-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
43 lines (36 loc) · 1.21 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import streamlit as st
import json
import requests
import matplotlib.pyplot as plt
import numpy as np
st.set_option('deprecation.showPyplotGlobalUse', False)
URI = 'https://ml-server-lol-1.herokuapp.com'
st.title('Neural Network Visualizer')
st.sidebar.markdown('## Input Image')
if st.button('Get random prediction'):
response = requests.post(URI, data={})
response = json.loads(response.text)
preds = response.get('prediction')
image = response.get('image')
image = np.reshape(image,(28,28))
st.sidebar.image(image,width=150)
for layer, p in enumerate(preds):
numbers = np.squeeze(np.array(p))
plt.figure(figsize=(32,4))
if layer==2:
row=1
col=10
else:
row=2
col=16
for i,number in enumerate(numbers):
plt.subplot(row,col,i+1)
plt.imshow(number*np.ones((8,8,3)).astype('float32'))
plt.xticks([])
plt.yticks([])
if layer==2:
plt.xlabel(str(i), fontsize=40)
plt.subplots_adjust(wspace=0.05,hspace=0.05)
plt.tight_layout()
st.text('Layer {}'.format(layer+1))
st.pyplot()