forked from morisUtokyo/mTR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chaining_old.cpp
357 lines (327 loc) · 12.7 KB
/
chaining_old.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
/*
Copyright (c) 2019, Shinichi Morishita
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of the FreeBSD Project.
*/
#include "chaining.h"
#include "mTR.h"
//#include <stdio.h>
#include <iostream>
#include <set>
#include <map>
#include <string.h>
using namespace std;
//#define DEBUG_chaining
#define MH_distance_threshold 0.3 // Two 2mer frequency distributions are identical if their Manhattan distance is less than or equal to this threshold. A small threshold generates smaller groups of repeat units.
#define MIN_REP_LEN_CONCATENATE 100
#define MIN_DISTANCE_CONCATENATE 2000
class Alignment{
public:
int start_x, start_y, end_x, end_y;
int initial_score, score;
Alignment* predecessor;
char* readID;
//char readID[BLK];
int inputLen;
int rep_start;
int rep_end;
int repeat_len;
int rep_period;
int Num_freq_unit;
int Num_matches;
int Num_mismatches;
int Num_insertions;
int Num_deletions;
int Kmer;
int match_gain;
int mismatch_penalty;
int indel_penalty;
char *string;
int *string_score;
//char string[MAX_PERIOD];
//int string_score[MAX_PERIOD];
Alignment(char* a_readID,
int a_inputLen,
int a_rep_start,
int a_rep_end,
int a_repeat_len,
int a_rep_period,
int a_Num_freq_unit,
int a_Num_matches,
int a_Num_mismatches,
int a_Num_insertions,
int a_Num_deletions,
int a_Kmer,
int a_match_gain,
int a_mismatch_penalty,
int a_indel_penalty,
char* a_string,
int* a_string_score)
{
readID = new char[BLK];
string = new char[BLK];
string_score= new int[MAX_PERIOD];
start_x = a_rep_start;
start_y = a_rep_start;
end_x = a_rep_end;
end_y = a_rep_end;
initial_score = a_Num_matches;
score = a_Num_matches;
predecessor = NULL;
strcpy( readID, a_readID );
inputLen = a_inputLen;
rep_start = a_rep_start;
rep_end = a_rep_end;
repeat_len = a_repeat_len;
rep_period = a_rep_period;
Num_freq_unit = a_Num_freq_unit;
Num_matches = a_Num_matches;
Num_mismatches = a_Num_mismatches;
Num_insertions = a_Num_insertions;
Num_deletions = a_Num_deletions;
Kmer = a_Kmer;
match_gain = a_match_gain;
mismatch_penalty= a_mismatch_penalty;
indel_penalty = a_indel_penalty;
strcpy( string, a_string );
for(int i=0; i<rep_period; i++){
string_score[i] = a_string_score[i]; }
}
~Alignment(){
delete [] readID;
delete [] string;
delete [] string_score;
}
void print_one_TR(int print_alignment)const{
printf(
"%.50s\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%f\t%d\t%d\t%d\t%s\n",
readID,
inputLen,
rep_start+1, // 1-origin
rep_end+1, // 1-origin
repeat_len,
rep_period,
Num_freq_unit,
Num_matches,
(float)Num_matches/repeat_len,
Num_mismatches,
Num_insertions,
Num_deletions,
string
);
#ifdef DEBUG_unit_score
printf("\n\t%s", string);
for(int k=Kmer; Kmer<=k; k--){
printf("\n%i\t", k);
print_freq(rep_start, rep_end, rep_period, const_cast<char*>(string), inputLen, k);
}
printf("\n");
#endif
#ifdef Print_overlapping_event
if(predecessor != NULL){
if(predecessor->rep_end > rep_start){
printf("------------ overlapping ----------------\n");
}
}
#endif
if(print_alignment == 1){
printf("\n");
pretty_print_alignment( const_cast<char*>(string), rep_period, rep_start, rep_end, match_gain, mismatch_penalty, indel_penalty);
}
fflush(stdout);
}
void print_all_TRs(int print_alignment)const{
if(predecessor != NULL){
predecessor->print_all_TRs(print_alignment);
}
print_one_TR(print_alignment);
}
void print_one_alignment()const{
cout << "(" << start_x << "," << start_y << ")\t-> (" << end_x << "," << end_y <<
")\t units = " << rep_period << " x " << Num_freq_unit <<
"\tscores = " << initial_score << "\t" << score << endl;
}
void print_chain()const{
if(predecessor != NULL){
predecessor->print_chain();
}
print_one_alignment();
}
bool isStart(int x_coord)const{
if(x_coord == start_x)
return true;
else
return false;
}
void set_predecessor(Alignment* a){
predecessor = a;
score += a->score;
}
};
set<Alignment*> set_of_alignments;
void insert_an_alignment_into_set(
char* readID,
int inputLen,
int rep_start,
int rep_end,
int repeat_len,
int rep_period,
int Num_freq_unit,
int Num_matches,
int Num_mismatches,
int Num_insertions,
int Num_deletions,
int Kmer,
int match_gain,
int mismatch_penalty,
int indel_penalty,
char* string,
int* string_score)
{
set_of_alignments.insert(
new Alignment(
readID,
inputLen,
rep_start,
rep_end,
repeat_len,
rep_period,
Num_freq_unit,
Num_matches,
Num_mismatches,
Num_insertions,
Num_deletions,
Kmer,
match_gain,
mismatch_penalty,
indel_penalty,
string,
string_score));
}
void chaining(int print_alignment){
if(set_of_alignments.empty()){
return;
}
multimap<int, Alignment*> sorted_by_X;
multimap<int, Alignment*> sorted_by_Y;
// Sort alignments with their start and end positions
for(set<Alignment*>::iterator iter = set_of_alignments.begin();
iter != set_of_alignments.end();
iter++)
{
if((*iter)->start_x + MAX_LEN_overlapping <= (*iter)->end_x ){
sorted_by_X.insert(make_pair( (*iter)->start_x,*iter) );
sorted_by_X.insert(make_pair( ((*iter)->end_x - MAX_LEN_overlapping), *iter) );
}
}
// Assign an optinal alignment to each alignment by updating the list sorted by Y
for(multimap<int, Alignment*>::iterator iter = sorted_by_X.begin();
iter != sorted_by_X.end();
iter++)
{
Alignment* tmpX_alignment = iter->second;
multimap<int, Alignment*>::iterator tmpY, prevY;
if(tmpX_alignment->isStart(iter->first)){
if(!sorted_by_Y.empty()){
// Search for a position such that tmpY->end_y <= tmpX_alignment->end_y
for(tmpY = sorted_by_Y.begin(), prevY = tmpY;
tmpY != sorted_by_Y.end();
prevY = tmpY, tmpY++)
{
if(prevY->second->end_y <= tmpX_alignment->start_y + MAX_LEN_overlapping &&
tmpY->second->end_y > tmpX_alignment->start_y + MAX_LEN_overlapping )
{
tmpX_alignment->set_predecessor(prevY->second);
break;
}
}
if(prevY->second->end_y <= tmpX_alignment->start_y + MAX_LEN_overlapping &&
tmpY == sorted_by_Y.end())
{
tmpX_alignment->set_predecessor(prevY->second);
}
}
}else{
if(sorted_by_Y.empty()){
sorted_by_Y.insert(make_pair(tmpX_alignment->end_y, tmpX_alignment));
#ifdef DEBUG_chaining
cout << "insert\t";
tmpX_alignment->print_one_TR(print_alignment);
#endif
}else{
bool flag = true; // flag for indicating that tmpX_alignment should be inserted
for(tmpY = sorted_by_Y.begin(); tmpY != sorted_by_Y.end(); tmpY++)
{
if(tmpY->second->end_y <= tmpX_alignment->end_y &&
tmpY->second->score > tmpX_alignment->score)
{ // A better alignment was found.
flag = false;
}
if(tmpY->second->end_y > tmpX_alignment->end_y){
break;
}
}
if(flag){
sorted_by_Y.insert(make_pair(tmpX_alignment->end_y, tmpX_alignment));
#ifdef DEBUG_chaining
cout << "insert\t";
tmpX_alignment->print_one_TR(print_alignment);
#endif
// Delete unnecessary alignments
for(tmpY = sorted_by_Y.begin();
tmpY != sorted_by_Y.end();
tmpY++)
{
if(tmpY->second->end_y >= tmpX_alignment->end_y &&
tmpY->second->score < tmpX_alignment->score)
{
#ifdef DEBUG_chaining
cout << "delete\t"; tmpY->second->print_one_TR(print_alignment);
#endif
sorted_by_Y.erase(tmpY);
}
}
}
}
}
}
// Print the maximum chain
// Concatenate fragmented alignmnets of an identical tandem repeat
//(sorted_by_Y.rbegin())->second->concatenate_similar_alignments();
#ifdef DEBUG_chaining
(sorted_by_Y.rbegin())->second->print_chain();
#endif
(sorted_by_Y.rbegin())->second->print_all_TRs(print_alignment);
// delete all
for(set<Alignment*>::iterator iter = set_of_alignments.begin();
iter != set_of_alignments.end(); iter++){
set_of_alignments.erase(iter);
}
for(multimap<int, Alignment*>::iterator iter = sorted_by_X.begin();
iter != sorted_by_X.end(); iter++){
sorted_by_X.erase(iter);
}
for(multimap<int, Alignment*>::iterator iter = sorted_by_Y.begin();
iter != sorted_by_Y.end(); iter++){
sorted_by_Y.erase(iter);
}
}