-
Notifications
You must be signed in to change notification settings - Fork 2
/
riverraid.py
367 lines (331 loc) · 14.5 KB
/
riverraid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import numpy
from numpy import random
from numpy.core.numeric import ndarray
from scipy.misc.pilutil import imresize
from scipy.misc.pilutil import imshow
from keras.models import Sequential
from keras import backend as K
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D
from keras.optimizers import Adam
from keras.optimizers import RMSprop
from keras.utils import np_utils, plot_model
from keras.datasets import mnist
from collections import deque
import random
import pydot
import gym
import scipy.misc
import os
import pickle
import time
import argparse
import json
STATS = {}
def flush_stats():
with open('stats.json', 'w') as f:
print >>f, json.dumps(STATS)
# hyperparameters
ACTION_NOOP = 0
argParser = argparse.ArgumentParser()
argParser.add_argument('--num-episodes', type=int, default=1000000)
argParser.add_argument('--num-iterations', type=int, default=100000)
argParser.add_argument('--epsilon-min', type=float, default=0.1)
argParser.add_argument('--epsilon-decay', type=float, default=(0.9/1000000))
argParser.add_argument('--learning-rate', type=float, default=0.00025)
argParser.add_argument('--minibatch-size', type=int, default=32)
argParser.add_argument('--replay-memory-size', type=int, default=125000)
argParser.add_argument('--discount-factor', type=float, default=0.99)
argParser.add_argument('--update-frequency', type=int, default=10000)
argParser.add_argument('--replay-start-size', type=int, default=50000)
argParser.add_argument('--k-operation-count', type=int, default=4)
argParser.add_argument('--action-space', type=int, default=18)
argParser.add_argument('--action-fire', type=int, default=1)
argParser.add_argument('--action-noop', type=int, default=0)
argParser.add_argument('--loss-function', default='HUBER')
argParser.add_argument('--gym-environment', default='RiverraidNoFrameskip-v0')
args = argParser.parse_args()
print args
NUM_EPISODES = args.num_episodes
NUM_ITERATIONS = args.num_iterations
EPSILON_MIN = args.epsilon_min
EPSILON_DECAY = args.epsilon_decay
LEARNING_RATE = args.learning_rate
MINIBATCH_SIZE = args.minibatch_size
REPLAY_MEMORY_SIZE = args.replay_memory_size
DISCOUNT_FACTOR = args.discount_factor
UPDATE_FREQUENCY = args.update_frequency
REPLAY_START_SIZE = args.replay_start_size
K_OPERATION_COUNT = args.k_operation_count
ACTION_SPACE = range(args.action_space)
NUM_ACTIONS = len(ACTION_SPACE)
ACTION_FIRE = args.action_fire
ACTION_NOOP = args.action_noop
LOSS_FUNCTION = args.loss_function
gym_environment = args.gym_environment
PRINT_FREQUENCY = 200
PRINT_COUNT = 0
#manav's pseudo-huber
#def huber_loss(target, prediction):
#error = prediction - target
#return K.sum(K.sqrt(1+K.square(error))-1, axis=-1)
def huber_loss(y_true, y_pred, clip_value=1):
clip_value = 1
# Huber loss, see https://en.wikipedia.org/wiki/Huber_loss and
# https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
# for details.
assert clip_value > 0.
x = y_true - y_pred
if numpy.isinf(clip_value):
# Spacial case for infinity since Tensorflow does have problems
# if we compare `K.abs(x) < np.inf`.
return .5 * K.square(x)
condition = K.abs(x) < clip_value
squared_loss = .5 * K.square(x)
linear_loss = clip_value * (K.abs(x) - .5 * clip_value)
if K.backend() == 'tensorflow':
import tensorflow as tf
if hasattr(tf, 'select'):
return tf.select(condition, squared_loss, linear_loss) # condition, true, false
else:
return tf.where(condition, squared_loss, linear_loss) # condition, true, false
elif K.backend() == 'theano':
from theano import tensor as T
return T.switch(condition, squared_loss, linear_loss)
else:
raise RuntimeError('Unknown backend "{}".'.format(K.backend()))
def initNet():
model = Sequential()
model.add(Convolution2D(32, (8, 8), strides=(4, 4), activation='relu', input_shape=(84, 84, 4), kernel_initializer='glorot_uniform'))
model.add(Convolution2D(64, (4, 4), strides=(2, 2), activation='relu', input_shape=(20, 20, 32), kernel_initializer='glorot_uniform'))
model.add(Convolution2D(64, (3, 3), activation='relu', input_shape=(9, 9, 64), kernel_initializer='glorot_uniform'))
model.add(Flatten())
model.add(Dense(512, activation='relu', kernel_initializer='glorot_uniform'))
model.add(Dense(NUM_ACTIONS, activation='linear', input_shape=(512,), kernel_initializer='glorot_uniform'))
#model.compile(loss='mse', optimizer=RMSprop(lr=LEARNING_RATE, epsilon=0.01, decay=0.95, rho=0.95))
if LOSS_FUNCTION == 'MSE':
model.compile(loss='MSE', optimizer=RMSprop(lr=LEARNING_RATE, epsilon=0.01, decay=0.95, rho=0.95))
else:
model.compile(loss=huber_loss, optimizer=RMSprop(lr=LEARNING_RATE))
return model
def preprocess(recentObservations):
def getMaxBetweenTwo(ob1, ob2):
return numpy.maximum(ob1,ob2)
def step1():
maxObservations = []
for i in xrange(0, K_OPERATION_COUNT * 2, 2):
maxObservations.append(getMaxBetweenTwo(recentObservations[i], recentObservations[i+1]))
return maxObservations
def rgb2gray(rgb):
r,g,b = rgb[:,:,0],rgb[:,:,1],rgb[:,:,2]
gray = 0.299 * r + 0.587 * g + 0.114 * b
return gray
def getYChannelForOneObservation(ob):
yData = rgb2gray(ob)
return yData
def getYChannelsForAllObservations(maxObservations):
yChannels = []
for ob in maxObservations:
yChannels.append(getYChannelForOneObservation(ob))
return yChannels
def step2(yChannels):
preprocessedImage = ndarray((84,84,4))
for imgCounter in xrange(len(yChannels)):
# TODO: look into bilinear reduction
preprocessedImage[:,:, imgCounter] = imresize(yChannels[imgCounter], (84, 84))
return preprocessedImage
return (numpy.round(step2(getYChannelsForAllObservations(step1())))).astype(numpy.uint8)
#handle loss of life similar to end of game
lives = 4
#this function works only for a noFrameSkip environment
#when an action A is provided it is run as follows:
#t0,t4,t8,t12 is A
#t1,t2,t3,t5,t6,t7,t9,t10,t11,t13,t14,t15 is NOOP
#observations obtained by running the following are recorded
#hence we return K_OPERATION_COUNT *2 observations
#(t0,t1), (t4,t5), (t8,t9) (t12,t13)
#the above tuples are then preprocessed later to obtain a frame
def executeKActions(action):
recentKObservations = []
rewardTotal = 0
done = False
global lives
for i in xrange(K_OPERATION_COUNT * K_OPERATION_COUNT):
# env.render()
observation = []
reward = 0
done = 0
info = dict()
#when an action A is provided it is run as follows:
#t0,t4,t8,t12 is A
#t1,t2,t3,t5,t6,t7,t9,t10,t11,t13,t14,t15 is NOOP
if (i % K_OPERATION_COUNT) == 0:
observation, reward, done, info = env.step(action)
else:
observation, reward, done, info = env.step(ACTION_NOOP)
#observations obtained by running the following are recorded
#(t0,t1), (t4,t5), (t8,t9) (t12,t13)
if ((i % K_OPERATION_COUNT) == 0) or ((i % K_OPERATION_COUNT) == 1):
recentKObservations.append(observation)
rewardTotal += reward
if done or (info["ale.lives"] == (lives -1)):
recentKObservations = []
recentKObservations = [observation] * ((K_OPERATION_COUNT * 2) )
lives = lives - 1
rewardTotal = -1
break
else:
lives = info["ale.lives"]
if rewardTotal > 0:
rewardTotal = 1
elif rewardTotal < 0:
rewardTotal = -1
return recentKObservations, rewardTotal, done
if __name__ == '__main__':
#stochastic and frame skip(provided action is only run 75 percent of time
#25% of time the previous action is run
#env = gym.make('Riverraid-v0')
#non-stochastic and frame skip
#env = gym.make('Riverraid-v4')
#stochastic and no frame skip (for real final results)
gym_environment = 'RiverraidNoFrameskip-v0'
env = gym.make(gym_environment)
#non-stochastic and no frame skip (best for checking if you algo is learing)
#env = gym.make('RiverraidNoFrameskip-v4')
memory = deque([], REPLAY_MEMORY_SIZE)
Q = initNet()
Q.summary()
if os.path.exists("model.h5"):
print "Found weights from previous run, loading it"
Q.load_weights("model.h5")
print "Found weights from previous run, loading complete!"
else :
exit
QHat = initNet()
weights = Q.get_weights()
QHat.set_weights(weights)
#saving the initialization makes results more reproducable
#also note that this is purposely different from model.h5 which is for load only
model_num = 0
QHat.save_weights("model_{}.h5".format(model_num))
model_num += 1
epsilon = 1.0
done = False
c = 0
average = 0
#load replay_start_size observations. generate if needed. We initially
#load this many obeservatins into memory before we start training the model
if os.path.exists("memory.txt"):
pass
print "initial set of observations found, loading it"
memory = pickle.load(open("memory.txt", "rb"))
print "initial set of observations found, loading complete!"
else:
env.reset()
action = random.choice(ACTION_SPACE)
recentKObservations, rewardFromKSteps, done = executeKActions(action)
currentPhi = preprocess(recentKObservations)
print "Replay memory loading"
for j in xrange(REPLAY_START_SIZE):
if (j%1000)==0:
print j,
action = random.choice(ACTION_SPACE)
recentKObservations, rewardFromKSteps, done = executeKActions(action)
nextPhi = preprocess(recentKObservations)
# add it to the replay memory
memory.append((currentPhi, action, rewardFromKSteps, nextPhi, done))
currentPhi = nextPhi
if done:
env.reset()
action = random.choice(ACTION_SPACE)
recentKObservations, rewardFromKSteps, done = executeKActions(action)
currentPhi = preprocess(recentKObservations)
print "Writing replay memory to file"
pickle.dump(memory, open("memory.txt", "wb"))
print "Replay memory written to file"
for i_episode in xrange(NUM_EPISODES):
sgd_skip = 0
num_target_updates=0
episodeStart = time.time()
total_reward = 0
env.reset()
# TODO: maybe just need to do step2 here
action = random.choice(ACTION_SPACE)
recentKObservations, rewardFromKSteps, done = executeKActions(action)
currentPhi = preprocess(recentKObservations)
predicted_action=0
random_action=0
for t in xrange(NUM_ITERATIONS):
action = None
# choose random action with probability epsilon:
val = random.uniform(0, 1)
if val <= epsilon:
action = random.choice(ACTION_SPACE)
random_action+=1
else:
predicted_action+=1
action = numpy.argmax(Q.predict(currentPhi[numpy.newaxis,:,:,:], batch_size=1)[0])
recentKObservations, rewardFromKSteps, done = executeKActions(action)
# get preprocessed image
nextPhi = preprocess(recentKObservations)
# add it to the replay memory
memory.append((currentPhi, action, rewardFromKSteps, nextPhi, done))
currentPhi = nextPhi
total_reward += rewardFromKSteps
STATS['total_episode'] = NUM_EPISODES
if done:
average += total_reward
print("Episode={} reward={} steps={} secs={} epsilon={} predicted_action={} random_action={}".format(i_episode, total_reward, t+1, time.time() - episodeStart, epsilon, predicted_action, random_action))
PRINT_COUNT += 1
if PRINT_COUNT % PRINT_FREQUENCY == 0:
STATS['episode'] = i_episode
STATS['reward'] = total_reward
STATS['steps'] = t + 1
STATS['secs'] = time.time() - episodeStart
STATS['epsilon'] = epsilon
STATS['predicted_action'] = predicted_action
STATS['random_action'] = random_action
flush_stats()
PRINT_COUNT = 0
break
# update and do gradient descent
if len(memory) > MINIBATCH_SIZE and sgd_skip == 4:
sgd_skip = 0
minibatch = random.sample(memory, MINIBATCH_SIZE)
index = 0
selfPhiList = numpy.empty((MINIBATCH_SIZE,84,84,4))
actualList = numpy.empty((MINIBATCH_SIZE,len(ACTION_SPACE)))
for selfPhi, action, reward, nextPhi, done in minibatch:
target = reward
# update target if not in end state
if not done:
prediction = numpy.amax(QHat.predict(nextPhi[numpy.newaxis,:,:,:], batch_size=1)[0])
target = (reward + DISCOUNT_FACTOR * prediction)
actual = Q.predict(selfPhi[numpy.newaxis,:,:,:], batch_size=1)
actual[0][action] = target
actualList[index] = actual[0]
selfPhiList[index] = selfPhi
index += 1
#imshow(selfPhi[:,:, 3])
#imshow(nextPhi[:,:, 0])
Q.fit(selfPhiList, actualList, epochs=1, verbose=0)
c += 1
# update Qhat
if c == UPDATE_FREQUENCY:
weights = Q.get_weights()
QHat.set_weights(weights)
QHat.save_weights("model_{}.h5".format(model_num))
print "Evaluating the model:", "model_{}.h5".format(model_num)
os.system("python riverraid_eval.py model_{}.h5 {}".format(model_num, gym_environment))
# model_eval.evaluate("model_{}.h5".format(model_num))
print "Evaluation Done!"
model_num += 1
c = 0
print "target NN update={}".format(num_target_updates)
else:
sgd_skip += 1
if epsilon > EPSILON_MIN:
epsilon -= EPSILON_DECAY
STATS['average_reward'] = average/NUM_EPISODES
flush_stats()
print "average reward={}".format(average/NUM_EPISODES)