diff --git a/keras/applications/efficientnet.py b/keras/applications/efficientnet.py index 619499e671a..a7d9639eb5f 100644 --- a/keras/applications/efficientnet.py +++ b/keras/applications/efficientnet.py @@ -192,7 +192,7 @@ Args: include_top: Whether to include the fully-connected - layer at the top of the network. Defaults to True. + layer at the top of the network. Defaults to `True`. weights: One of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. Defaults to 'imagenet'. @@ -203,7 +203,7 @@ if `include_top` is False. It should have exactly 3 inputs channels. pooling: Optional pooling mode for feature extraction - when `include_top` is `False`. Defaults to None. + when `include_top` is `False`. Defaults to `None`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. @@ -215,8 +215,8 @@ be applied. classes: Optional number of classes to classify images into, only to be specified if `include_top` is True, and - if no `weights` argument is specified. Defaults to 1000 (number of - ImageNet classes). + if no `weights` argument is specified. 1000 is how many + ImageNet classes there are. Defaults to `1000`. classifier_activation: A `str` or callable. The activation function to use on the "top" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the "top" layer. @@ -852,10 +852,10 @@ def preprocess_input(x, data_format=None): Args: x: A floating point `numpy.array` or a `tf.Tensor`. - data_format: Optional data format of the image tensor/array. Defaults to - None, in which case the global setting - `tf.keras.backend.image_data_format()` is used (unless you changed it, - it defaults to "channels_last").{mode} + data_format: Optional data format of the image tensor/array. `None` means + the global setting `tf.keras.backend.image_data_format()` is used + (unless you changed it, it uses "channels_last"). + Defaults to `None`. Returns: Unchanged `numpy.array` or `tf.Tensor`.