forked from yeephycho/tensorflow-face-detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_video_face.py
101 lines (83 loc) · 3.52 KB
/
inference_video_face.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#!/usr/bin/python
# -*- coding: utf-8 -*-
# pylint: disable=C0103
# pylint: disable=E1101
import sys
import time
import numpy as np
import tensorflow as tf
import cv2
sys.path.append("..")
from utils import label_map_util
from utils import visualization_utils_color as vis_util
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = './model/frozen_inference_graph_face.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = './protos/face_label_map.pbtxt'
NUM_CLASSES = 2
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
cap = cv2.VideoCapture("./media/test.mp4")
out = None
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
with detection_graph.as_default():
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(graph=detection_graph, config=config) as sess:
frame_num = 1490;
while frame_num:
frame_num -= 1
ret, image = cap.read()
if ret == 0:
break
if out is None:
[h, w] = image.shape[:2]
out = cv2.VideoWriter("./media/test_out.avi", 0, 25.0, (w, h))
image_np = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
start_time = time.time()
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
elapsed_time = time.time() - start_time
print('inference time cost: {}'.format(elapsed_time))
#print(boxes.shape, boxes)
#print(scores.shape,scores)
#print(classes.shape,classes)
#print(num_detections)
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
# image_np,
image,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=4)
out.write(image)
cap.release()
out.release()