-
Notifications
You must be signed in to change notification settings - Fork 914
/
index.md
66 lines (51 loc) · 2.39 KB
/
index.md
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Deployment
In this section we provide guides for different deployment methods; your choice will depend on a range of factors.
If you decide to deploy your Kedro project onto a single machine, you should consult our [guide to single-machine deployment](single_machine.md), and decide whether to:
* [use Docker for container-based deployment](./single_machine.md#container-based)
* [use package-based deployment](./single_machine.md#package-based)
* [use the CLI to clone and deploy your codebase to a server](./single_machine.md#cli-based)
If your pipeline is sizeable, you may want to run it across separate machines, so will need to consult our [guide to distributed deployment](distributed.md).
![Decision making diagram for deploying Kedro projects](../meta/images/deployment-diagram.png)
% Mermaid code, see https://github.com/kedro-org/kedro/wiki/Render-Mermaid-diagrams
% flowchart TD
% A{Can your Kedro pipeline run on a single machine?} -- YES --> B[Consult the single-machine deployment guide];
% B --> C{Do you have Docker on your machine?};
% C -- YES --> D[Use a container-based approach];
% C -- NO --> E[Use the CLI or package mode];
% A -- NO --> F[Consult the distributed deployment guide];
% F --> G["What distributed platform are you using?<br/><br/>Check out the guides for:<br/><br/><li>Airflow</li><li>Amazon SageMaker</li><li>AWS Step functions</li><li>Azure</li><li>Dask</li><li>Databricks</li><li>Kubeflow Workflows</li><li>Prefect</li><li>Vertex AI</li>"];
% style G text-align:left
This following pages provide information for deployment to, or integration with, the following:
* [Airflow](airflow_astronomer.md)
* [Amazon SageMaker](amazon_sagemaker.md)
* [Amazon EMR Serverless](amazon_emr_serverless.md)
* [AWS Step functions](aws_step_functions.md)
* [Azure](azure.md)
* [Dask](dask.md)
* [Databricks](./databricks/index.md)
* [Kubeflow Workflows](kubeflow.md)
* [Prefect](prefect.md)
* [Vertex AI](vertexai.md)
``` {warning}
We also have legacy documentation pages for the following deployment targets, but these have not been tested against recent Kedro releases and we cannot guarantee them:
* for [Argo Workflows](argo.md)
* for [AWS Batch](aws_batch.md)
```
```{toctree}
:maxdepth: 1
:hidden:
single_machine
distributed
airflow_astronomer
amazon_sagemaker
amazon_emr_serverless
aws_step_functions
azure
dask
databricks/index
kubeflow
prefect
vertexai
argo
aws_batch
```