-
Notifications
You must be signed in to change notification settings - Fork 2
/
MinimumSizeSubarrayWithSumGreaterThanK.java
50 lines (44 loc) · 1.59 KB
/
MinimumSizeSubarrayWithSumGreaterThanK.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
package Leetcode;
/**
* @author kalpak
*
* Given an array of n positive integers and a positive integer s,
* find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
*
* Example:
* Input: s = 7, nums = [2,3,1,2,4,3]
* Output: 2
* Explanation: the subarray [4,3] has the minimal length under the problem constraint.
* Follow up:
* If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
*/
public class MinimumSizeSubarrayWithSumGreaterThanK {
public static int minSubArrayLen(int s, int[] nums) {
if(nums == null || nums.length == 0)
return 0;
int result = Integer.MAX_VALUE;
int windowSum = 0;
int i = 0;
int j = 0;
while(j < nums.length) {
windowSum += nums[j];
if(windowSum < s)
j++;
else if(windowSum >= s) {
// Shrink the window
// Important to note that we need to perform the check for minimum window inside the while loop for the best window and not outside, since we are interested in a lower bound.
while(windowSum >= s) {
result = Math.min(result, j - i + 1);
windowSum -= nums[i];
i++;
}
j++;
}
}
return result == Integer.MAX_VALUE ? 0 : result;
}
public static void main(String[] args) {
int[] arr = new int[]{2,3,1,2,4,3};
System.out.println(minSubArrayLen(7, arr));
}
}