-
Notifications
You must be signed in to change notification settings - Fork 2
/
binary_classification.py
executable file
·250 lines (206 loc) · 8.54 KB
/
binary_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from data_processing import preprocessing
import pandas as pd
import numpy as np
import torch
import random
from sklearn import metrics
import transformers
import re
import emoji
import os
from torch import cuda
from sklearn.model_selection import train_test_split
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler
from tqdm import tqdm, trange
from pathlib import Path
from transformers import (
WEIGHTS_NAME,
AdamW,
AutoConfig,
AutoModel,
AutoTokenizer,
PreTrainedModel,
PreTrainedTokenizer,
get_linear_schedule_with_warmup,
)
class CustomDataset(Dataset):
def __init__(self, dataframe, tokenizer, max_len):
self.tokenizer = tokenizer
self.data = dataframe
self.comment_text = dataframe.comment_text
self.targets = self.data.list
self.max_len = max_len
def __len__(self):
return len(self.comment_text)
def __getitem__(self, index):
comment_text = str(self.comment_text[index])
comment_text = " ".join(comment_text.split())
inputs = self.tokenizer.encode_plus(
comment_text,
None,
add_special_tokens=True,
max_length=self.max_len,
pad_to_max_length=True,
return_token_type_ids=True
)
ids = inputs['input_ids']
mask = inputs['attention_mask']
token_type_ids = inputs["token_type_ids"]
return {
'ids': torch.tensor(ids, dtype=torch.long),
'mask': torch.tensor(mask, dtype=torch.long),
'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long),
'targets': torch.tensor(self.targets[index], dtype=torch.float)
}
class ModelClass(torch.nn.Module):
def __init__(self, model_path, dropout, target_labels):
super(ModelClass, self).__init__()
self.l1 = AutoModel.from_pretrained(model_path)
self.l2 = torch.nn.Dropout(dropout)
if "hindi-bert" in model_path:
self.hidden_size = 256
else:
self.hidden_size = 768
self.l3 = torch.nn.Linear(self.hidden_size, target_labels)
def forward(self, ids, mask, token_type_ids):
output_1= self.l1(ids, attention_mask = mask, token_type_ids = token_type_ids)
output_2 = self.l2(output_1[0][:,0,:])
output = self.l3(output_2)
return output
class bin_classifier():
def __init__(self, arr, model_name, target, epochs, lr):
self.output_dir = './models'
self.model_path = model_name
self.tokenizer_path = model_name
self.max_len = 200
self.TRAIN_BATCH_SIZE = 8
self.VALID_BATCH_SIZE = 4
self.epochs = epochs
self.lr = lr
self.target_labels = 1
self.dropout = 0.3
self.train_size = 0.8759
self.seed = 23
self.random_state = 200
self.n_gpu=1
self.target = target
self.encoding = arr[:, 2]
self.arr = arr.tolist()
self.device = 'cuda' if cuda.is_available() else 'cpu'
if self.target=='non-hostile':
for i in range(0,len(self.encoding)):
self.arr[i].append([self.encoding[i][0]])
self.arr = np.array(self.arr)
tr = self.arr[0:5728]
ts = self.arr[5728:]
df_tr = pd.DataFrame(tr)
df_ts = pd.DataFrame(ts)
else:
if self.target == 'hate':
x = 1
elif self.target == 'fake':
x = 2
elif self.target == 'defamation':
x = 3
else:
x = 4
a = []
for i in range(0, len(self.encoding)):
if self.encoding[i][0]==0:
a.append(self.arr[i])
for i in range(0, len(a)):
a[i].append([a[i][-1][x]])
a = np.array(a)
tr = a[0:2700]
ts = a[2700:]
df_tr = pd.DataFrame(tr)
df_ts = pd.DataFrame(ts)
new_df_tr = df_tr[[0, 3]].copy()
new_df_ts = df_ts[[0, 3]].copy()
self.new_df_tr = new_df_tr.rename(columns={0:"comment_text", 3:"list"})
self.new_df_ts = new_df_ts.rename(columns={0:"comment_text", 3:"list"})
self.set_seed()
tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_path)
train_dataset=self.new_df_tr
test_dataset=self.new_df_ts
train_dataset = train_dataset.reset_index(drop=True)
print("TRAIN Dataset: {}".format(train_dataset.shape))
print("TEST Dataset: {}".format(test_dataset.shape))
training_set = CustomDataset(train_dataset, tokenizer, self.max_len)
testing_set = CustomDataset(test_dataset, tokenizer, self.max_len)
train_params = {'batch_size': self.TRAIN_BATCH_SIZE,
'shuffle': True,
'num_workers': 0
}
test_params = {'batch_size': self.VALID_BATCH_SIZE,
'shuffle': True,
'num_workers': 0
}
self.training_loader = DataLoader(training_set, **train_params)
self.testing_loader = DataLoader(testing_set, **test_params)
self.model = ModelClass(self.model_path, self.dropout, self.target_labels)
self.model.to(self.device);
self.optimizer = torch.optim.Adam(params = self.model.parameters(), lr=self.lr)
os.makedirs(self.output_dir, exist_ok=True)
def set_seed(self):
random.seed(self.seed)
np.random.seed(self.seed)
torch.manual_seed(self.seed)
if self.n_gpu > 0:
torch.cuda.manual_seed_all(self.seed)
def loss_fn(self, outputs, targets):
return torch.nn.BCEWithLogitsLoss()(outputs, targets)
def validation(self, epoch):
device = self.device
self.model.eval()
fin_targets=[]
fin_outputs=[]
with torch.no_grad():
for _, data in enumerate(self.testing_loader, 0):
ids = data['ids'].to(device, dtype = torch.long)
mask = data['mask'].to(device, dtype = torch.long)
token_type_ids = data['token_type_ids'].to(device, dtype = torch.long)
targets = data['targets'].to(device, dtype = torch.float)
outputs = self.model(ids, mask, token_type_ids)
fin_targets.extend(targets.cpu().detach().numpy().tolist())
fin_outputs.extend(torch.sigmoid(outputs).cpu().detach().numpy().tolist())
return fin_outputs, fin_targets
def train(self, epoch):
device = self.device
self.model.train()
for _,data in enumerate(self.training_loader, 0):
ids = data['ids'].to(device, dtype = torch.long)
mask = data['mask'].to(device, dtype = torch.long)
token_type_ids = data['token_type_ids'].to(device, dtype = torch.long)
targets = data['targets'].to(device, dtype = torch.float)
outputs = self.model(ids, mask, token_type_ids)
self.optimizer.zero_grad()
loss = self.loss_fn(outputs, targets)
if _%100==0:
print(f'Epoch: {epoch}, Loss: {loss.item()}')
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def train_model(self):
Best_score = 0;
for epoch in range(self.epochs):
self.train(epoch)
outputs, targets = self.validation(epoch)
print(outputs[0:5])
outputs = np.array(outputs) >= 0.5
accuracy = metrics.accuracy_score(targets, outputs)
f1_score_micro = metrics.f1_score(targets, outputs, average='binary')
print(f"F1 Score (Weighted) = {f1_score_micro}")
print()
if f1_score_micro>Best_score:
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
torch.save(self.model,os.path.join(self.output_dir, self.model_path[-10:] + "_" + self.target + "_model.pt"))
# Good practice: save your training arguments together with the trained model
# torch.save(args, os.path.join(self.output_dir, "training_args.bin"))
Best_score = f1_score_micro
f1_str = "best f1 score for binary " + self.target + " classification is " + str(Best_score) + " for " + self.model_path[-10:] + "\n"
file_object = open('results.txt', 'a')
file_object.write(f1_str)
file_object.close()