forked from JunshengFu/vehicle-detection
-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
57 lines (40 loc) · 1.57 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from moviepy.editor import VideoFileClip
from svm_pipeline import *
from yolo_pipeline import *
from lane import *
def pipeline_yolo(img):
img_undist, img_lane_augmented, lane_info = lane_process(img)
output = vehicle_detection_yolo(img_undist, img_lane_augmented, lane_info)
return output
def pipeline_svm(img):
img_undist, img_lane_augmented, lane_info = lane_process(img)
output = vehicle_detection_svm(img_undist, img_lane_augmented, lane_info)
return output
if __name__ == "__main__":
demo = 1 # 1:image (YOLO and SVM), 2: video (YOLO Pipeline), 3: video (SVM pipeline)
if demo == 1:
filename = 'examples/test4.jpg'
image = mpimg.imread(filename)
#(1) Yolo pipeline
yolo_result = pipeline_yolo(image)
plt.figure()
plt.imshow(yolo_result)
plt.title('yolo pipeline', fontsize=30)
#(2) SVM pipeline
draw_img = pipeline_svm(image)
fig = plt.figure()
plt.imshow(draw_img)
plt.title('svm pipeline', fontsize=30)
plt.show()
elif demo == 2:
# YOLO Pipeline
video_output = 'examples/project_YOLO.mp4'
clip1 = VideoFileClip("examples/project_video.mp4").subclip(30,32)
clip = clip1.fl_image(pipeline_yolo)
clip.write_videofile(video_output, audio=False)
else:
# SVM pipeline
video_output = 'examples/project_svm.mp4'
clip1 = VideoFileClip("examples/project_video.mp4").subclip(30,32)
clip = clip1.fl_image(pipeline_svm)
clip.write_videofile(video_output, audio=False)