forked from JunshengFu/vehicle-detection
-
Notifications
You must be signed in to change notification settings - Fork 1
/
svm_pipeline.py
585 lines (485 loc) · 23.1 KB
/
svm_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
import matplotlib.image as mpimg
from skimage.feature import hog
from scipy.ndimage.measurements import label
from os import walk
from os import path
import time
from sklearn.svm import LinearSVC
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import pickle
from copy import copy
from visualizations import *
from timeit import default_timer as timer
### Parameters
color_space = 'YCrCb' # Can be RGB, HSV, LUV, HLS, YUV, YCrCb
# color_space = 'HSV' # Can be RGB, HSV, LUV, HLS, YUV, YCrCb
orient = 9 # HOG orientations
pix_per_cell = 8 # HOG pixels per cell
cell_per_block = 2 # HOG cells per block, which can handel e.g. shadows
hog_channel = "ALL" # Can be 0, 1, 2, or "ALL"
# hog_channel = 2 # Can be 0, 1, 2, or "ALL"
spatial_size = (32, 32) # Spatial binning dimensions
hist_bins = 32 # Number of histogram bins
spatial_feat = True # Spatial features on or off
hist_feat = True # Histogram features on or off
hog_feat = True # HOG features on or off
buffer_weights=[0.1,0.2,0.3,0.4]
clf_path = 'clf_pickle_all_v1.p' # if classifier exist
Heatmap_buffer = []
N_buffer = 3
y_start_stop = [400, 656] # Min and max in y to search in slide_window()
ystart_0 = y_start_stop[0]
ystop_0 = ystart_0 + 64*2
ystart_1 = ystart_0
ystop_1 = y_start_stop[1]
ystart_2 = ystart_0
ystop_2 = y_start_stop[1]
ystarts = [ystart_1, ystart_2]
ystops = [ystop_1-100, ystop_2]
search_window_scales = [1.5, 2] # (64x64), (96x96), (128x128)
# Define a function to return HOG features and visualization
def get_hog_features(img, orient, pix_per_cell, cell_per_block,
vis=False, feature_vec=True):
# Call with two outputs if vis==True
if vis == True:
features, hog_image = hog(img, orientations=orient,
pixels_per_cell=(pix_per_cell, pix_per_cell),
cells_per_block=(cell_per_block, cell_per_block),
transform_sqrt=True,
visualise=vis, feature_vector=feature_vec)
return features, hog_image
# Otherwise call with one output
else:
features = hog(img, orientations=orient,
pixels_per_cell=(pix_per_cell, pix_per_cell),
cells_per_block=(cell_per_block, cell_per_block),
transform_sqrt=True,
visualise=vis, feature_vector=feature_vec)
return features
def bin_spatial(img, size=(32, 32)):
color1 = cv2.resize(img[:,:,0], size).ravel()
color2 = cv2.resize(img[:,:,1], size).ravel()
color3 = cv2.resize(img[:,:,2], size).ravel()
return np.hstack((color1, color2, color3))
# Define a function to compute color histogram features
# NEED TO CHANGE bins_range if reading .png files with mpimg!
def color_hist(img, nbins=32):
# Compute the histogram of the color channels separately
channel1_hist = np.histogram(img[:,:,0], bins=nbins)
channel2_hist = np.histogram(img[:,:,1], bins=nbins)
channel3_hist = np.histogram(img[:,:,2], bins=nbins)
# Concatenate the histograms into a single feature vector
hist_features = np.concatenate((channel1_hist[0], channel2_hist[0], channel3_hist[0]))
# Return the individual histograms, bin_centers and feature vector
return hist_features
# Define a function to extract features from a list of images
# Have this function call bin_spatial() and color_hist()
def extract_features(imgs, color_space='RGB', spatial_size=(32, 32),
hist_bins=32, orient=9,
pix_per_cell=8, cell_per_block=2, hog_channel=0,
spatial_feat=True, hist_feat=True, hog_feat=True):
# Create a list to append feature vectors to
features = []
# Iterate through the list of images
for file in imgs:
file_features = []
# png is scale from (0,1)
image = mpimg.imread(file)
# apply color conversion if other than 'RGB'
if color_space != 'RGB':
if color_space == 'HSV':
feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
elif color_space == 'LUV':
feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2LUV)
elif color_space == 'HLS':
feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2HLS)
elif color_space == 'YUV':
feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2YUV)
elif color_space == 'YCrCb':
feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2YCrCb)
else:
feature_image = np.copy(image)
if spatial_feat == True:
spatial_features = bin_spatial(feature_image, size=spatial_size)
file_features.append(spatial_features)
if hist_feat == True:
# Apply color_hist()
hist_features = color_hist(feature_image, nbins=hist_bins)
file_features.append(hist_features)
if hog_feat == True:
# Call get_hog_features() with vis=False, feature_vec=True
if hog_channel == 'ALL':
hog_features = []
for channel in range(feature_image.shape[2]):
hog_features.append(get_hog_features(feature_image[:,:,channel],
orient, pix_per_cell, cell_per_block,
vis=False, feature_vec=True))
hog_features = np.ravel(hog_features)
else:
hog_features = get_hog_features(feature_image[:,:,hog_channel], orient,
pix_per_cell, cell_per_block, vis=False, feature_vec=True)
# Append the new feature vector to the features list
file_features.append(hog_features)
features.append(np.concatenate(file_features))
# Return list of feature vectors
return features
def slide_window(img, x_start_stop=[None, None], y_start_stop=[None, None],
xy_window=(64, 64), xy_overlap=(0.5, 0.5)):
# If x and/or y start/stop positions not defined, set to image size
if x_start_stop[0] == None:
x_start_stop[0] = 0
if x_start_stop[1] == None:
x_start_stop[1] = img.shape[1]
if y_start_stop[0] == None:
y_start_stop[0] = 0
if y_start_stop[1] == None:
y_start_stop[1] = img.shape[0]
# Compute the span of the region to be searched
xspan = x_start_stop[1] - x_start_stop[0]
yspan = y_start_stop[1] - y_start_stop[0]
# Compute the number of pixels per step in x/y
nx_pix_per_step = np.int(xy_window[0]*(1 - xy_overlap[0]))
ny_pix_per_step = np.int(xy_window[1]*(1 - xy_overlap[1]))
# Compute the number of windows in x/y
nx_buffer = np.int(xy_window[0]*(xy_overlap[0]))
ny_buffer = np.int(xy_window[1]*(xy_overlap[1]))
nx_windows = np.int((xspan-nx_buffer)/nx_pix_per_step)
ny_windows = np.int((yspan-ny_buffer)/ny_pix_per_step)
# Initialize a list to append window positions to
window_list = []
for ys in range(ny_windows):
for xs in range(nx_windows):
# Calculate window position
startx = xs*nx_pix_per_step + x_start_stop[0]
endx = startx + xy_window[0]
starty = ys*ny_pix_per_step + y_start_stop[0]
endy = starty + xy_window[1]
# Append window position to list
window_list.append(((startx, starty), (endx, endy)))
# Return the list of windows
return window_list
# Define a function to draw bounding boxes
def draw_boxes(img, bboxes, color=(0, 0, 255), thick=6):
# Make a copy of the image
imcopy = np.copy(img)
# Iterate through the bounding boxes
for bbox in bboxes:
# Draw a rectangle given bbox coordinates
cv2.rectangle(imcopy, bbox[0], bbox[1], color, thick)
# Return the image copy with boxes drawn
return imcopy
def convert_color(img, conv='RGB2YCrCb'):
if conv == 'RGB2YCrCb':
return cv2.cvtColor(img, cv2.COLOR_RGB2YCrCb)
if conv == 'BGR2YCrCb':
return cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb)
if conv == 'RGB2LUV':
return cv2.cvtColor(img, cv2.COLOR_RGB2LUV)
if conv == 'RGB2HSV':
return cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
# Define a function to extract features from a single image window
def single_img_features(img, color_space='RGB', spatial_size=(32, 32),
hist_bins=32, orient=9,
pix_per_cell=8, cell_per_block=2, hog_channel=0,
spatial_feat=True, hist_feat=True, hog_feat=True):
#1) Define an empty list to receive features
img_features = []
#2) Apply color conversion if other than 'RGB'
if color_space != 'RGB':
if color_space == 'HSV':
feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
elif color_space == 'LUV':
feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2LUV)
elif color_space == 'HLS':
feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
elif color_space == 'YUV':
feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2YUV)
elif color_space == 'YCrCb':
feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2YCrCb)
else:
feature_image = np.copy(img)
#3) Compute spatial features if flag is set
if spatial_feat == True:
spatial_features = bin_spatial(feature_image, size=spatial_size)
#4) Append features to list
img_features.append(spatial_features)
#5) Compute histogram features if flag is set
if hist_feat == True:
hist_features = color_hist(feature_image, nbins=hist_bins)
#6) Append features to list
img_features.append(hist_features)
#7) Compute HOG features if flag is set
if hog_feat == True:
if hog_channel == 'ALL':
hog_features = []
for channel in range(feature_image.shape[2]):
hog_features.extend(get_hog_features(feature_image[:,:,channel],
orient, pix_per_cell, cell_per_block,
vis=False, feature_vec=True))
else:
hog_features = get_hog_features(feature_image[:,:,hog_channel], orient,
pix_per_cell, cell_per_block, vis=False, feature_vec=True)
#8) Append features to list
img_features.append(hog_features)
#9) Return concatenated array of features
return np.concatenate(img_features)
# Define a function you will pass an image
# and the list of windows to be searched (output of slide_windows())
def search_windows(img, windows, clf, scaler, color_space='RGB',
spatial_size=(32, 32), hist_bins=32, orient=9,
pix_per_cell=8, cell_per_block=2,
hog_channel=0, spatial_feat=True,
hist_feat=True, hog_feat=True):
#1) Create an empty list to receive positive detection windows
on_windows = []
#2) Iterate over all windows in the list
for window in windows:
#3) Extract the test window from original image
test_img = cv2.resize(img[window[0][1]:window[1][1], window[0][0]:window[1][0]], (64, 64)) # training image is (64,64)
#4) Extract features for that window using single_img_features()
features = single_img_features(test_img, color_space=color_space,
spatial_size=spatial_size, hist_bins=hist_bins,
orient=orient, pix_per_cell=pix_per_cell,
cell_per_block=cell_per_block,
hog_channel=hog_channel, spatial_feat=spatial_feat,
hist_feat=hist_feat, hog_feat=hog_feat)
#5) Scale extracted features to be fed to classifier
X = np.array(features).reshape(1, -1)
test_features = scaler.transform(X)
#6) Predict using your classifier
prediction = clf.predict(test_features)
#7) If positive (prediction == 1) then save the window
if prediction == 1:
on_windows.append(window)
#8) Return windows for positive detections
return on_windows
def find_cars(img, ystart, ystop, scale, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins,
hog_channel, color_space, spatial_feat, hist_feat, hog_feat):
on_windows = []
img = img.astype(np.float32)/255
img_tosearch = img[ystart:ystop,:,:]
if color_space == 'YCrCb':
ctrans_tosearch = convert_color(img_tosearch, conv='RGB2YCrCb')
else:
ctrans_tosearch = convert_color(img_tosearch, conv='RGB2HSV')
if scale != 1:
imshape = ctrans_tosearch.shape
ctrans_tosearch = cv2.resize(ctrans_tosearch, (np.int(imshape[1]/scale), np.int(imshape[0]/scale)))
ch1 = ctrans_tosearch[:,:,0]
ch2 = ctrans_tosearch[:,:,1]
ch3 = ctrans_tosearch[:,:,2]
# Define blocks and steps as above, hold the number of hog cells
nxblocks = (ch1.shape[1] // pix_per_cell)-1
nyblocks = (ch1.shape[0] // pix_per_cell)-1
nfeat_per_block = orient*cell_per_block**2
# 64 was the orginal sampling rate, with 8 cells and 8 pix per cell
window = 64
nblocks_per_window = (window // pix_per_cell)-1
cells_per_step = 2 # Instead of overlap, define how many cells to step: there are 8 cells, and move 2 cells per step, 75% overlap
nxsteps = (nxblocks - nblocks_per_window) // cells_per_step
nysteps = (nyblocks - nblocks_per_window) // cells_per_step
# Compute individual channel HOG features for the entire image
hog1 = get_hog_features(ch1, orient, pix_per_cell, cell_per_block, feature_vec=False)
hog2 = get_hog_features(ch2, orient, pix_per_cell, cell_per_block, feature_vec=False)
hog3 = get_hog_features(ch3, orient, pix_per_cell, cell_per_block, feature_vec=False)
for xb in range(nxsteps):
for yb in range(nysteps):
ypos = yb*cells_per_step
xpos = xb*cells_per_step
if hog_feat:
# Extract HOG for this patch
if hog_channel == 0:
hog_features = hog1[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel()
elif hog_channel == 1:
hog_features = hog2[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel()
elif hog_channel == 2:
hog_features = hog3[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel()
else:
hog_feat1 = hog1[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel()
hog_feat2 = hog2[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel()
hog_feat3 = hog3[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel()
hog_features = np.hstack((hog_feat1, hog_feat2, hog_feat3))
xleft = xpos*pix_per_cell
ytop = ypos*pix_per_cell
# Extract the image patch
subimg = cv2.resize(ctrans_tosearch[ytop:ytop+window, xleft:xleft+window], (64,64))
# Get color features
if spatial_feat:
spatial_features = bin_spatial(subimg, size=spatial_size)
if hist_feat:
hist_features = color_hist(subimg, nbins=hist_bins)
X = np.hstack((spatial_features, hist_features, hog_features)).reshape(1, -1)
test_features = X_scaler.transform(X)
test_prediction = svc.predict(test_features)
if test_prediction == 1:
xbox_left = np.int(xleft*scale)
ytop_draw = np.int(ytop*scale)
win_draw = np.int(window*scale)
# cv2.rectangle(draw_img,(xbox_left, ytop_draw+ystart),(xbox_left+win_draw,ytop_draw+win_draw+ystart),(0,0,255),6)
on_windows.append(((xbox_left, ytop_draw+ystart),(xbox_left+win_draw,ytop_draw+win_draw+ystart)))
return on_windows
def add_heat(heatmap, bbox_list):
# Iterate through list of bboxes
for box in bbox_list:
# Add += 1 for all pixels inside each bbox
# Assuming each "box" takes the form ((x1, y1), (x2, y2))
heatmap[box[0][1]:box[1][1], box[0][0]:box[1][0]] += 1
# Return updated heatmap
return heatmap# Iterate through list of bboxes
def apply_threshold(heatmap, threshold):
# Zero out pixels below the threshold
heatmap[heatmap <= threshold] = 0
# Return thresholded map
return heatmap
def draw_bboxes(img, heatmap_buffer, heatmap_pre, N_buffer):
heatmap_buffer.append(heatmap_pre)
if len(heatmap_buffer) > N_buffer: # remove the first component if it is more than N_buffer elements
heatmap_buffer.pop(0)
# weight the heatmap based on current frame and previous N frames
idxs = range(N_buffer)
for b, w, idx in zip(heatmap_buffer, buffer_weights, idxs):
heatmap_buffer[idx] = b * w
heatmap = np.sum(np.array(heatmap_buffer), axis=0)
heatmap = apply_threshold( heatmap, threshold= sum(buffer_weights[0:N_buffer])*2)
# Find final boxes from heatmap using label function
labels = label(heatmap)
bboxes = []
# locate the bounding box
for car_number in range(1, labels[1]+1):
# Find pixels with each car_number label value
nonzero = (labels[0] == car_number).nonzero()
# Identify x and y values of those pixels
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Define a bounding box based on min/max x and y
bbox_tmp = ((np.min(nonzerox), np.min(nonzeroy)), (np.max(nonzerox), np.max(nonzeroy)))
bboxes.append(bbox_tmp)
for bbox in bboxes:
# Draw the box on the image
cv2.rectangle(img, bbox[0], bbox[1], (0,0,255), 4)
# Return the image
return img, heatmap, bboxes
def generate_heatmap(image, windows_list):
heat = np.zeros_like(image[:,:,0]).astype(np.float)
# Add heat to each box in box list
heat = add_heat(heat, windows_list)
# Apply threshold to help remove false positives
heat = apply_threshold(heat, 1)
# Visualize the heatmap when displaying
heatmap = np.clip(heat, 0, 255)
# if np.amax(heatmap) == 0:
# flag = False
# else:
# flag = True
return heatmap
def get_fileNames(rootdir):
data=[]
for root, dirs, files in walk(rootdir, topdown=True):
for name in files:
_, ending = path.splitext(name)
if ending != ".jpg" and ending != ".jepg" and ending != ".png":
continue
else:
data.append(path.join(root, name))
return data
# if svm classifer exist, load it; otherwise, compute the svm classifier
if path.isfile(clf_path):
print('loading existing classifier...')
with open(clf_path, 'rb') as file:
clf_pickle = pickle.load(file)
svc = clf_pickle["svc"]
X_scaler = clf_pickle["scaler"]
orient = clf_pickle["orient"]
pix_per_cell = clf_pickle["pix_per_cell"]
cell_per_block = clf_pickle["cell_per_block"]
spatial_size = clf_pickle["spatial_size"]
hist_bins = clf_pickle["hist_bins"]
color_space = clf_pickle["color_space"]
else:
# Read in cars and notcars
# images = glob.glob('data/small/all/*.jpeg')
car_path = '/data/udacity/p5/vehicles'
notcars_path = '/data/udacity/p5/non-vehicles'
cars = get_fileNames(car_path)
notcars = get_fileNames(notcars_path)
# set the sample size
sample_size = min(len(cars), len(notcars))
cars = cars[0:sample_size]
notcars = notcars[0:sample_size]
print('filenames are saved!')
print('extracting car features...')
car_features = extract_features(cars, color_space=color_space,
spatial_size=spatial_size, hist_bins=hist_bins,
orient=orient, pix_per_cell=pix_per_cell,
cell_per_block=cell_per_block,
hog_channel=hog_channel, spatial_feat=spatial_feat,
hist_feat=hist_feat, hog_feat=hog_feat)
print('car features extracted!')
print('extracting noncar features...')
notcar_features = extract_features(notcars, color_space=color_space,
spatial_size=spatial_size, hist_bins=hist_bins,
orient=orient, pix_per_cell=pix_per_cell,
cell_per_block=cell_per_block,
hog_channel=hog_channel, spatial_feat=spatial_feat,
hist_feat=hist_feat, hog_feat=hog_feat)
print('noncar features extracted!')
X = np.vstack((car_features, notcar_features)).astype(np.float64)
# Fit a per-column scaler
X_scaler = StandardScaler().fit(X)
# Apply the scaler to X
scaled_X = X_scaler.transform(X)
# Define the labels vector
y = np.hstack((np.ones(len(car_features)), np.zeros(len(notcar_features))))
# Split up data into randomized training and test sets
rand_state = np.random.randint(0, 100)
X_train, X_test, y_train, y_test = train_test_split(
scaled_X, y, test_size=0.2, random_state=rand_state)
print('Using:',orient,'orientations',pix_per_cell,
'pixels per cell and', cell_per_block,'cells per block')
print('Feature vector length:', len(X_train[0]))
# Use a linear SVC
svc = LinearSVC()
# Check the training time for the SVC
t=time.time()
svc.fit(X_train, y_train)
t2 = time.time()
print(round(t2-t, 2), 'Seconds to train SVC...')
# Check the score of the SVC
print('Test Accuracy of SVC = ', round(svc.score(X_test, y_test), 4))
# Check the prediction time for a single sample
t=time.time()
# save classifier
clf_pickle = {}
clf_pickle["svc"] = svc
clf_pickle["scaler"] = X_scaler
clf_pickle["orient"] = orient
clf_pickle["pix_per_cell"] = pix_per_cell
clf_pickle["cell_per_block"] = cell_per_block
clf_pickle["spatial_size"] = spatial_size
clf_pickle["hist_bins"] = hist_bins
clf_pickle["color_space"] = color_space
destnation = clf_path
pickle.dump( clf_pickle, open( destnation, "wb" ) )
print("Classifier is written into: {}".format(destnation))
def vehicle_detection_svm(image, img_lane_augmented, lane_info):
start = timer()
windows_list = []
for search_window_scale, ystart, ystop in zip(search_window_scales, ystarts, ystops):
windows_list_tmp = find_cars(np.copy(image), ystart, ystop, search_window_scale, svc, X_scaler, orient, pix_per_cell, cell_per_block,
spatial_size, hist_bins, hog_channel, color_space, spatial_feat, hist_feat, hog_feat)
windows_list.extend(windows_list_tmp)
heatmap_pre = generate_heatmap(image, windows_list)
draw_img, heatmap_post, bboxes = draw_bboxes(np.copy(img_lane_augmented), copy(Heatmap_buffer), heatmap_pre, min(len(Heatmap_buffer)+1,N_buffer) )
if len(Heatmap_buffer) >= N_buffer:
Heatmap_buffer.pop(0)
fps = 1.0 / (timer() - start)
# draw background highlight
draw_img = draw_background_highlight(image, draw_img, image.shape[1])
# draw vehicle thumbnails
draw_thumbnails(draw_img, image, bboxes)
# draw speed
# draw_speed(draw_img, fps, image.shape[1])
# draw lane status
draw_lane_status(draw_img, lane_info)
return draw_img