-
Notifications
You must be signed in to change notification settings - Fork 2
/
LFUCache.java
188 lines (157 loc) · 5.25 KB
/
LFUCache.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
package Leetcode;
import java.util.HashMap;
import java.util.Map;
/**
* @author kalpak
*
* Design and implement a data structure for a Least Frequently Used (LFU) cache.
*
* Implement the LFUCache class:
*
* LFUCache(int capacity) Initializes the object with the capacity of the data structure.
* - int get(int key) Gets the value of the key if the key exists in the cache. Otherwise, returns -1.
* - void put(int key, int value) Update the value of the key if present, or inserts the key if not already present.
* When the cache reaches its capacity, it should invalidate and remove the least frequently used key before inserting a new item.
*
* For this problem, when there is a tie (i.e., two or more keys with the same frequency), the least recently used key would be invalidated.
*
* To determine the least frequently used key, a use counter is maintained for each key in the cache.
* The key with the smallest use counter is the least frequently used key.
*
* When a key is first inserted into the cache, its use counter is set to 1 (due to the put operation).
* The use counter for a key in the cache is incremented either a get or put operation is called on it.
*
*
*
* Example 1:
*
* Input
* ["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"]
* [[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]]
* Output
* [null, null, null, 1, null, -1, 3, null, -1, 3, 4]
*
* Explanation
* // cnt(x) = the use counter for key x
* // cache=[] will show the last used order for tiebreakers (leftmost element is most recent)
* LFUCache lfu = new LFUCache(2);
* lfu.put(1, 1); // cache=[1,_], cnt(1)=1
* lfu.put(2, 2); // cache=[2,1], cnt(2)=1, cnt(1)=1
* lfu.get(1); // return 1
* // cache=[1,2], cnt(2)=1, cnt(1)=2
* lfu.put(3, 3); // 2 is the LFU key because cnt(2)=1 is the smallest, invalidate 2.
* // cache=[3,1], cnt(3)=1, cnt(1)=2
* lfu.get(2); // return -1 (not found)
* lfu.get(3); // return 3
* // cache=[3,1], cnt(3)=2, cnt(1)=2
* lfu.put(4, 4); // Both 1 and 3 have the same cnt, but 1 is LRU, invalidate 1.
* // cache=[4,3], cnt(4)=1, cnt(3)=2
* lfu.get(1); // return -1 (not found)
* lfu.get(3); // return 3
* // cache=[3,4], cnt(4)=1, cnt(3)=3
* lfu.get(4); // return 4
* // cache=[3,4], cnt(4)=2, cnt(3)=3
*
*
* Constraints:
*
* 0 <= capacity, key, value <= 104
* At most 105 calls will be made to get and put.
*
*
* Follow up: Could you do both operations in O(1) time complexity?
*/
public class LFUCache {
int maxCapacity;
int itemsInCache;
int minFreq;
Map<Integer, DataNode> keyMap;
Map<Integer, DoublyLinkedList> freqMap;
public LFUCache(int capacity) {
maxCapacity = capacity;
itemsInCache = minFreq = 0;
keyMap = new HashMap<>();
freqMap = new HashMap<>();
freqMap.put(0,new DoublyLinkedList(0));
}
public int get(int key) {
if(!keyMap.containsKey(key))
return -1;
DataNode node = keyMap.get(key);
return _update(node);
}
private int _update(DataNode node) {
int freq = node.freq;
freqMap.get(freq).remove(node);
node.freq ++;
freqMap.computeIfAbsent(node.freq, k->new DoublyLinkedList(node.freq)).addNode(node);
while (freqMap.get(minFreq).isEmpty())
minFreq++;
return node.value;
}
public void put(int key, int value) {
if(maxCapacity == 0)
return;
if (keyMap.containsKey(key)) {
DataNode node = keyMap.get(key);
node.value = value;
_update(node);
return ;
}
if(itemsInCache >= maxCapacity) {
DataNode old = freqMap.get(minFreq).popNode();
keyMap.remove(old.key);
itemsInCache--;
}
DataNode node = new DataNode(key, value);
freqMap.get(0).addNode(node);
keyMap.put(key,node);
minFreq = 0;
itemsInCache++;
}
class DoublyLinkedList {
int freq;
DataNode head;
DataNode tail;
public DoublyLinkedList (int freq){
this.freq = freq;
head = new DataNode(0, 0);
tail = new DataNode(0, 0);
head.next = tail;
tail.prev = head;
}
public void addNode(DataNode node) {
node.prev = head;
node.next = head.next;
head.next.prev = node;
head.next = node;
}
public void remove(DataNode node) {
node.next.prev = node.prev;
node.prev.next = node.next;
}
public boolean isEmpty() {
return head.next==tail;
}
public DataNode popNode() {
if(isEmpty())
return null;
DataNode node = tail.prev;
remove(node);
return node;
}
}
class DataNode {
int key;
int value;
int freq;
DataNode prev;
DataNode next;
DataNode(int key,int value){
this.key = key;
this.value = value;
this.freq = 0;
prev = next = null;
}
}
}