forked from evarol/HYDRA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhydra_solver.m
711 lines (650 loc) · 22.6 KB
/
hydra_solver.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
% HYDRA SOLVER
% Version 1.0.0 --- January 2018
% Section of Biomedical Image Analysis
% Department of Radiology
% University of Pennsylvania
% Richard Building
% 3700 Hamilton Walk, 7th Floor
% Philadelphia, PA 19104
%
% Web: https://www.med.upenn.edu/sbia/
% Email: sbia-software at uphs.upenn.edu
%
% Copyright (c) 2018 University of Pennsylvania. All rights reserved.
% See https://www.med.upenn.edu/sbia/software-agreement.html or COPYING file.
%
% Author:
% Erdem Varol
function model=hydra_solver(XK,Y,Cov,params);
%% Parameters:
% numconsensus -- (int>=0) 0 for no consensus, positive integer for number of consensus
% runs
% numiter -- (int>0) number of iterative assignment steps
% C -- (real>0) loss penalty
% k -- (int>0) number of polytope faces (final number may be less due to
% face dropping)
% kernel -- (0 (default) or 1), treat XK as X*X' solve dual problem (1), else XK is X
% solve primal(0)
% init_type -- 0 : assignment by random hyperplanes (not supported for regression), 1 : pure random
% assignment, 2: k-means assignment (default), 3: assignment by DPP random
% hyperplanes
% reg_type -- (1 or 2): 1 solves L1-SVM, 2 solves L2-SVM
%% parameters
if ~isfield(params,'numconsensus')
params.numconsensus=50;
end
if ~isfield(params,'numiter')
params.numiter=20;
end
if ~isfield(params,'C')
params.C=1;
end
if ~isfield(params,'k')
params.k=1;
end
if ~isfield(params,'kernel')
params.kernel=0;
end
if ~isfield(params,'init_type')
params.init_type=2;
end
if ~isfield(params,'balanceclasses')
params.balanceclasses=0;
end
if ~isfield(params,'fixedclustering')
params.fixedclustering=0;
end
if ~isfield(params,'fixedclusteringIDX')
params.fixedclusteringIDX=ones(size(XK,1),1);
end
if ~isfield(params,'reg_type');
params.reg_type=2;
end
params.type='classification';
initparams.init_type=params.init_type;
%% algorithms
switch params.type
case 'classification'
initparams.regression=0;
if params.fixedclustering==1
params.k=numel(unique(params.fixedclusteringIDX(Y==1,1)));
[~,~,params.fixedclusteringIDX(Y==1,1)]=unique(params.fixedclusteringIDX(Y==1,1));
end
%option for l2-regularization (default)
if params.reg_type==2;
if params.kernel==0
svmX=XK;
svmparams='-t 0';
initparams.kernel=0;
elseif params.kernel==1
svmX=[(1:size(XK,1))' XK];
svmparams='-t 4';
initparams.kernel=1;
end
if params.fixedclustering==0
IDX=zeros(size(Y(Y==1,:),1),params.numconsensus);
for tt=1:params.numconsensus
%Initialization
W=ones(size(Y,1),params.k)/params.k;
W(Y==1,:)=hydra_init_v2(XK,Y,params.k,initparams);
S=zeros(size(W));
cn=zeros(1,params.k);cp=zeros(1,params.k);nrm=zeros(1,params.k);
for t=1:params.numiter
for j=1:params.k
%Weights for negative and positive samples
cn(1,j)=1./mean(W(Y==-1,j),1);
cp(1,j)=1./mean(W(Y==1,j),1);
nrm(1,j)=cn(1,j)+cp(1,j);
cn(1,j)=cn(1,j)/nrm(1,j);
cp(1,j)=cp(1,j)/nrm(1,j);
if params.balanceclasses==1
%Weighted svm taking into account negative/positive imbalance to solve for polytope hyperplanes
mdl{j}=w_svmtrain(XK,Y,W(:,j),params.C,cp(1,j),cn(1,j),params.kernel);
else
%Unweighted svm to solve for polytope hyperplanes
mdl{j}=w_svmtrain(XK,Y,W(:,j),params.C,1,1,params.kernel);
end
%Solving subject projection score along each face of the polytope
S(:,j)=w_svmpredict(XK,mdl{j},params.kernel);
end
%Subject assignment to the face of the polytope with maximum score
[~,idx]=max(S(Y==1,:),[],2);
Wold=W;
W(Y==1,:)=0;
W(sub2ind(size(W),find(Y==1),idx))=1;
if norm(W-Wold,'fro')<1e-6;
disp('converged');
break
end
end
IDX(:,tt)=idx;
end
%Consensus steps, solving the assignments multiple times for stability
if params.numconsensus>1
IDXfinal=consensus_clustering(IDX,params.k);
W=zeros(size(Y,1),params.k);
W(sub2ind(size(W),find(Y==1),IDXfinal))=1;
W(Y==-1,:)=1/params.k;
cn=zeros(1,params.k);cp=zeros(1,params.k);nrm=zeros(1,params.k);
for j=1:params.k
cn(1,j)=1./mean(W(Y==-1,j),1);
cp(1,j)=1./mean(W(Y==1,j),1);
nrm(1,j)=cn(1,j)+cp(1,j);
cn(1,j)=cn(1,j)/nrm(1,j);
cp(1,j)=cp(1,j)/nrm(1,j);
if params.balanceclasses==1
mdl{j}=w_svmtrain(XK,Y,W(:,j),params.C,cp(1,j),cn(1,j),params.kernel);
else
mdl{j}=w_svmtrain(XK,Y,W(:,j),params.C,1,1,params.kernel);
end
end
else
IDXfinal=IDX;
end
%If using fixed clustering inputs, solve polytope once:
elseif params.fixedclustering==1
IDXfinal=params.fixedclusteringIDX(Y==1,1);
W=zeros(size(Y,1),params.k);
W(sub2ind(size(W),find(Y==1),IDXfinal))=1;
W(Y==-1,:)=1/params.k;
cn=zeros(1,params.k);cp=zeros(1,params.k);nrm=zeros(1,params.k);
for j=1:params.k
cn(1,j)=1./mean(W(Y==-1,j),1);
cp(1,j)=1./mean(W(Y==1,j),1);
nrm(1,j)=cn(1,j)+cp(1,j);
cn(1,j)=cn(1,j)/nrm(1,j);
cp(1,j)=cp(1,j)/nrm(1,j);
if params.balanceclasses==1
mdl{j}=w_svmtrain(XK,Y,W(:,j),params.C,cp(1,j),cn(1,j),params.kernel);
else
mdl{j}=w_svmtrain(XK,Y,W(:,j),params.C,1,1,params.kernel);
end
end
end
%store models and clustering outputs
model.mdl=mdl;
model.S=W(Y==1,:);
model.W=W;
model.Yhat=Y;
model.Yhat(Y==1)=IDXfinal;
model.cn=cn;
model.cp=cp;
end
%Option for sparse regularization
if params.reg_type==1
if params.kernel==0
svmX=sparse(XK);
initparams.kernel=0;
svmparams='-B 1';
elseif params.kernel==1
error('Kernel in sparse SVM not supported');
end
if params.fixedclustering==0
IDX=zeros(size(Y(Y==1,:),1),params.numconsensus);
for tt=1:params.numconsensus
W=ones(size(Y,1),params.k)/params.k;
W(Y==1,:)=hydra_init_v2(XK,Y,params.k,initparams);
S=zeros(size(W));
cn=zeros(1,params.k);cp=zeros(1,params.k);nrm=zeros(1,params.k);
for t=1:params.numiter
for j=1:params.k
cn(1,j)=1./mean(W(Y==-1,j),1);
cp(1,j)=1./mean(W(Y==1,j),1);
nrm(1,j)=cn(1,j)+cp(1,j);
cn(1,j)=cn(1,j)/nrm(1,j);
cp(1,j)=cp(1,j)/nrm(1,j);
if params.balanceclasses==1
mdl{j}=w_train(XK,Y,W(:,j),params.C,cp(1,j),cn(1,j));
else
mdl{j}=w_train(XK,Y,W(:,j),params.C,1,1);
end
S(:,j)=w_svmpredict(XK,mdl{j},0);
end
[~,idx]=max(S(Y==1,:),[],2);
Wold=W;
W(Y==1,:)=0;
W(sub2ind(size(W),find(Y==1),idx))=1;
if norm(W-Wold,'fro')<1e-6;
disp('converged');
break
end
end
IDX(:,tt)=idx;
end
if params.numconsensus>1
IDXfinal=consensus_clustering(IDX,params.k);
W=zeros(size(Y,1),params.k);
W(sub2ind(size(W),find(Y==1),IDXfinal))=1;
W(Y==-1,:)=1/params.k;
cn=zeros(1,params.k);cp=zeros(1,params.k);nrm=zeros(1,params.k);
for j=1:params.k
cn(1,j)=1./mean(W(Y==-1,j),1);
cp(1,j)=1./mean(W(Y==1,j),1);
nrm(1,j)=cn(1,j)+cp(1,j);
cn(1,j)=cn(1,j)/nrm(1,j);
cp(1,j)=cp(1,j)/nrm(1,j);
if params.balanceclasses==1
mdl{j}=w_train(XK,Y,W(:,j),params.C,cp(1,j),cn(1,j));
% train(W(:,j),Y,svmX,['-s 5 -c ' num2str(params.C) ' -q -w-1 ' num2str(cn(1,j)) ' -w1 ' num2str(cp(1,j)) ' ' svmparams]);
else
mdl{j}=w_train(XK,Y,W(:,j),params.C,1,1);
% train(W(:,j),Y,svmX,['-s 5 -c ' num2str(params.C) ' -q ' svmparams]);
end
end
else
IDXfinal=IDX;
end
elseif params.fixedclustering==1
IDXfinal=params.fixedclusteringIDX(Y==1,1);
W=zeros(size(Y,1),params.k);
W(sub2ind(size(W),find(Y==1),IDXfinal))=1;
W(Y==-1,:)=1/params.k;
cn=zeros(1,params.k);cp=zeros(1,params.k);nrm=zeros(1,params.k);
for j=1:params.k
cn(1,j)=1./mean(W(Y==-1,j),1);
cp(1,j)=1./mean(W(Y==1,j),1);
nrm(1,j)=cn(1,j)+cp(1,j);
cn(1,j)=cn(1,j)/nrm(1,j);
cp(1,j)=cp(1,j)/nrm(1,j);
if params.balanceclasses==1
mdl{j}=w_train(XK,Y,W(:,j),params.C,cp(1,j),cn(1,j));
% train(W(:,j),Y,svmX,['-s 5 -c ' num2str(params.C) ' -q -w-1 ' num2str(cn(1,j)) ' -w1 ' num2str(cp(1,j)) ' ' svmparams]);
else
mdl{j}=w_train(XK,Y,W(:,j),params.C,1,1);
% train(W(:,j),Y,svmX,['-s 5 -c ' num2str(params.C) ' -q ' svmparams]);
end
end
end
model.mdl=mdl;
model.S=W(Y==1,:);
model.W=W;
model.Yhat=Y;
model.Yhat(Y==1)=IDXfinal;
model.cn=cn;
model.cp=cp;
end
end
model.params=params;
end
function IDXfinal=consensus_clustering(IDX,k)
%Function performs consensus clustering on a co-occurence matrix
[n,~]=size(IDX);
cooc=zeros(n);
for i=1:n-1
for j=i+1:n
cooc(i,j)=sum(IDX(i,:)==IDX(j,:));
end
%cooc(i,i)=sum(IDX(i,:)==IDX(i,:))/2;
end
cooc=cooc+cooc';
L=diag(sum(cooc,2))-cooc;
Ln=eye(n)-diag(sum(cooc,2).^(-1/2))*cooc*diag(sum(cooc,2).^(-1/2));
Ln(isnan(Ln))=0;
[V,~]=eig(Ln);
try
IDXfinal=kmeans(V(:,1:k),k,'emptyaction','drop','replicates',20);
catch
disp('Complex Eigenvectors Found...Using Non-Normalized Laplacian');
[V,~]=eig(L);
IDXfinal=kmeans(V(:,1:k),k,'emptyaction','drop','replicates',20);
end
end
function [S,Yhat]=hydra_init_v2(XK,Y,k,params)
%Function performs initialization for supervised clustering
nker=@(K)(K./sqrt(diag(K)*diag(K)'));
init_type=params.init_type;
if params.regression==0
if params.kernel==0
X=XK;
if init_type==0; %% Random hyperplanes
idxp=find(Y==1);
idxn=find(Y==-1);
prob=zeros(size(X(Y==1,:),1),k);
for j=1:k
ip=randi(length(idxp));
in=randi(length(idxn));
w0=(X(idxp(ip),:)-X(idxn(in),:));
w0=w0/norm(w0);
prob(:,j)=bsxfun(@times,X(Y==1,:),1./norms(X(Y==1,:),2,2))*w0';
end
l=min(prob-1,0);
d=prob-1;
S=LP1(l,d);
elseif init_type==1; %% Random assignment
S=drchrnd(ones(1,k),size(X(Y==1,:),1));
elseif init_type==2; %% K-means
IDX=kmeans(X(Y==1,:),k,'replicates',20);
S=zeros(size(X(Y==1,:),1),k);
S(sub2ind(size(S),(1:size(S,1))',IDX))=1;
elseif init_type==3; %% DPP random hyperplanes
idxp=find(Y==1);
idxn=find(Y==-1);
num=size(X,1);
W=zeros(num,size(X,2));
for j=1:num
ip=randi(length(idxp));
in=randi(length(idxn));
W(j,:)=(X(idxp(ip),:)-X(idxn(in),:));
end
KW=W*W';
KW=KW./sqrt(diag(KW)*diag(KW)');
Widx = sample_dpp(decompose_kernel(KW),k);
prob=zeros(size(X(Y==1,:),1),k);
for j=1:k
prob(:,j)=bsxfun(@times,X(Y==1,:),1./norms(X(Y==1,:),2,2))*(W(Widx(j),:))';
end
l=min(prob-1,0);
d=prob-1;
S=LP1(l,d);
end
Yhat=-ones(size(Y));
[~,Yhat(Y==1)]=max(S,[],2);
elseif params.kernel==1
K=XK;
if init_type==0
Kn=nker(K);
idxp=find(Y==1);
idxn=find(Y==-1);
prob=zeros(size(K(Y==1,:),1),k);
for j=1:k
ip=randi(length(idxp));
in=randi(length(idxn));
prob(:,j)=Kn(:,idxp(ip))-Kn(:,idxn(in));
end
l=min(prob-1,0);
d=prob-1;
S=LP1(l,d);
elseif init_type==1
S=drchrnd(ones(1,k),size(K(Y==1,:),1));
elseif init_type==2
IDX=knkmeans(K(Y==1,Y==1),k,20);
S=zeros(size(K(Y==1,:),1),k);
S(sub2ind(size(S),(1:size(S,1))',IDX))=1;
elseif init_type==3;
Kn=nker(K);
idxp=find(Y==1);
idxn=find(Y==-1);
num=size(K,1);
KW=zeros(num,num);
KWidxp=zeros(num,1);
KWidxn=zeros(num,1);
for i=1:num
KWidxp(i,1)=randi(length(idxp));
KWidxn(i,1)=randi(length(idxn));
end
for i=1:num
for j=i:num
KW(i,j)=K(idxp(KWidxp(i,1)),idxp(KWidxp(j,1)))+K(idxn(KWidxn(i,1)),idxn(KWidxn(j,1)))-K(idxp(KWidxp(i,1)),idxn(KWidxn(j,1)))-K(idxn(KWidxn(i,1)),idxp(KWidxp(j,1)));
KW(j,i)=KW(i,j);
end
end
KW=KW./sqrt(diag(KW)*diag(KW)');
Widx = sample_dpp(decompose_kernel(KW),k);
prob=zeros(size(K(Y==1,:),1),k);
for j=1:k
prob(:,j)=Kn(Y==1,idxp(KWidxp(Widx(j))))-Kn(Y==1,idxn(KWidxn(Widx(j))));
end
l=min(prob-1,0);
d=prob-1;
S=LP1(l,d);
end
Yhat=-ones(size(Y));
[~,Yhat(Y==1)]=max(S,[],2);
end
end
end
function s=LP1(l,d)
% Proportional assignment based on margin
invL=1./l;
idx=find(invL==Inf);
invL(idx)=d(idx);
for i=1:size(invL,1)
pos=find(invL(i,:)>0); %#ok<*EFIND>
neg=find(invL(i,:)<0);
if ~isempty(pos)
invL(i,neg)=0; %#ok<*FNDSB>
else
invL(i,:)=invL(i,:)/min(invL(i,:),[],2);
invL(i,invL(i,:)<1)=0;
end
end
s=bsxfun(@times,invL,1./sum(invL,2));
end
function epsilon=svr_parameter_selection(XK,Y,params)
%Function selects epsilon for svr
sigma=noise_estimator(XK,Y,params);
epsilon=3*sigma*sqrt(log(size(XK,1))/size(XK,1));
end
function sigma=noise_estimator(XK,Y,params)
if params.kernel==1
Ypred=loo_kernel_knn(XK,Y,5);
elseif params.kernel==0
K=XK*XK';
Ypred=loo_kernel_knn(K,Y,5);
end
sigma=sqrt((5/4)*(1/size(XK,1))*sum((Y-Ypred).^2));
end
function Ypred=loo_kernel_knn(K,Y,k)
[n,~]=size(K);
D=kernel2dist(K);
Ypred=zeros(n,1);
for i=1:n
Yi=Y((1:n)~=i);
[~,idx]=sort(D(i,(1:n)~=i),2,'ascend');
Ypred(i,1)=mean(Yi(idx(1:k)));
end
end
function D=kernel2dist(K)
D=zeros(size(K));
for i=1:size(K,1)-1
for j=i+1:size(K,1)
D(i,j)=K(i,i)+K(j,j)-2*K(i,j);
end
end
D=D+D';
end
function Y = sample_dpp(L,k)
% sample a set Y from a dpp. L is a decomposed kernel, and k is (optionally)
% the size of the set to return.
if ~exist('k','var')
% choose eigenvectors randomly
D = L.D ./ (1+L.D);
v = find(rand(length(D),1) <= D);
else
% k-DPP
v = sample_k(L.D,k);
end
k = length(v);
V = L.V(:,v);
% iterate
Y = zeros(k,1);
for i = k:-1:1
% compute probabilities for each item
P = sum(V.^2,2);
P = P / sum(P);
% choose a new item to include
Y(i) = find(rand <= cumsum(P),1);
% choose a vector to eliminate
j = find(V(Y(i),:),1);
Vj = V(:,j);
V = V(:,[1:j-1 j+1:end]);
% update V
V = V - bsxfun(@times,Vj,V(Y(i),:)/Vj(Y(i)));
% orthogonalize
for a = 1:i-1
for b = 1:a-1
V(:,a) = V(:,a) - V(:,a)'*V(:,b)*V(:,b);
end
V(:,a) = V(:,a) / norm(V(:,a));
end
end
Y = sort(Y);
end
function L = decompose_kernel(M)
L.M = M;
[V,D] = eig(M);
L.V = real(V);
L.D = real(diag(D));
end
function S = sample_k(lambda,k)
% pick k lambdas according to p(S) \propto prod(lambda \in S)
% compute elementary symmetric polynomials
E = elem_sympoly(lambda,k);
% iterate
i = length(lambda);
remaining = k;
S = zeros(k,1);
while remaining > 0
% compute marginal of i given that we choose remaining values from 1:i
if i == remaining
marg = 1;
else
marg = lambda(i) * E(remaining,i) / E(remaining+1,i+1);
end
% sample marginal
if rand < marg
S(remaining) = i;
remaining = remaining - 1;
end
i = i-1;
end
end
function E = elem_sympoly(lambda,k)
% given a vector of lambdas and a maximum size k, determine the value of
% the elementary symmetric polynomials:
% E(l+1,n+1) = sum_{J \subseteq 1..n,|J| = l} prod_{i \in J} lambda(i)
N = length(lambda);
E = zeros(k+1,N+1);
E(1,:) = 1;
for l = (1:k)+1
for n = (1:N)+1
E(l,n) = E(l,n-1) + lambda(n-1)*E(l-1,n-1);
end
end
end
function [label, energy,LABEL,ENERGY] = knkmeans(K,init,replicates)
% Perform kernel k-means clustering.
% K: kernel matrix
% init: k (1 x 1) or label (1 x n, 1<=label(i)<=k)
% Reference: [1] Kernel Methods for Pattern Analysis
% by John Shawe-Taylor, Nello Cristianini
% Written by Michael Chen ([email protected]).
if nargin<3
replicates=20;
end
LABEL=zeros(size(K,1),replicates);
ENERGY=zeros(1,replicates);
for TT=1:replicates
n = size(K,1);
if length(init) == 1
label = ceil(init*rand(1,n));
elseif size(init,1) == 1 && size(init,2) == n
label = init;
else
error('ERROR: init is not valid.');
end
last = 0;
while any(label ~= last)
[u,~,label] = unique(label,'legacy'); % remove empty clusters
k = length(u);
E = sparse(label,1:n,1,k,n,n);
E = bsxfun(@times,E,1./sum(E,2));
T = E*K;
Z = repmat(diag(T*E'),1,n)-2*T;
last = label;
[val, label] = min(Z,[],1);
end
[~,~,label] = unique(label,'legacy'); % remove empty clusters
LABEL(:,TT)=label';
ENERGY(:,TT) = sum(val)+trace(K);
end
[energy,IDX]=min(ENERGY,[],2);
label=LABEL(:,IDX);
end
function r = drchrnd(a,n)
% take a sample from a dirichlet distribution
p = length(a);
r = gamrnd(repmat(a,n,1),1,n,p);
r = r ./ repmat(sum(r,2),1,p);
end
function o = norms( x, p, dim )
%Function computes vector norms
switch p,
case 1,
o = sum( abs( x ), dim );
case 2,
o = sqrt( sum( x .* conj( x ), dim ) );
case Inf,
o = max( abs( x ), [], dim );
otherwise,
o = sum( abs( x ) .^ p, dim ) .^ ( 1 / p );
end
end
function mdl=w_svmtrain(X,Y,W,C,Cp,Cn,dual)
%Function solves weighted l2-svm, requires matlab optimization toolbox version 2014+
if any(isnan([Cp Cn]))
mdl.w=zeros(size(X,2),1);
mdl.b=0;
warning('Cluster dropped');
return
end
if dual==0
X=X;
elseif dual==1
[U,S,~]=svd(X);
X=U*sqrt(S);
end
idxp=find(Y==1);
idxn=find(Y==-1);
Cw=zeros(size(Y));
Cw(idxp)=Cp;
Cw(idxn)=Cn;
[n,d] = size(X);
H = diag([ones(1, d), zeros(1, n + 1)]);
f = [zeros(1,d+1) C*(ones(1,n).*W'.*Cw')]';
p = diag(Y) * X;
A = -[p Y eye(n)];
B = -ones(n,1);
lb = [-inf * ones(d+1,1) ;zeros(n,1)];
options=optimoptions('quadprog','Display','off','OptimalityTolerance',1e-8);
z = quadprog(H,f,A,B,[],[],lb,[],[],options);
mdl.w = z(1:d,:);
mdl.b = z(d+1:d+1,:);
mdl.eps = z(d+2:d+n+1,:);
end
function mdl=w_train(X,Y,W,C,Cp,Cn)
%Function solves weighted l1-svm, requires matlab optimization toolbox version 2014+
if any(isnan([Cp Cn]))
mdl.w=zeros(size(X,2),1);
mdl.b=0;
%warning('Cluster dropped');
return
end
idxp=find(Y==1);
idxn=find(Y==-1);
Cw=zeros(size(Y,1),1);
Cw(idxp)=Cp;
Cw(idxn)=Cn;
[n,d]=size(X);
H=blkdiag(zeros(d),zeros(d),diag(C*W.*Cw));
f=[ones(d,1);ones(d,1);zeros(n,1)];
A=-[diag(Y)*X -diag(Y)*X eye(n)];
b=-ones(n,1);
lb=[zeros(d,1);zeros(d,1);zeros(n,1)];
ub=[inf(d,1);inf(d,1);inf(n,1)];
options=optimoptions('quadprog','Display','off','OptimalityTolerance',1e-8);
v = quadprog(H,f,A,b,[],[],lb,ub,[],options);
mdl.w=v(1:d)-v(d+1:2*d);
mdl.b=0;
end
function S=w_svmpredict(X,mdl,dual)
%Function makes svm prediction using model
if dual==0
X=X;
elseif dual==1
[U,S,~]=svd(X);
X=U*sqrt(S);
end
S=X*mdl.w+mdl.b;
end