-
Register an account for Supabase
-
Click New project\
-
Input required fields
Name, name of the project to be created. (e.g. Flowise)
Database Password, password to your postgres database. (e.g. click Generate a password)\ -
Click Create new project and wait for the project to finish setting up
-
Click SQL Editor\
-
Click New query\
-
Copy & Paste query and run it by
Ctrl + Enter
or click RUN
Table name: documents
Query name: match_documents-- Enable the pgvector extension to work with embedding vectors create extension vector; -- Create a table to store your documents create table documents ( id bigserial primary key, content text, -- corresponds to Document.pageContent metadata jsonb, -- corresponds to Document.metadata embedding vector(1536) -- 1536 works for OpenAI embeddings, change if needed ); -- Create a function to search for documents create function match_documents ( query_embedding vector(1536), match_count int DEFAULT null, filter jsonb DEFAULT '{}' ) returns table ( id bigint, content text, metadata jsonb, similarity float ) language plpgsql as $$ #variable_conflict use_column begin return query select id, content, metadata, 1 - (documents.embedding <=> query_embedding) as similarity from documents where metadata @> filter order by documents.embedding <=> query_embedding limit match_count; end; $$;sql
-
Click Project Settings\
-
Get your Project URL & API Key
-
Copy & Paste each details (API Key, URL, Table Name, Query Name) into Supabase Upsert Document node or Supabase Load Existing node
-
Document can be connect with any node under Document Loader category
-
Embeddings can be connect with any node under Embeddings category