-
Notifications
You must be signed in to change notification settings - Fork 86
/
arg.py
137 lines (115 loc) · 5.49 KB
/
arg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright (c) ByteDance, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import json
import os
import sys
from tap import Tap
HP_DEFAULT_NAMES = ['bs', 'ep', 'wp_ep', 'opt', 'base_lr', 'lr_scale', 'wd', 'mixup', 'rep_aug', 'drop_path', 'ema']
HP_DEFAULT_VALUES = {
'convnext_small': (4096, 400, 20, 'adam', 0.0002, 0.7, 0.01, 0.8, 3, 0.3, 0.9999),
'convnext_base': (4096, 400, 20, 'adam', 0.0001, 0.7, 0.01, 0.8, 3, 0.4, 0.9999),
'convnext_large': (4096, 200, 10, 'adam', 0.0001, 0.7, 0.02, 0.8, 3, 0.5, 0.9999),
'convnext_large_384': (1024, 200, 20, 'adam', 0.00006, 0.7, 0.01, 0.8, 3, 0.5, 0.99995),
'resnet50': (2048, 300, 5, 'lamb', 0.002, 0.7, 0.02, 0.1, 0, 0.05, 0.9999),
'resnet101': (2048, 300, 5, 'lamb', 0.001, 0.8, 0.02, 0.1, 0, 0.2, 0.9999),
'resnet152': (2048, 300, 5, 'lamb', 0.001, 0.8, 0.02, 0.1, 0, 0.2, 0.9999),
'resnet200': (2048, 300, 5, 'lamb', 0.001, 0.8, 0.02, 0.1, 0, 0.2, 0.9999),
}
class FineTuneArgs(Tap):
# environment
exp_name: str
exp_dir: str
data_path: str
model: str
resume_from: str = '' # resume from some checkpoint.pth
img_size: int = 224
dataloader_workers: int = 8
# ImageNet classification fine-tuning hyperparameters; see `HP_DEFAULT_VALUES` above for detailed default values
# - batch size, epoch
bs: int = 0 # global batch size (== batch_size_per_gpu * num_gpus)
ep: int = 0 # number of epochs
wp_ep: int = 0 # epochs for warmup
# - optimization
opt: str = '' # optimizer; 'adam' or 'lamb'
base_lr: float = 0. # lr == base_lr * (bs)
lr_scale: float = 0. # see file `lr_decay.py` for more details
clip: int = -1 # use gradient clipping if clip > 0
# - regularization tricks
wd: float = 0. # weight decay
mixup: float = 0. # use mixup if mixup > 0
rep_aug: int = 0 # use repeated augmentation if rep_aug > 0
drop_path: float = 0. # drop_path ratio
# - other tricks
ema: float = 0. # use EMA if ema > 0
sbn: bool = True # use SyncBatchNorm
# NO NEED TO SPECIFIED; each of these args would be updated in runtime automatically
lr: float = None
batch_size_per_gpu: int = 0
glb_batch_size: int = 0
device: str = 'cpu'
world_size: int = 1
global_rank: int = 0
local_rank: int = 0 # we DO USE this arg
is_master: bool = False
is_local_master: bool = False
cmd: str = ' '.join(sys.argv[1:])
commit_id: str = os.popen(f'git rev-parse HEAD').read().strip()
commit_msg: str = os.popen(f'git log -1').read().strip().splitlines()[-1].strip()
log_txt_name: str = '{args.exp_dir}/pretrain_log.txt'
tb_lg_dir: str = '' # tensorboard log directory
train_loss: float = 0.
train_acc: float = 0.
best_val_acc: float = 0.
cur_ep: str = ''
remain_time: str = ''
finish_time: str = ''
first_logging: bool = True
def log_epoch(self):
if not self.is_local_master:
return
if self.first_logging:
self.first_logging = False
with open(self.log_txt_name, 'w') as fp:
json.dump({
'name': self.exp_name, 'cmd': self.cmd, 'git_commit_id': self.commit_id, 'git_commit_msg': self.commit_msg,
'model': self.model,
}, fp)
fp.write('\n\n')
with open(self.log_txt_name, 'a') as fp:
json.dump({
'cur_ep': self.cur_ep,
'train_L': self.train_loss, 'train_acc': self.train_acc,
'best_val_acc': self.best_val_acc,
'rema': self.remain_time, 'fini': self.finish_time,
}, fp)
fp.write('\n')
def get_args(world_size, global_rank, local_rank, device) -> FineTuneArgs:
# parse args and prepare directories
args = FineTuneArgs(explicit_bool=True).parse_args()
d_name, b_name = os.path.dirname(os.path.abspath(args.exp_dir)), os.path.basename(os.path.abspath(args.exp_dir))
b_name = ''.join(ch if (ch.isalnum() or ch == '-') else '_' for ch in b_name)
args.exp_dir = os.path.join(d_name, b_name)
os.makedirs(args.exp_dir, exist_ok=True)
args.log_txt_name = os.path.join(args.exp_dir, 'finetune_log.txt')
args.tb_lg_dir = args.tb_lg_dir or os.path.join(args.exp_dir, 'tensorboard_log')
try: os.makedirs(args.tb_lg_dir, exist_ok=True)
except: pass
# fill in args.bs, args.ep, etc. with their default values (if their values are not explicitly specified, i.e., if bool(they) == False)
if args.model == 'convnext_large' and args.img_size == 384:
default_values = HP_DEFAULT_VALUES['convnext_large_384']
else:
default_values = HP_DEFAULT_VALUES[args.model]
for k, v in zip(HP_DEFAULT_NAMES, default_values):
if bool(getattr(args, k)) == False:
setattr(args, k, v)
# update other runtime args
args.world_size, args.global_rank, args.local_rank, args.device = world_size, global_rank, local_rank, device
args.is_master = global_rank == 0
args.is_local_master = local_rank == 0
args.batch_size_per_gpu = args.bs // world_size
args.glb_batch_size = args.batch_size_per_gpu * world_size
args.lr = args.base_lr * args.glb_batch_size / 256
return args