()
gc.collect()
print("Finished filling up memory")
def set_buy_price(self, bp):
self.__bp = bp
def get_buy_price(self):
return self.__bp
def get_iteration(self):
return self.__iteration
def set_iteration(self, iteration):
self.__iteration = iteration
def invoke_buy_order_agent(self):
# invoking buy order agent with the state of the stock at the same day
self.__running_agent = self.__buy_order_agent
def invoke_sell_order_agent(self):
self.__running_agent = self.__sell_order_agent
def invoke_sell_signal_agent(self):
self.__running_agent = self.__sell_signal_agent
def invoke_buy_signal_agent(self, from_buy_order_agent, date, bp=None, sp=None):
# when invoking BSA, it is to update the BSA's rewards
self.__buy_signal_agent.update_reward(from_buy_order_agent, date, bp, sp)
def process_epoch_end(self, end_date, terminate=False):
if terminate:
# reset evaluation mode if it is terminated in evaluation mode
if self.__evaluation_mode:
print("Terminated in evaluation mode")
self.__evaluation_mode = False
else:
print("Terminated, iteration : " + str(self.__iteration))
self.__date = None
else:
if self.__evaluation_mode:
next_date_for_evaluation = self.get_next_day(end_date)
if next_date_for_evaluation is None:
self.__evaluation_mode = False
else:
self.__iteration = self.__iteration + 1
self.__date = None
# print("iteration: " + str(self.__iteration) + "/" + str(self.__num_train))
self.__terminated = True
def get_next_day(self, date):
return data_engineering.get_next_day(date, self.data)
def get_prev_day(self, date):
return data_engineering.get_prev_day(date, self.data)
def train_system(self, num_train=None):
if num_train is not None:
self.__num_train = num_train
while self.__iteration < self.__num_train:
self.start_new_epoch()
if self.__iteration % self.max_tau == 0:
self.__sell_signal_agent.model.update_target_graph()
print("Saved sell signal agent's target model.")
if self.__iteration % 10000 == 0: # 10000
self.evaluate()
self.progress_recorder.write_after_evaluation_end(self.__iteration, self.__num_train)
model_loading.save_tf_model(self.__buy_signal_agent)
model_loading.save_tf_model(self.__buy_order_agent)
model_loading.save_tf_model(self.__sell_signal_agent)
model_loading.save_tf_model(self.__sell_order_agent)
gc.collect()
def init(self):
Model.init() # init tensorflow global initializer
self.__sell_signal_agent.model.update_target_graph() # sync NN and targetNN
def load_model(self):
model_loading.load_tf_model(self.__buy_signal_agent)
model_loading.load_tf_model(self.__buy_order_agent)
model_loading.load_tf_model(self.__sell_signal_agent)
model_loading.load_tf_model(self.__sell_order_agent)
def assert_data_consistency(self):
assert len(self.data) == len(self.turning_point_max.index.levels[0])
assert len(self.turning_point_max.index.levels[0]) == len(self.turning_point_min.index.levels[0])
assert len(self.turning_point_min.index.levels[0]) == len(self.tech_indicator_matrix.index.levels[0])