forked from vsitzmann/scene-representation-networks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
149 lines (114 loc) · 6.31 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import configargparse
import os, time, datetime
import torch
import numpy as np
import dataio
from torch.utils.data import DataLoader
from srns import *
import util
p = configargparse.ArgumentParser()
p.add('-c', '--config_filepath', required=False, is_config_file=True, help='Path to config file.')
# Note: in contrast to training, no multi-resolution!
p.add_argument('--img_sidelength', type=int, default=128, required=False,
help='Sidelength of test images.')
p.add_argument('--data_root', required=True, help='Path to directory with training data.')
p.add_argument('--logging_root', type=str, default='./logs',
required=False, help='Path to directory where checkpoints & tensorboard events will be saved.')
p.add_argument('--batch_size', type=int, default=32, help='Batch size.')
p.add_argument('--preload', action='store_true', default=False, help='Whether to preload data to RAM.')
p.add_argument('--max_num_instances', type=int, default=-1,
help='If \'data_root\' has more instances, only the first max_num_instances are used')
p.add_argument('--specific_observation_idcs', type=str, default=None,
help='Only pick a subset of specific observations for each instance.')
p.add_argument('--has_params', action='store_true', default=False,
help='Whether each object instance already comes with its own parameter vector.')
p.add_argument('--save_out_first_n', default=250, help='Only saves images of first n object instances.')
p.add_argument('--checkpoint_path', default=None, help='Path to trained model.')
# Model options
p.add_argument('--num_instances', type=int, required=True,
help='The number of object instances that the model was trained with.')
p.add_argument('--tracing_steps', type=int, default=10, help='Number of steps of intersection tester.')
p.add_argument('--fit_single_srn', action='store_true', required=False,
help='Only fit a single SRN for a single scene (not a class of SRNs) --> no hypernetwork')
p.add_argument('--use_unet_renderer', action='store_true',
help='Whether to use a DeepVoxels-style unet as rendering network or a per-pixel 1x1 convnet')
p.add_argument('--embedding_size', type=int, default=256,
help='Dimensionality of latent embedding.')
opt = p.parse_args()
device = torch.device('cuda')
def test():
if opt.specific_observation_idcs is not None:
specific_observation_idcs = list(map(int, opt.specific_observation_idcs.split(',')))
else:
specific_observation_idcs = None
dataset = dataio.SceneClassDataset(root_dir=opt.data_root,
max_num_instances=opt.max_num_instances,
specific_observation_idcs=specific_observation_idcs,
max_observations_per_instance=-1,
samples_per_instance=1,
img_sidelength=opt.img_sidelength)
dataset = DataLoader(dataset,
collate_fn=dataset.collate_fn,
batch_size=1,
shuffle=False,
drop_last=False)
model = SRNsModel(num_instances=opt.num_instances,
latent_dim=opt.embedding_size,
has_params=opt.has_params,
fit_single_srn=opt.fit_single_srn,
use_unet_renderer=opt.use_unet_renderer,
tracing_steps=opt.tracing_steps)
assert (opt.checkpoint_path is not None), "Have to pass checkpoint!"
print("Loading model from %s" % opt.checkpoint_path)
util.custom_load(model, path=opt.checkpoint_path, discriminator=None,
overwrite_embeddings=False)
model.eval()
model.cuda()
# directory structure: month_day/
renderings_dir = os.path.join(opt.logging_root, 'renderings')
gt_comparison_dir = os.path.join(opt.logging_root, 'gt_comparisons')
util.cond_mkdir(opt.logging_root)
util.cond_mkdir(gt_comparison_dir)
util.cond_mkdir(renderings_dir)
# Save command-line parameters to log directory.
with open(os.path.join(opt.logging_root, "params.txt"), "w") as out_file:
out_file.write('\n'.join(["%s: %s" % (key, value) for key, value in vars(opt).items()]))
print('Beginning evaluation...')
with torch.no_grad():
instance_idx = 0
idx = 0
psnrs, ssims = list(), list()
for model_input, ground_truth in dataset:
model_outputs = model(model_input)
psnr, ssim = model.get_psnr(model_outputs, ground_truth)
psnrs.extend(psnr)
ssims.extend(ssim)
instance_idcs = model_input['instance_idx']
print("Object instance %d. Running mean PSNR %0.6f SSIM %0.6f" %
(instance_idcs[-1], np.mean(psnrs), np.mean(ssims)))
if instance_idx < opt.save_out_first_n:
output_imgs = model.get_output_img(model_outputs).cpu().numpy()
comparisons = model.get_comparisons(model_input,
model_outputs,
ground_truth)
for i in range(len(output_imgs)):
prev_instance_idx = instance_idx
instance_idx = instance_idcs[i]
if prev_instance_idx != instance_idx:
idx = 0
img_only_path = os.path.join(renderings_dir, "%06d" % instance_idx)
comp_path = os.path.join(gt_comparison_dir, "%06d" % instance_idx)
util.cond_mkdir(img_only_path)
util.cond_mkdir(comp_path)
pred = util.convert_image(output_imgs[i].squeeze())
comp = util.convert_image(comparisons[i].squeeze())
util.write_img(pred, os.path.join(img_only_path, "%06d.png" % idx))
util.write_img(comp, os.path.join(comp_path, "%06d.png" % idx))
idx += 1
with open(os.path.join(opt.logging_root, "results.txt"), "w") as out_file:
out_file.write("%0.6f, %0.6f" % (np.mean(psnrs), np.mean(ssims)))
print("Final mean PSNR %0.6f SSIM %0.6f" % (np.mean(psnrs), np.mean(ssims)))
def main():
test()
if __name__ == '__main__':
main()