-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluator.py
411 lines (351 loc) · 13.7 KB
/
evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
#!/usr/bin/env python
# -*- coding: utf-8 -*-
u"""Official Evaluator for WikiTableQuestions Dataset
There are 3 value types
1. String (unicode)
2. Number (float)
3. Date (a struct with 3 fields: year, month, and date)
Some fields (but not all) can be left unspecified. However, if only the year
is specified, the date is automatically converted into a number.
Target denotation = a set of items
- Each item T is a raw unicode string from Mechanical Turk
- If T can be converted to a number or date (via Stanford CoreNLP), the
converted value (number T_N or date T_D) is precomputed
Predicted denotation = a set of items
- Each item P is a string, a number, or a date
- If P is read from a text file, assume the following
- A string that can be converted into a number (float) is converted into a
number
- A string of the form "yyyy-mm-dd" is converted into a date. Unspecified
fields can be marked as "xx". For example, "xx-01-02" represents the date
January 2nd of an unknown year.
- Otherwise, it is kept as a string
The predicted denotation is correct if
1. The sizes of the target denotation and the predicted denotation are equal
2. Each item in the target denotation matches an item in the predicted
denotation
A target item T matches a predicted item P if one of the following is true:
1. normalize(raw string of T) and normalize(string form of P) are identical.
The normalize method performs the following normalizations on strings:
- Remove diacritics (é → e)
- Convert smart quotes (‘’´`“”) and dashes (‐‑‒–—−) into ASCII ones
- Remove citations (trailing •♦†‡*#+ or [...])
- Remove details in parenthesis (trailing (...))
- Remove outermost quotation marks
- Remove trailing period (.)
- Convert to lowercase
- Collapse multiple whitespaces and strip outermost whitespaces
2. T can be interpreted as a number T_N, P is a number, and P = T_N
3. T can be interpreted as a date T_D, P is a date, and P = T_D
(exact match on all fields; e.g., xx-01-12 and 1990-01-12 do not match)
"""
__version__ = '1.0.2'
import sys, os, re, argparse
import unicodedata
from codecs import open
from math import isnan, isinf
from abc import ABCMeta, abstractmethod
################ String Normalization ################
def normalize(x):
if not isinstance(x, str):
x = x.decode('utf8', errors='ignore')
# Remove diacritics
x = ''.join(c for c in unicodedata.normalize('NFKD', x)
if unicodedata.category(c) != 'Mn')
# Normalize quotes and dashes
x = re.sub(r"[‘’´`]", "'", x)
x = re.sub(r"[“”]", "\"", x)
x = re.sub(r"[‐‑‒–—−]", "-", x)
while True:
old_x = x
# Remove citations
x = re.sub(r"((?<!^)\[[^\]]*\]|\[\d+\]|[•♦†‡*#+])*$", "", x.strip())
# Remove details in parenthesis
x = re.sub(r"(?<!^)( \([^)]*\))*$", "", x.strip())
# Remove outermost quotation mark
x = re.sub(r'^"([^"]*)"$', r'\1', x.strip())
if x == old_x:
break
# Remove final '.'
if x and x[-1] == '.':
x = x[:-1]
# Collapse whitespaces and convert to lower case
x = re.sub(r'\s+', ' ', x, flags=re.U).lower().strip()
return x
################ Value Types ################
class Value(object):
__metaclass__ = ABCMeta
# Should be populated with the normalized string
_normalized = None
@abstractmethod
def match(self, other):
"""Return True if the value matches the other value.
Args:
other (Value)
Returns:
a boolean
"""
pass
@property
def normalized(self):
return self._normalized
class StringValue(Value):
def __init__(self, content):
assert isinstance(content, str)
self._normalized = normalize(content)
self._hash = hash(self._normalized)
def __eq__(self, other):
return isinstance(other, StringValue) and self.normalized == other.normalized
def __hash__(self):
return self._hash
def __str__(self):
return 'S' + str([self.normalized])
__repr__ = __str__
def match(self, other):
assert isinstance(other, Value)
return self.normalized == other.normalized
class NumberValue(Value):
def __init__(self, amount, original_string=None):
assert isinstance(amount, (int, float))
if abs(amount - round(amount)) < 1e-6:
self._amount = int(amount)
else:
self._amount = float(amount)
if not original_string:
self._normalized = str(self._amount)
else:
self._normalized = normalize(original_string)
self._hash = hash(self._amount)
@property
def amount(self):
return self._amount
def __eq__(self, other):
return isinstance(other, NumberValue) and self.amount == other.amount
def __hash__(self):
return self._hash
def __str__(self):
return ('N(%f)' % self.amount) + str([self.normalized])
__repr__ = __str__
def match(self, other):
assert isinstance(other, Value)
if self.normalized == other.normalized:
return True
if isinstance(other, NumberValue):
return abs(self.amount - other.amount) < 1e-6
return False
@staticmethod
def parse(text):
"""Try to parse into a number.
Return:
the number (int or float) if successful; otherwise None.
"""
try:
return int(text)
except:
try:
amount = float(text)
assert not isnan(amount) and not isinf(amount)
return amount
except:
return None
class DateValue(Value):
def __init__(self, year, month, day, original_string=None):
"""Create a new DateValue. Placeholders are marked as -1."""
assert isinstance(year, int)
assert isinstance(month, int) and (month == -1 or 1 <= month <= 12)
assert isinstance(day, int) and (day == -1 or 1 <= day <= 31)
assert not (year == month == day == -1)
self._year = year
self._month = month
self._day = day
if not original_string:
self._normalized = '{}-{}-{}'.format(
year if year != -1 else 'xx',
month if month != -1 else 'xx',
day if day != '-1' else 'xx')
else:
self._normalized = normalize(original_string)
self._hash = hash((self._year, self._month, self._day))
@property
def ymd(self):
return (self._year, self._month, self._day)
def __eq__(self, other):
return isinstance(other, DateValue) and self.ymd == other.ymd
def __hash__(self):
return self._hash
def __str__(self):
return (('D(%d,%d,%d)' % (self._year, self._month, self._day))
+ str([self._normalized]))
__repr__ = __str__
def match(self, other):
assert isinstance(other, Value)
if self.normalized == other.normalized:
return True
if isinstance(other, DateValue):
return self.ymd == other.ymd
return False
@staticmethod
def parse(text):
"""Try to parse into a date.
Return:
tuple (year, month, date) if successful; otherwise None.
"""
try:
ymd = text.lower().split('-')
assert len(ymd) == 3
year = -1 if ymd[0] in ('xx', 'xxxx') else int(ymd[0])
month = -1 if ymd[1] == 'xx' else int(ymd[1])
day = -1 if ymd[2] == 'xx' else int(ymd[2])
assert not (year == month == day == -1)
assert month == -1 or 1 <= month <= 12
assert day == -1 or 1 <= day <= 31
return (year, month, day)
except:
return None
################ Value Instantiation ################
def to_value(original_string, corenlp_value=None):
"""Convert the string to Value object.
Args:
original_string (basestring): Original string
corenlp_value (basestring): Optional value returned from CoreNLP
Returns:
Value
"""
if isinstance(original_string, Value):
# Already a Value
return original_string
if not corenlp_value:
corenlp_value = original_string
# Number?
amount = NumberValue.parse(corenlp_value)
if amount is not None:
return NumberValue(amount, original_string)
# Date?
ymd = DateValue.parse(corenlp_value)
if ymd is not None:
if ymd[1] == ymd[2] == -1:
return NumberValue(ymd[0], original_string)
else:
return DateValue(ymd[0], ymd[1], ymd[2], original_string)
# String.
return StringValue(original_string)
def to_value_list(original_strings, corenlp_values=None):
"""Convert a list of strings to a list of Values
Args:
original_strings (list[basestring])
corenlp_values (list[basestring or None])
Returns:
list[Value]
"""
assert isinstance(original_strings, (list, tuple, set))
if corenlp_values is not None:
assert isinstance(corenlp_values, (list, tuple, set))
assert len(original_strings) == len(corenlp_values)
return list(set(to_value(x, y) for (x, y)
in zip(original_strings, corenlp_values)))
else:
return list(set(to_value(x) for x in original_strings))
################ Check the Predicted Denotations ################
def check_denotation(target_values, predicted_values):
"""Return True if the predicted denotation is correct.
Args:
target_values (list[Value])
predicted_values (list[Value])
Returns:
bool
"""
# Check size
if len(target_values) != len(predicted_values):
return False
# Check items
for target in target_values:
if not any(target.match(pred) for pred in predicted_values):
return False
return True
################ Batch Mode ################
def tsv_unescape(x):
"""Unescape strings in the TSV file.
Escaped characters include:
newline (0x10) -> backslash + n
vertical bar (0x7C) -> backslash + p
backslash (0x5C) -> backslash + backslash
Args:
x (str or unicode)
Returns:
a unicode
"""
return x.replace(r'\n', '\n').replace(r'\p', '|').replace('\\\\', '\\')
def tsv_unescape_list(x):
"""Unescape a list in the TSV file.
List items are joined with vertical bars (0x5C)
Args:
x (str or unicode)
Returns:
a list of unicodes
"""
return [tsv_unescape(y) for y in x.split('|')]
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--tagged-dataset-path',
default='omnitab_download/wtq/tagged',
help='Directory containing CoreNLP-tagged dataset TSV file')
parser.add_argument('--validation-ids-path',
default='omnitab_download/wtq/validation_ids.txt',
help='File containing ids of the validation set.')
parser.add_argument('--split', default='test',
help='On which split to evaluate prediction_path. Could be "test" or "validation"')
parser.add_argument('--separator', default=', ',
help='Separator used to concat multiple answer entities')
parser.add_argument('prediction_path',
help='Path to the prediction file. Each line contains one prediction')
args = parser.parse_args()
# ID string --> list[Value]
target_values_map = {}
for filename in os.listdir(args.tagged_dataset_path):
filename = os.path.join(args.tagged_dataset_path, filename)
print('Reading dataset from', filename)
with open(filename, 'r', 'utf8') as fin:
header = fin.readline().rstrip('\n').split('\t')
for line in fin:
stuff = dict(zip(header, line.rstrip('\n').split('\t')))
ex_id = stuff['id']
original_strings = tsv_unescape_list(stuff['targetValue'])
canon_strings = tsv_unescape_list(stuff['targetCanon'])
target_values_map[ex_id] = to_value_list(
original_strings, canon_strings)
validation_ids = list(map(lambda x: x.strip(), open(args.validation_ids_path, 'r')))
print('Read', len(target_values_map), 'examples')
print('Reading predictions from', args.prediction_path)
num_examples, num_correct = 0, 0
with open(args.prediction_path, 'r', 'utf8') as fin:
for lid, line in enumerate(fin):
if args.split == 'test':
ex_id = f'nu-{lid}'
elif args.split == 'validation':
ex_id = validation_ids[lid]
else:
raise NotImplementedError
line = line.rstrip('\n').strip()
# treat each as single-entity or multi-entity answer based on the ground truth
if len(target_values_map[ex_id]) == 1:
predictions = [line]
else:
predictions = line.split(args.separator)
if ex_id not in target_values_map:
print
'WARNING: Example ID "%s" not found' % ex_id
else:
target_values = target_values_map[ex_id]
predicted_values = to_value_list(predictions)
correct = check_denotation(target_values, predicted_values)
print
u'%s\t%s\t%s\t%s' % (ex_id, correct,
target_values, predicted_values)
num_examples += 1
if correct:
num_correct += 1
print('Examples:', num_examples)
print('Correct:', num_correct)
print('Accuracy:', round((num_correct + 1e-9) / (num_examples + 1e-9), 4))
if __name__ == '__main__':
main()