forked from experiencor/keras-yolo2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocessing.py
284 lines (228 loc) · 13.5 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import os
import cv2
import copy
import numpy as np
import imgaug as ia
from imgaug import augmenters as iaa
from keras.utils import Sequence
import xml.etree.ElementTree as ET
from utils import BoundBox, normalize, bbox_iou
def parse_annotation(ann_dir, img_dir, labels=[]):
all_imgs = []
seen_labels = {}
for ann in sorted(os.listdir(ann_dir)):
img = {'object':[]}
tree = ET.parse(ann_dir + ann)
for elem in tree.iter():
if 'filename' in elem.tag:
img['filename'] = img_dir + elem.text
if 'width' in elem.tag:
img['width'] = int(elem.text)
if 'height' in elem.tag:
img['height'] = int(elem.text)
if 'object' in elem.tag or 'part' in elem.tag:
obj = {}
for attr in list(elem):
if 'name' in attr.tag:
obj['name'] = attr.text
if obj['name'] in seen_labels:
seen_labels[obj['name']] += 1
else:
seen_labels[obj['name']] = 1
if len(labels) > 0 and obj['name'] not in labels:
break
else:
img['object'] += [obj]
if 'bndbox' in attr.tag:
for dim in list(attr):
if 'xmin' in dim.tag:
obj['xmin'] = int(round(float(dim.text)))
if 'ymin' in dim.tag:
obj['ymin'] = int(round(float(dim.text)))
if 'xmax' in dim.tag:
obj['xmax'] = int(round(float(dim.text)))
if 'ymax' in dim.tag:
obj['ymax'] = int(round(float(dim.text)))
if len(img['object']) > 0:
all_imgs += [img]
return all_imgs, seen_labels
class BatchGenerator(Sequence):
def __init__(self, images,
config,
shuffle=True,
jitter=True,
norm=None):
self.generator = None
self.images = images
self.config = config
self.shuffle = shuffle
self.jitter = jitter
self.norm = norm
self.counter = 0
self.anchors = [BoundBox(0, 0, config['ANCHORS'][2*i], config['ANCHORS'][2*i+1]) for i in range(int(len(config['ANCHORS'])//2))]
### augmentors by https://github.com/aleju/imgaug
sometimes = lambda aug: iaa.Sometimes(0.5, aug)
# Define our sequence of augmentation steps that will be applied to every image
# All augmenters with per_channel=0.5 will sample one value _per image_
# in 50% of all cases. In all other cases they will sample new values
# _per channel_.
self.aug_pipe = iaa.Sequential(
[
# apply the following augmenters to most images
#iaa.Fliplr(0.5), # horizontally flip 50% of all images
#iaa.Flipud(0.2), # vertically flip 20% of all images
#sometimes(iaa.Crop(percent=(0, 0.1))), # crop images by 0-10% of their height/width
sometimes(iaa.Affine(
#scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
#translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, # translate by -20 to +20 percent (per axis)
#rotate=(-5, 5), # rotate by -45 to +45 degrees
#shear=(-5, 5), # shear by -16 to +16 degrees
#order=[0, 1], # use nearest neighbour or bilinear interpolation (fast)
#cval=(0, 255), # if mode is constant, use a cval between 0 and 255
#mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
)),
# execute 0 to 5 of the following (less important) augmenters per image
# don't execute all of them, as that would often be way too strong
iaa.SomeOf((0, 5),
[
#sometimes(iaa.Superpixels(p_replace=(0, 1.0), n_segments=(20, 200))), # convert images into their superpixel representation
iaa.OneOf([
iaa.GaussianBlur((0, 3.0)), # blur images with a sigma between 0 and 3.0
iaa.AverageBlur(k=(2, 7)), # blur image using local means with kernel sizes between 2 and 7
iaa.MedianBlur(k=(3, 11)), # blur image using local medians with kernel sizes between 2 and 7
]),
iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)), # sharpen images
#iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), # emboss images
# search either for all edges or for directed edges
#sometimes(iaa.OneOf([
# iaa.EdgeDetect(alpha=(0, 0.7)),
# iaa.DirectedEdgeDetect(alpha=(0, 0.7), direction=(0.0, 1.0)),
#])),
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5), # add gaussian noise to images
iaa.OneOf([
iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
#iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
]),
#iaa.Invert(0.05, per_channel=True), # invert color channels
iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
iaa.Multiply((0.5, 1.5), per_channel=0.5), # change brightness of images (50-150% of original value)
iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
#iaa.Grayscale(alpha=(0.0, 1.0)),
#sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
#sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05))) # sometimes move parts of the image around
],
random_order=True
)
],
random_order=True
)
if shuffle: np.random.shuffle(self.images)
def __len__(self):
return int(np.ceil(float(len(self.images))/self.config['BATCH_SIZE']))
def __getitem__(self, idx):
l_bound = idx*self.config['BATCH_SIZE']
r_bound = (idx+1)*self.config['BATCH_SIZE']
if r_bound > len(self.images):
r_bound = len(self.images)
l_bound = r_bound - self.config['BATCH_SIZE']
instance_count = 0
x_batch = np.zeros((r_bound - l_bound, self.config['IMAGE_H'], self.config['IMAGE_W'], 3)) # input images
b_batch = np.zeros((r_bound - l_bound, 1 , 1 , 1 , self.config['TRUE_BOX_BUFFER'], 4)) # list of self.config['TRUE_self.config['BOX']_BUFFER'] GT boxes
y_batch = np.zeros((r_bound - l_bound, self.config['GRID_H'], self.config['GRID_W'], self.config['BOX'], 4+1+self.config['CLASS'])) # desired network output
for train_instance in self.images[l_bound:r_bound]:
# augment input image and fix object's position and size
img, all_objs = self.aug_image(train_instance, jitter=self.jitter)
# construct output from object's x, y, w, h
true_box_index = 0
for obj in all_objs:
if obj['xmax'] > obj['xmin'] and obj['ymax'] > obj['ymin'] and obj['name'] in self.config['LABELS']:
center_x = .5*(obj['xmin'] + obj['xmax'])
center_x = center_x / (float(self.config['IMAGE_W']) / self.config['GRID_W'])
center_y = .5*(obj['ymin'] + obj['ymax'])
center_y = center_y / (float(self.config['IMAGE_H']) / self.config['GRID_H'])
grid_x = int(np.floor(center_x))
grid_y = int(np.floor(center_y))
if grid_x < self.config['GRID_W'] and grid_y < self.config['GRID_H']:
obj_indx = self.config['LABELS'].index(obj['name'])
center_w = (obj['xmax'] - obj['xmin']) / (float(self.config['IMAGE_W']) / self.config['GRID_W']) # unit: grid cell
center_h = (obj['ymax'] - obj['ymin']) / (float(self.config['IMAGE_H']) / self.config['GRID_H']) # unit: grid cell
box = [center_x, center_y, center_w, center_h]
# find the anchor that best predicts this box
best_anchor = -1
max_iou = -1
shifted_box = BoundBox(0,
0,
center_w,
center_h)
for i in range(len(self.anchors)):
anchor = self.anchors[i]
iou = bbox_iou(shifted_box, anchor)
if max_iou < iou:
best_anchor = i
max_iou = iou
# assign ground truth x, y, w, h, confidence and class probs to y_batch
y_batch[instance_count, grid_y, grid_x, best_anchor, 0:4] = box
y_batch[instance_count, grid_y, grid_x, best_anchor, 4 ] = 1.
y_batch[instance_count, grid_y, grid_x, best_anchor, 5+obj_indx] = 1
# assign the true box to b_batch
b_batch[instance_count, 0, 0, 0, true_box_index] = box
true_box_index += 1
true_box_index = true_box_index % self.config['TRUE_BOX_BUFFER']
# assign input image to x_batch
if self.norm != None:
x_batch[instance_count] = self.norm(img)
else:
# plot image and bounding boxes for sanity check
for obj in all_objs:
if obj['xmax'] > obj['xmin'] and obj['ymax'] > obj['ymin']:
cv2.rectangle(img[:,:,::-1], (obj['xmin'],obj['ymin']), (obj['xmax'],obj['ymax']), (255,0,0), 3)
cv2.putText(img[:,:,::-1], obj['name'],
(obj['xmin']+2, obj['ymin']+12),
0, 1.2e-3 * img.shape[0],
(0,255,0), 2)
x_batch[instance_count] = img
# increase instance counter in current batch
instance_count += 1
self.counter += 1
#print ' new batch created', self.counter
return [x_batch, b_batch], y_batch
def on_epoch_end(self):
if self.shuffle: np.random.shuffle(self.images)
self.counter = 0
def aug_image(self, train_instance, jitter):
image_name = train_instance['filename']
image = cv2.imread(image_name)
h, w, c = image.shape
all_objs = copy.deepcopy(train_instance['object'])
if jitter:
### scale the image
scale = np.random.uniform() / 10. + 1.
image = cv2.resize(image, (0,0), fx = scale, fy = scale)
### translate the image
max_offx = (scale-1.) * w
max_offy = (scale-1.) * h
offx = int(np.random.uniform() * max_offx)
offy = int(np.random.uniform() * max_offy)
image = image[offy : (offy + h), offx : (offx + w)]
### flip the image
flip = np.random.binomial(1, .5)
if flip > 0.5: image = cv2.flip(image, 1)
image = self.aug_pipe.augment_image(image)
# resize the image to standard size
image = cv2.resize(image, (self.config['IMAGE_H'], self.config['IMAGE_W']))
image = image[:,:,::-1]
# fix object's position and size
for obj in all_objs:
for attr in ['xmin', 'xmax']:
if jitter: obj[attr] = int(obj[attr] * scale - offx)
obj[attr] = int(obj[attr] * float(self.config['IMAGE_W']) / w)
obj[attr] = max(min(obj[attr], self.config['IMAGE_W']), 0)
for attr in ['ymin', 'ymax']:
if jitter: obj[attr] = int(obj[attr] * scale - offy)
obj[attr] = int(obj[attr] * float(self.config['IMAGE_H']) / h)
obj[attr] = max(min(obj[attr], self.config['IMAGE_H']), 0)
if jitter and flip > 0.5:
xmin = obj['xmin']
obj['xmin'] = self.config['IMAGE_W'] - obj['xmax']
obj['xmax'] = self.config['IMAGE_W'] - xmin
return image, all_objs