-
Notifications
You must be signed in to change notification settings - Fork 2
/
NumberOfOperationsToConnectNetwork.java
98 lines (87 loc) · 2.98 KB
/
NumberOfOperationsToConnectNetwork.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
package Leetcode;
import java.util.*;
/**
* @author kalpak
*
* There are n computers numbered from 0 to n-1 connected by ethernet cables connections
* forming a network where connections[i] = [a, b] represents a connection between computers a and b.
*
* Any computer can reach any other computer directly or indirectly through the network.
*
* Given an initial computer network connections. You can extract certain cables between two directly connected computers,
* and place them between any pair of disconnected computers to make them directly connected.
*
* Return the minimum number of times you need to do this in order to make all the computers connected.
* If it's not possible, return -1.
* Example 1:
* Input: n = 4, connections = [[0,1],[0,2],[1,2]]
* Output: 1
* Explanation: Remove cable between computer 1 and 2 and place between computers 1 and 3.
*
* Example 2:
* Input: n = 6, connections = [[0,1],[0,2],[0,3],[1,2],[1,3]]
* Output: 2
*
* Example 3:
* Input: n = 6, connections = [[0,1],[0,2],[0,3],[1,2]]
* Output: -1
* Explanation: There are not enough cables.
*
*
* Example 4:
* Input: n = 5, connections = [[0,1],[0,2],[3,4],[2,3]]
* Output: 0
*
*
* Constraints:
*
* 1 <= n <= 10^5
* 1 <= connections.length <= min(n*(n-1)/2, 10^5)
* connections[i].length == 2
* 0 <= connections[i][0], connections[i][1] < n
* connections[i][0] != connections[i][1]
* There are no repeated connections.
* No two computers are connected by more than one cable.
*
*/
public class NumberOfOperationsToConnectNetwork {
public static int makeConnected(int n, int[][] connections) {
if(connections.length < n - 1)
return -1;
Map<Integer, List<Integer>> graph = new HashMap<>();
// Initialize the graph
for(int i = 0; i < n; i++) {
graph.put(i, new ArrayList<>());
}
// Put the edges into the graph.
// Put the edges both ways since the graph is undirected
for(int[] edge : connections) {
graph.get(edge[0]).add(edge[1]);
graph.get(edge[1]).add(edge[0]);
}
Set<Integer> visited = new HashSet<>();
int numberOfComponents = 0;
for(int i = 0; i < n; i++) {
if(!visited.contains(i)) {
dfsRecursive(i, visited, graph);
numberOfComponents++;
}
}
return numberOfComponents - 1;
}
private static void dfsRecursive(int startNode, Set<Integer> visited, Map<Integer, List<Integer>> graph) {
visited.add(startNode);
List<Integer> adjacencyList = graph.get(startNode);
if(adjacencyList != null) {
for(int edge : adjacencyList) {
if(!visited.contains(edge))
dfsRecursive(edge, visited, graph);
}
}
return;
}
public static void main(String[] args) {
int[][] connections = new int[][]{{0, 1}, {0, 2}, {1, 2}};
System.out.println(makeConnected(4, connections));
}
}